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ABSTRACT 

Multi-label classification is an extension of classical multi-class one, where any instance can be 

associated with several classes simultaneously and thus the classes are no longer mutually 

exclusive. It was experimentally shown that the distance-weighted k-nearest neighbour 

(DWkNN) algorithm is superior to the original kNN rule for multi-class learning. But, it has not 

been investigated whether the distance-weighted strategy is valid for multi-label learning and 

which weighting function performs well. In this paper, we provide a concise multi-label DWkNN 

form (MLC-DWkNN). Furthermore, four weighting functions, Dudani’s linear function varying 

from 1 to 0, Macleod’s linear function ranging from 1 to 1/2, Dudani’s inverse distance function, 

and Zavrel’s exponential function, are collected and then investigated by detailed experiments 

on three benchmark data sets with Manhattan distance. Our study demonstrates that Dudani’s 

linear and Zavrel’s exponential functions work well, and moreover MLC-DWkNN with such two 

functions outperforms an existing kNN-based multi-label classifier ML-kNN. 
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1. INTRODUCTION 

Multi-label classification is a generalization of traditional multi-class one, in which any instance 

could belong to several classes (or labels) at the same time and thus the classes are not mutually 

exclusive [1]. Typical examples involve text categorization, scene classification and functional 

genomics. In text categorization, each document is usually linked to several different topics, such 

as music, entertainment and sport. In scene annotation, each picture is often labelled by multiple 

conceptual types, such as beach, sea and sunset. In gene functional detection, each gene has many 

effects on a cell, such as energy, metabolism and cellular biogenesis. 

Nowadays, the existing discriminative multi-label approaches can be mainly categorized into two 

groups: algorithm extension and data decomposition. The former considers all instances and all 

classes at once, resulting into some complicated optimization problems, e.g., large-scale quadratic 

programming in multi-label support vector machine (Rank-SVM) [2] and unconstrained 

optimization problem in multi-label neural networks (BP-MLL) [3]. The latter implicitly or 

explicitly applies some data decomposition trick (e.g., one-versus-rest, one-versus-one, or label 

powerset) to divide an entire multi-label data set into a series of binary or multi-class subsets 

which are easy and convenient to be solved by lots of existing single-label classifiers or their 

modified versions [1]. However, how to design and implement efficient and effective multi-label 

classifiers is still a challenging issue. 
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The k-nearest neighbour (kNN) method [4-6] is one of the oldest and simplest algorithms for 

classical single-label (binary or multi-class) learning. Despite its simplicity, the asymptotic 

analysis shows that the error rate will not greater than twice the Bayesian error rate [4, 5]. In 

essence, the original kNN method assumes that each neighbour has the same contribution to a 

query instance. The distance-weighted kNN method (DWkNN) was proposed in [7], which 

weighs the instances nearby more heavily than those farther away. Some analytical weighting 

functions have been designed in [7-9], most of which monotonously decrease as the distance 

between the query instance and any neighbour increases. The performance of DWkNN has been 

verified by many experiments [8, 9] for single-label classification.  

Due to the success of kNN and WDkNN in single-label learning, their several multi-label versions 

have been proposed recently. The simplest form is referred to as MLC-kNN simply in this paper, 

which is directly to assign several labels of each multi-label neighbour to different classes 

simultaneously, and then decide a query instance to be associated with several classes with more 

than k/2 votes. Note that, in essence, this method can be interpreted and implemented using one-

versus-rest decomposition (or binary relevance) and binary kNN rule. Therefore it is abbreviated 

to BR-kNN in [10].  

