

David Bracewell, et al. (Eds): AIAA 2011,CS & IT 03, pp. 37–56 , 2011.

© CS & IT-CSCP 2011 DOI : 10.5121/csit.2011.1305

QOS WITH RELIABILITY AND SCALABILITY

IN ADAPTIVE SERVICE-BASED SYSTEMS

V. RHYMEND UTHARIARAJ

1
 P.MERCY FLORENCE

2
 A.GEETHA

3

1
Prof&Director, Anna University, Chennai

2
Research Scholar, Anna University, Chennai

3
Asst.Prof, Madha Engg.College, Chennai

ABSTRACT

Service-based systems that are dynamically composed at runtime to provide complex, adaptive

functionality are currently one of the main development paradigms in software engineering.

However, the Quality of Service (QoS) delivered by these systems remains an important

concern, and needs to be managed in an equally adaptive and predictable way. To address this

need, we introduce a novel, tool-supported framework for the development of adaptive service-

based systems called QoSMOS (QoS Management and Optimization of Service-based systems).

QoSMOS can be used to develop service-based systems that achieve their QoS requirements

through dynamically adapting to changes in the system state, environment, and workload.

QoSMOS service-based systems translate high-level QoS requirements specified by their

administrators into probabilistic temporal logic formulae, which are then formally and

automatically analyzed to identify and enforce optimal system configurations. The QoSMOS

self-adaptation mechanism can handle reliability and performance-related QoS requirements,

and can be integrated into newly developed solutions or legacy systems. The effectiveness and

scalability of the approach are validated using simulations and a set of experiments based on an

implementation of an adaptive service-based system for remote medical assistance.

KEYWORDS

Service-oriented software engineering, QoS management, QoS optimization, adaptive systems.

1 INTRODUCTION

SERVICE-BASED systems (SBSs) are playing an increasingly important role in application

domains ranging from research and health care to defense and aerospace. Built through the

dynamic composition of loosely coupled services offered by independent providers, SBSs

are operating in environments characterized by continual changes to requirements, state of

component services, and system usage profiles. In this context, the ability of SBSs to adjust their

behavior in response to such changes through self-adaptation has become a promising research

direction [32], [70].

Several approaches to architecting adaptive software systems (i.e., software systems that

reconfigure themselves in line with changes in their requirements and/or environment) have

38 Computer Science & Information Technology (CS & IT)

already appeared in the literature [70], [66]. These approaches involve the use of intelligent

control loops that collect information about the current state of the system, make decisions, and

then adjust the system as necessary (e.g., [5], [22], [26],. Alternative approaches define self-

adaptable architectures that emulate the behavior of biological systems, where the global,

complex behavior emerges from the cooperation and interaction among distributed, independent

components [41],

Achieving and maintaining well-defined Quality of Service (QoS) properties in a changing

environment represents a key challenge for self-adapting architectures. Service-based systems are

well positioned to address these challenges, as the exploitation of their different composition

patterns (orchestration and choreography) can represent an efficient way to achieve self-adapting

architectures [12], [86]. Consider, for example, a highly dynamic system where the set of

discoverable services may change over time, either because service providers publish (or

withdraw) service descriptions or because the availability of certain services may vary according

to the users location or to the network connectivity. In these settings, a more reliable or efficient

service might become available, and thus self-adaptation may allow its use to improve the overall

QoS. A further example is that, because of the increase of the number of users concurrently

accessing the system, the response time experienced by an user could become too high. In this

case, the system should adopt appropriate reconfiguration strategies (such as using more

computational resources or changing service providers) to tackle the peaks in the workload.

Therefore, a significant research effort has been devoted to the definition and analysis of QoS

properties in SBS systems (e.g., [43], [47], [79], [93]). As illustrated by the overview of related

approaches later in this section, typical QoS properties associated with SBSs include operation

cost on one hand and probabilistic quality attributes such as availability, reliability, and reputation

[101], [5] on the other hand. Among these QoS properties, the management of probabilistic

quality attributes is particularly challenging due to problems arising from the environment

variability (e.g., changing service workloads and failure rates). Furthermore, QoS management

requires self-adaptive SBSs to take into account aspects such as QoS specification, QoS

evaluation, QoS optimization, and QoS-based adaptation. Nevertheless, guaranteeing a given

level of QoS in these systems is essential for their success in the envisioned “service market,”

where service providers will compete by offering services with similar functionality but different

quality and cost attributes [12]

To deal with the QoS management of SBSs, we define and realize a generic architecture for

adaptive SBSs called QoSMOS (QoS Management and Optimization of Service-based systems).

QoSMOS is a tool-supported framework for the QoS management of self-adaptive, service-based

systems that combines, in a novel way, existing techniques and tools developed by our research

groups:

1. Formal specification of QoS requirements with probabilistic temporal logics and the

Propose specification system [49],

2. model-based QoS evaluation with probabilistic verification techniques provided by the

PRISM model checker [72],

3. monitoring and Bayesian-based parameter adaptation of the QoS models exploiting

KAMI [40], and

4. Planning and execution of system adaptation based on GPAC [20].

The QoSMOS framework supports the practical realization of adaptive SBS architectures by

means of two complementary mechanisms. The first mechanism consists of selecting the services

that compose a QoSMOS service-based system dynamically. Given a set of functionally

Computer Science & Information Technology (CS & IT) 39

equivalent services for each component of an SBS, QoSMOS selects those services whose

reliability, performance, and cost guarantee the realization of the QoS requirements for the

system. QoSMOS is capable of dynamically adapting its selection of services to runtime changes

in both the service characteristics (e.g., reliability or performance) and the system QoS

requirements. When service selection cannot achieve the QoS requirements, a warning is issued

to alert the SBS administrator

The second adaptation mechanism employed by QoSMOS consists of adjusting the resources

(e.g., the CPU) allocated to individual services within a service-based system dynamically. This

mechanism is applied to services hosted and administered internally by the organization that

implements the SBS. Its key benefit is the ability to adapt the resources allocated to SBS

component services to the actual workload of the system, thus ensuring that its QoS requirements

are satisfied with minimal cost and environmental impact.

Related approaches. One benefit of SBSs is the ability to build applications through composition

of available ser-vices at runtime. This composition involves several activities, including the

definition of an integration schema yielding the target application, the selection of concrete

services that offer the required functionality, and the fulfillment of QoS constraints. While

services are described and listed in public registries, there is still little support for QoS-based

service management. To cover this gap, the research area of QoS Management in SBSs has been

very active in the last five years.

Domain-sorted summary of recent approaches in the area of QoS-driven service selection,

composition, and adaptation is given in Table 1.

Specifically, we summarize the approaches according to:

1. the considered QoS metrics and QoS Specification languages (QoS Requirement

Specification),

2. the models/algorithms adopted for the QoS metric evaluation (QoS Evaluation Methods),

3. the type of optimization problem defined and solved and/or the adaptation policies

adopted (QoS Optimization or Adaptation Methods), and finally

4. Validation of the proposed approaches (Validation).

Considering these approaches, we identify some common points of weakness that we overcome

with our QoSMOS approach. QoS requirement specification. As illustrated in Table 1, a variety

of different QoS requirements are considered in the current approaches. However, QoS

specifications are often tackled in an abstract way by dealing with simple metrics (e.g., by

considering the failure rate as a metric to evaluate reliability). In our view, a detailed and formal

specification of QoS requirements is required for a comprehensive management of QoS in

service-based systems. A concise and unambiguous specification of the QoS requirements

enables, among other benefits, a systematic management of SBSs based on the quantitative

analysis of their QoS properties.Current examples of specification languages for QoS aspects in

the Web services domain are: Web Service Level Agreement (WSLA) [65], the timed Web

Service Constraint Language (timed WSCoL) [9], which is close to a real-time temporal logic, the

Web Service Management Language (WSML) [92], and the Web Service Offerings Language

(WSOL)

40 Computer Science & Information Technology (CS & IT)

In addition, formal QoS specification can be achieved using formalisms like real-time and

probabilistic temporal logics [1], [6], [8], [53], [69], [71], timed Life Sequence Charts [54],

probabilistic and timed Message Sequence Charts [90], Performance Trees [97], or

Probabilistic/Timed Behavior Trees [36], [37], [50]). To this end, QoSMOS adopts the

probabilistic temporal logics PCTL [53] and CSL [8] because these logics are sufficiently

expressive to formulate a variety of QoS requirements [49] whose formal verification can then be

carried out using existing probabilistic model checkers.