Four complicated multi-label classifiers (ML-kNN [11], DML-kNN [12], Mr.KNN [13] and 

IBLR-ML [14]) combine kNN or WDkNN with one or two additional techniques. ML-kNN [11] 

utilizes discrete Bayesian formula for each class independently. DML-kNN [12] generalizes ML-

kNN to further consider label dependencies via linking posterior probability of each class to the 

occurrence frequencies of labels of all classes. Mr.KNN [13] both adds supervised fuzzy c-mean 

(FCM) algorithm to characterize soft relevance value for each instance with each label, and 

integrates exponential weighting function [9, 15] into its discriminant functions. IBLR-ML [14] 

uses inverse distance weighting function [7] to calculate the weighted sum of positive and 

negative labels of all classes, and estimates class posterior probabilities by logistic regression 

(LR). It is worth noting these four multi-label methods all need a training procedure to estimate 

all quantities for their additional models, which is implemented using leave-one-out procedure. 

Therefore, strictly speaking, these approaches are not model-free and instance-based yet. 

Additionally, in Mr.KNN and IBLR-ML, besides distance-weighted strategy, an additional 

technique was exploited, but it was not identified how one or both of two techniques perform. To 

the best of our knowledge, no empirical comparison of weighting functions only for multi-label 

WDkNN-type classifiers has been reported so far. 

In this paper, we still focus on model-free and instance-based characteristic of WDkNN 

techniques. The DWkNN algorithm is generalized to construct its concise multi-label 

classification form: MLC-DWkNN. Four different distance-weighted functions [7-9] are collected 

and compared by detailed experiments. Our results show that Dudani’s linear function [7] and 

Zavrel’s exponential function [9] work well, and further their corresponding MLC-DWkNN 

forms even outperform ML-kNN classifier [11]. 

This paper is organized as follows. In Section 2, we describe MLC-DWkNN. Four different 

distance-weighting functions are summarized in Section 3. Experimental results are reported and 

analyzed in Section 4. Finally Section 5 ends up this paper with some conclusions. 

2. MULTI-LABEL DISTANCE-WEIGHTED K-NEAREST NEIGHBOUR METHOD 

Assume a q-class training data set of size l drawn identically and independently from an unknown 

probability distribution to be, 

1 1{( , ),..., ( , ),..., ( , )},i i l lx y x y x y                                                   (1) 

where d

i R∈x denotes a d-dimensional instance vector, and 1[ ,..., ,..., ]T

i i ij iqy y y=y is its q-

dimensional binary label vector, in which 1ijy = +  if ix belongs to the jth class (i.e., a relevant 
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label of 
ix ), otherwise 1ijy = − (i.e., an irrelevant label). It is worth noting that here any

iy has 

many components with +1 possibly. When only one component of 
iy  is equal to +1, a multi-label 

problem degrades into a traditional multi-class one. 

For a query instance x, we search for the first k-nearest neighbours with some distance metric 

from the training set (1), and sort them in increasing order of distances (
1 ... kd d≤ ≤ ) as follows, 

1 1{( , ),..., ( , ),..., ( , )}.i i k kx y x y x y                                                   (2) 

In multi-class classification, the kNN rule sums up the number of instances belonging to each 

class from (2) as its discriminant functions, 

( ) |{ | 1, 1,..., } |, 1,..., ,j ijf i y i k j q= = + = =x                                         (3) 

where 1ijy = ± denotes the jth binary label of the ith nearest neighbour. When each nearest 

neighbour
ix is allocated to a non-negative distance-based weight

iw , the DWkNN rule calculates 

the weight sum over those instances belonging to each class, 

1, 1

( ) .
ij

k

j i

i y

f w
= =+

= ∑x                                                            (4) 

Regardless of kNN and DWkNN, the majority voting strategy is used to decide one of labels only 

for x, 

'1,  ( ) ( ), ' 1,..., , '

1,

j j

j

if f f x j q j j
y

otherwise

+ ≥ = ≠
= 

−

x
                                    (5) 

In multi-label classification, since a query instance is possibly associated with many classes, the 

above formulae (3)-(5) have to be extended properly. We consider all positive and negative labels 

of each class independently in (2). For the jth class, the difference between the number of positive 

labels and that of negative labels is defined as its discriminant functions, 

1 1, 1 1, 1

( ) ( ).
ij ij

k k k

j ij ij ij

i i y i y

f y y y
= = =+ = =−

= = − −∑ ∑ ∑x                                             (6) 