QoS evaluation methods. To be effective, QoS evaluation approaches should rely on models

representing the systems in an accurate/realistic way, and whose parameters can be adjusted at

runtime according to measured data. Several approaches reported in Table 1 rely on the definition

of simple aggregate QoS functions (like sum, product, max, and average) that can be easily

defined and managed. However, due to dependencies between different services or between

services and resources or the operational profiles, these aggregation functions could lead to

quality estimation that represent optimistic (or pessimistic) bounds rather than a realistic

estimation.

QoS delivered by its sub services. Examples can be found in [43], [83], [79], [93], where, starting

from the BPEL business processes modeled by UML activity diagrams or by direct acyclic

graphs, performance models based on simple queuing networks [83], [79] or reliability models

based on Markov models are derived [43], [93]. In line with these approaches, we argue that

comprehensive predictive quality evaluation models are needed. Examples of models that can be

used for QoS evaluation are: Markov models, state charts like probabilistic UML State Charts

[59], [60], queuing networks models [18], [76], stochastic process algebras like PEPA [46].

Toward this end, QoSMOS adopts Markov models as modeling formalisms to determine

quantitatively the reliability and performance quality metrics of service-based systems. However,

as an enhancement to the existing approaches, we observe composite systems (e.g., usage

profiles, branching, and failure probabilities) at runtime and update the quality evaluation models.

To check if a Markov model satisfies its QoS requirements, numerical/symbolic [6], [8], [16],

[53] and statistical [100] techniques have been developed, and extensive tool support is available

(e.g., PRISM [72]).QoS optimization or adaptation methods. Devising QoS driven adaptation

methodologies of SBSs is of utmost importance in the envisaged dynamic environment in which

SBS operate. Most of the proposed methodologies for QoS-driven adaptation of SBS address this

problem as a service selection problem (e.g., [5], [26], [30], [101]). Other papers have instead

considered SBS adaptation through workflow restructuring, exploiting the inherent redundancy of

SBS (e.g., [31], [52], [55].) In [28], a unified framework is proposed where service selection is

integrated with other kinds of workflow restructuring to achieve greater flexibility in the

adaptation.

According to this last approach, we conclude that the service selection and composition problem

is really important for SBS QoS-based adaptation, but we also argue that for a comprehensive

approach to QoS Management, optimal resource allocation and parameterization of the services is

also required.

The QoSMOS framework does not aim to invent new techniques, but includes and integrates

optimization techniques and adaptation strategies derived from approaches already present in

literature.

Computer Science & Information Technology (CS & IT) 41

Validation. An investigation of the validation strategies shows that several approaches perform

experiments based on generated examples or apply a case study-based validation. To validate the

QoSMOS approach, we use a similar validation strategy and perform experiments and

simulations based on an implementation of a service-based system for remote medical assistance

called TeleAssistance [10], [40].Contribution. Based on the review of the related approaches, the

main contributions of the QoSMOS framework can be summarized as follows:

• In contrast to the simple and informal metrics that are currently used in the related

approaches, QoSMOS uses a precise and formal specification of QoS requirements with

probabilistic temporal logics.

• QoSMOS uses a tool-supported model-based quality evaluation methodology for

probabilistic QoS attributes(i.e., performance, reliability, and resource usage) of service-

based systems that significantly improves current approaches that use simple aggregation

functions for QoS prediction because we could model quality dependencies on other

services and the operational profile.

• QoSMOS utilizes techniques and tools for monitoring service-based systems and learning

the parameters of their model(s) from the observed behavior of the system.

• QoSMOS adds self-adaptation (e.g., self Configuration and self-optimization) capabilities

to service based systems through continuous verification of quantitative properties at

runtime derived from high-level, user-specified system goals encoded with multi

objective utility functions. The self-adaptation capabilities include service selection,

runtime reconfiguration, and resource assignment. Consequently, QoSMOS subsumes

most of the existing approaches.