With distance-based weights, the corresponding discriminant functions are considered as the 

weighted sum of positive and negative labels of each class, 

1 1, 1 1, 1

( ) ( ).
ij ij

k k k

j i ij i ij i ij

i i y i y

f w y w y w y
= = =+ = =−

= = − −∑ ∑ ∑x                                        (7) 

According to (6) and (7), the predicted binary label vector 1[ ,..., ,..., ]
T

j qy y y=y of x is detected by, 

1,  ( ) 0

1,

j

j

if f
y

otherwise

+ ≥
= 

−

x
                                                                   (8) 

In this paper, such two kNN-type multi-label methods respectively based on (6) and (7), are 

simply referred to as MLC-kNN and MLC-DWkNN. Furthermore, we use suffixes to distinguish 

MLC-DWkNN with different weighting functions. Although these two methods can also be 

interpreted and implemented using one-versus-rest decomposition trick, and binary kNN or 

WkNN rule, we give a concise representation here. Note that in [10], our MLC-kNN is referred to 

as BR-kNN, but no detailed formula is provided. 

3. FOUR  WEIGHTING FUNCTIONS 

For the classical DWkNN for multi-class classification, several analytical distance-based 

weighting functions have been constructed in [7 - 9], whose basic characteristic is that a 

neighbour with a smaller distance should be weighted more heavily than one with a greater 
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distance. Therefore any distance-based weighting function is monotonously decreasing with 

distance. In [7], Dudani proposed and tested a linear function, 

Dudani1: 1

( )

1( )
,  ,

otherwise,1,    

k i

k

d d

kd d

i

if d d
w

−
−

 ≠
= 


                                                         (9) 

in which the nearest neighbour gets a weight of 1, the furthest one a weight of 0, and the other 

weights are scaled linearly to the interval in between. Since the formula (9) essentially removes 

the kth nearest neighbour from participating in the kNN rule due to 0kw = , its modified form was 

introduced in [8], 

Macleod:
1

1

( ) ( )

1(1 )( )
,  ,

otherwise,1,    

s i s

s

d d d d

sd d

i

if d d
w

α
α

− + −
+ −

 ≠
= 


                                          (10) 

where , 1,...s k k= + and α is a positive constant. In [8], several combinations of s and α were 

verified. In this paper, we only test one combination of s k= and 1α = . This means that the 

furthest neighbour is allocated a weight of 1/2. 

Dudani also proposed an inverse distance weighting function, i.e., the reciprocal of distance, in [7] 

Dudani2: 1 ,  0.
ii id

w if d= ≠                                                      (11) 

Note that this function was not evaluated in [7] and subsequently was pointed out to work slightly 

badly in [9]. The formula (11) takes very larger values for distances close to zero and reduces the 

kNN rule in many cases into the simple 1NN one [7]. To avoid division by zero, a small constant 

(0.01) is added to the denominator in our study, as recommended in [9]. An exponential 

weighting function based on a universal perceptual law [15] was used in [9], 

Zavrel: exp( ).i iw d
βα= −                                                         (12) 

A specific form with 1α β= = in [9] is validated in this paper. In the next section, we will test the 

above four analytical weighting functions for MLC-DWkNN, whose curves are shown in Figure 

1, where
1 4d = and 10kd = . 

 

Figure 1. Four weighting functions used in our study 
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4. EXPERIMENTS 

In this section, we test the above four distance-based weighting functions for MLC-DWkNN, and 

compare these MLC-DWkNN forms with MLC-kNN and ML-kNN, on three benchmark data 

sets, according to five widely-used measures. ML-kNN cascades MLC-kNN and discrete binary 

Bayesian formula, where the prior and discrete conditional probabilities are estimated through 

combining leave-one-out (LOO) procedure with kNN rule [11]. 