2 PRELIMINARIES

2.1 Formal Definition of QoS Requirements

The precise specification of QoS requirements or Service Level Agreements (SLAs) is an

important aspect for service composition, service selection, and optimization of service-based

systems [42]. In QoSMOS, QoS requirements are specified using real-time temporal logics such

as MTL (Metric Temporal Logic) [69] and TCTL (Timed Computational Tree Logic) [1], or

probabilistic temporal logics such as PCTL (Probabilistic Computation Tree Logic) [53], PCTL*

[6], PTCTL (Probabilistic Timed CTL) [71], and CSL (Continuous Stochastic Logic) [8]. The

significant benefits of using logic-based requirement specifications include the ability to define

these requirements concisely and unambiguously, and to analyze those using rigorous,

mathematically-based tools such as model checkers.

Furthermore, for logic-based specification-formalism, the correct definition of QoS proper-ties is

supported with specification patterns [39], [49], [48], [68] and structured English grammars [49],

[68].Traditionally, the semantics of the PCTL/CSL is defined with a satisfaction relation j¼ over

the states S and possible paths Path
M

ðsÞ that are possible in a state s 2 S of a discrete/continuous

time probabilistic model M. For de-tails about the formal semantics the reader is referred to [8],

[33], [53]. Normally, a PCTL/CSL formula is evaluated starting from the initial state of the

probabilistic model M. However, for convenience, in tools like PRISM any state and also a set of

states can be chosen with a filter. Syntactically, a filter is specified as logical expression inside

braces at the end of the PCTL/CSL formula.

42 Computer Science & Information Technology (CS & IT)

2.2 Quality Evaluation Models

Several approaches exist in the literature for the model-based quality analysis and prediction,

spanning the use of Petri nets, queuing networks, layered queuing networks, stochastic process

algebras, Markov processes, fault trees, statistical models, and simulation models (see [3] for a

recent review and classification of models for software quality analysis).In this paper, we focus

on Markov models, which are a very general evaluation model that can be used to reason about

performance and reliability properties.

Furthermore, Markov models include other modeling approaches as special cases, such as

queuing networks, Stochastic Petri Nets [78], and Stochastic Process Algebras [34].Specifically,

Markov models are stochastic processes defined as state-transition systems augmented with

probabilities. Formally, a stochastic process is a collection of random variables defined on a

common sample (probability) space. In Markov models [18], states represent possible

configurations of the system being modeled.

Transitions among states occur at discrete or continuous time-steps and the probability of making

transitions is given by exponential probability distributions. The Markov property characterizes

these models: It means that, given the present state, future states are independent of the past. In

other words, the description of the present state fully captures all of the information that could

influence the future evolution of the process.

The most used Markov models include Discrete Time Markov Chains (DTMC), which are the

simplest Markovian model, where transitions between states happen at discrete time

steps.Continuous Time Markov Chains (CTMC), where the value associated with each outgoing

transition from a state is intended not as a probability but as a parameter of an exponential

probability distribution (transition rate).

Markov Decision Processes (MDP) which are an extension of DTMCs allowing multiple

probabilistic behaviors to be specified as output of a state. These behaviors are selected non

deterministically. The analytical solution techniques for Markov models differ according to the

specific model and to the underlying assumptions (e.g., transient or non transient states,

continuous versus discrete time, etc.).

For example, the evaluation of the stationary probability _s of a DTMC model requires the

solution of a linear system whose size is given by the cardinality of the state space S. The exact

solution of such a system can be obtained only if S is finite or when the matrix of transition

probabilities has a specific form. A problem of Markov models, which similar evaluation models

also face, is the explosion of the number of states when they are used to model real systems [18].

To tackle this problem, tool support (e.g., PRISM [72]) with efficient symbolic representations

and state space reduction techniques [64], [73] like partial-order reduction, bi simulation-based

lumping and symmetry reduction is required.

3 QOSMOS ARCHITECTURE

This section introduces the generic QoSMOS architecture of an adaptive service-based system,

and describes its realization using existing tools and components. As QoSMOS extends existing

Computer Science & Information Technology (CS & IT) 43

service-based systems with the capability to adapt dynamically, we start by presenting the

standard architecture of a service-based system.

A typical SBS consists of a composition of web services that are accessed remotely through a

software application termed a workflow engine. Several services may provide the same

functionality, often with different levels of performance and reliability, and at different

costs.Example. We will illustrate the concepts introduced so far by presenting a service-based

system for remote medical assistance taken from [10], [40].