4.1. Five Evaluation Measures and Three Data Sets 

It is more difficult and complicated to evaluate a multi-label classifier than a single one. In this 

paper, we utilize five popular and indicative measures in [11], as listed in Table 1, where the up 

arrow means that the higher a measure is, the better a method performs, and just the reverse for 

the down arrow. All these measures are calculated for a single instance first and then are averaged 

over all test instances. Among five measures, only the Hamming loss depends on the predicted 

label set of a test instance, while the other four are associated with the sorted discriminant 

function values. On their definitions, please refer to [11]. 

Table 1.Five measures used in this paper 

Measure Interval Good performance 

Ranking loss [0, 1] ↓↓↓↓  
Coverage [0, q] ↓↓↓↓  
One error [0, 1] ↓↓↓↓  
Average precision [0, 1] ↑↑↑↑  
Hamming loss [0, 1] ↓↓↓↓  

 

Table 2. Statistics for three benchmark data sets used in our experiments 

Data set Domain Instances Features Classes Average labels 

Emotions Music 593 72 6 1.87 

Image Scene 2000 294 5 1.24 

Yeast Biology 2417 103 14 4.24 

 

On the other hand, we collect three widely-used benchmark data sets: Emotions, Image, and 

Yeast from [16, 17], as listed in Table 2. Table 2 shows some useful statistics of these data sets, 

such as, the number of instances, features and classes, and the average labels. These data sets 

cover three distinct domains: semantic scene, music and biology. For more detailed information 

and description for these data sets, please refer to their web sites and references therein [16, 17]. 

2.2. Results and Analysis 

In this paper, we utilize 10-fold cross validation to evaluate four different weighting functions for 

MLC-DWkNN, and compare our technique with its original unweighted form MLC-kNN and 

high-performed classifier ML-kNN. To reduce the effect of random seeds, three repeats are 

conducted and thus each measure denotes the average value in this section. Since the Manhattan 

or absolute distance is tested, there is only a tunable parameter k in all methods. 

To begin with, we investigate the ranking loss as a function of k value for three data sets, as 

shown in Figure 2, where k is varied from 5 to 100 with a step of 5. It is observed that: (a) most of 

curves share a general tendency that as the k value increases the ranking loss value dramatically 

decreases first, achieves a optimum then and lastly increases almost monotonically; (b) For all k 

values, four MLC-DWkNN versions are superior to its unweighted form MLC-kNN; (c) MLC-

DWkNN-Dudani2 and -Macleod have a very approximate performance; (d) when k≥20, MLC-

DWkNN-Dudani1 and -Zavrel outperform ML-kNN consistently. 
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According to the optimal k values in Figure 2, we list all corresponding five measures for three 

data sets, as shown in Tables 3-5. In order to compare these methods comprehensively, we sort 

them using each measure first and then calculate the average rank over five measures for each 

method, as listed in the last rows of Tables 3-5. This comparison strategy was recommended in 

[18]. 

 

 

Figure 2. The ranking loss as a function of k for Emotions, Image and Yeast 

 

Table 3. Five measure values from Emotions 

Measure MLC-DWkNN MLC- 

kNN 

(k=30) 

ML- 

kNN 

(k=15) 
Dudani1 

(k=35) 

Dudani2 

(k=15) 

Macleod 

(k=25) 

Zavrel 

(k=25) 

↓Ranking loss 0.1414(1) 0.1456(5) 0.1453(4) 0.1433(2) 0.1595(6) 0.1445(3) 

↓Coverage 1.6869(1) 1.7032(5) 1.6976(4) 1.6931(3) 1.7589(6) 1.6897(2) 

↓One error 0.2277(1) 0.2451(4) 0.2400(3) 0.2305(2) 0.2664(6) 0.2490(5) 

↑↑↑↑Average precision 0.8258(1) 0.8194(4) 0.8199(3) 0.8235(2) 0.8036(6) 0.8180(5) 

↓Hamming loss 0.1756(1) 0.1806(4) 0.1825(5) 0.1797(3) 0.1793(2) 0.1884(6) 

↓Average Rank 1.00 4.40 3.80 2.40 5.2 4.2 

 

Table 4. Five measure values from Image 

Measure MLC-DWkNN MLC- 

kNN 

(k=30) 

ML- 

kNN 

(k=15) 
 Dudani1 

(k=35) 

Dudani2 

(k=20) 

Macleod 

(k=20) 

Zavrel 

(k=55) 

↓Ranking loss 0.1481(2) 0.1527(4) 0.1520(3) 0.1421(1) 0.1662(6) 0.1542(5) 

↓Coverage 0.8687(2) 0.8872(4) 0.8828(3) 0.8455(1) 0.9447(6) 0.8923(5) 

↓One error 0.2710(2) 0.2823(4) 0.2830(5) 0.2565(1) 0.2898(6) 0.2815(3) 

↑↑↑↑Average precision 0.8220(2) 0.8155(4) 0.8160(3) 0.8299(1) 0.8035(6) 0.8143(5) 

↓Hamming loss 0.1528(2) 0.1555(3) 0.1571(4) 0.1500(1) 0.1600(6) 0.1583(5) 

↓Average Ranking 2.00 3.80 3.60 1.00 6.00 4.60 
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Table 5. Five measure values from Yeast 

Measure MLC-DWkNN MLC- 

kNN 

(k=60) 

ML- 

kNN 

(k=20) 
Dudani1 

(k=70) 

Dudani2 

(k=40) 

Macleod 

(k=40) 

Zavrel 

(k=40) 

↓Ranking loss 0.1587(1) 0.1626(4) 0.1623(3) 0.1600(2) 0.1704(6) 0.1643(5) 

↓Coverage 6.0759(1) 6.1556(4) 6.1512(3) 6.1047(2) 6.2932(6) 6.2169(5) 

↓One error 0.2259(1) 0.2324(5) 0.2309(4) 0.2277(2) 0.2400(6) 0.2278(3) 

↑↑↑↑Average precision 0.7717(1) 0.7653(5) 0.7664(4) 0.7702(2) 0.7564(6) 0.7677(3) 

↓Hamming loss 0.1894(1) 0.1938(5) 0.1933(4) 0.1902(2) 0.1971(6) 0.1930(3) 

↓Average Rank 1.00 4.60 3.60 2.00 6.00 3.80 

 

In Table 3 for the Emotions data, MLC-DWkNN-Dudani1 works the best on all five measures. In 

terms of the average rank, it is found that four MLC-DWkNN forms perform better than MLC-

kNN, and further MLC-DWkNN-Dudani1, -Macleod and -Zavrel are superior to ML-kNN. 

In Table 4 on the Image data, MLC-DWkNN-Zavrel achieves five best measures.  According to 

the average rank, all MLC-DWkNN versions outperform its original one MLC-kNN and even 

ML-kNN. 

In Table 5 for the Yeast data, MLC-DWkNN-Dudani1 obtains the top position on all five 

measures. From the average rank, our all MLC-DWkNNs behave better than MLC-kNN, and 

further all these methods but Dudani2 version, outperform ML-kNN. 

According to Tables 3-5, it is illustrated that the Dudani1’s and Zavrel’s functions (9) and (12) 

are two best candidates among four weighting ways, whose MLC-DWkNN versions are superior 

to the high-performed multi-label approach ML-kNN [11]. 

5. CONCLUSIONS 

In this paper, we construct a concise multi-label distance-weighted k-nearest neighbour algorithm 

and compared four weighting functions with three benchmark data sets and five evaluation 

measures. From our study, it can be concluded that, (a) various multi-label distance-weighted k-

nearest neighbour methods can indeed improve the performance of their original unweighted 

form; (b) Dudina linear function varying from 1 to 0, and Zarvel exponential function, are two 

best weighting functions, whose performance for multi-label classification outperforms that of the 

state-of-the-art technique ML-kNN, when the Manhattan distance is used. Since our multi-label 

distance-weighted k-nearest neighbour method is still model-free, instance-based and well-

performed, it will be widely used in many applications. In our future work, we will conduct 

experiments on more benchmark data sets and use different distance metrics to show our above 

issue further. 
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