This TeleAssistance (TA) system will be used as a running example throughout the rest of the

paper, and its associated BPEL workflow is depicted in Fig. 2. The TA system incorporates the

following abstract services:Alarm Service, which provides the operation sendAlarm,Medical

Analysis Service, which provides the operation analyzeData, andDrug Service, which provides

the operations changeDoses and change Drug.

The TA workflow starts executing as soon as a Patient (PA) enables the home device supplied by

the TA provider, and this device invokes the start Assistance operation of the workflow. The

workflow then enters an infinite loop whose iterations start with a “pick” activity that suspends

the execution and waits for one of the following three messages: 1) vitalParamsMsg, 2)

pButtonMsg, or 3) stopMsg. The first message contains the patient’s vital parameters, which are

forwarded by the BPEL workflow to the Medical Laboratory service (LAB) by invoking the

operation analyzeData.

The LAB is in charge of analyzing the data, and replies by sending a result value stored in a

variable analysis Result. A field of the variable contains a value that can be change Drug, change

Doses, or send Alarm. A send Alarm value triggers the intervention of a First-Aid Squad (FAS)

comprised of doctors, nurses, and paramedics whose task is to visit the patient at home in case of

emergency. To alert the squad, the TA workflow invokes the operation alarm of the FAS. The

message pButtonMsg caused by pressing a panic button also generates an alarm sent to the FAS.

Finally, the message stopMsg indicates that the patient decided to cancel the TA service, deleting

each pending invocation to the FAS service. Different providers could be involved in providing

concrete implementations for the abstract services in the TA service-based system. For example,

we will consider that the Alarm Service and the Medical Analysis Service are implemented by n1
¼
 3 and n2

¼
 5 telecommunication operators, respectively—each such concrete service being

provided with different cost, performance and reliability characteristics. Finally, we will consider

that a single, in-house implementation of the Drug Service is available (i.e., n3
¼

1).

3.1 Generic Architecture of QoSMOS

As illustrated in Fig. 3, QoSMOS augments the standard SBS architecture with a component

termed an autonomic manager. This component employs the autonomic computing monitor

analyze-plan-execute (MAPE) loop [66], [56] to ensure that the SBS adapts continually in order

to achieve a set of high-level, multi objective QoS requirements specified by its administrator.

The four stages of the QoSMOS MAPE loop are described below.

44 Computer Science & Information Technology (CS & IT)

3.1.1 Monitoring Stage

The first stage of the MAPE loop involves monitoring either or both of:

1. The performance (e.g., response time) and reliability (e.g., failure rate) of the SBS

services. These parameters can be monitored for both in-house and third-party services.

2. The workload of individual concrete services (e.g., their request inter arrival rates) and

the resources allocated to these services (e.g., CPU, memory, and bandwidth). Note that

this is possible only for in-house services; these characteristics cannot be monitored for

third-party services.

This information is used to build and/or to update an operational model of the SBS, an initial

version of which can be provided by the developer of the service-based system. The model

updates can happen periodically or when the monitor identifies significant changes in the

parameters of the system. The types of operational models supported by the QoSMOS approach

are those described earlier in Section 2.2, i.e., Markovian models. The maximum request service

rate for this concrete, in-house service represents the request service rate when the service is

allocated the maximum amount of CPU resources on the server(s) on which it is running.

3.1.2 Analysis Stage

The operational model from the monitoring stage is then employed to analyze the QoS

requirements specified by the SBS administrator. The model is parameterized by the configurable

parameters of the SBS, and this analysis step is intended to identify SBS configurations that

satisfy the QoS requirements for the system. The analysis step includes a preprocessing step in

which the QoS requirements specified by the SBS administrator in a high-level language are

converted automatically into formally defined QoS requirements of the form presented in Section

2.1. Example. The high-level requirements for the TA service-based system from our running

example are comprised of reliability and performancerelated requirements. Note that the

reliability-related requirements take into account the fact that the average number of alarms

associated with a particular patient throughout his or her utilization of the TA service-based

system (i.e., the lifetime of the system) is 10

Computer Science & Information Technology (CS & IT) 45

3.1.3 Planning Stage

The planning stage of the QoSMOS MAPE loop uses the results of the analysis stage to build a

plan for adapting the configuration of the SBS. The two types of adaptation made possible by the

QoSMOS approach and implemented in the execution step of its MAPE loop are described

below.

46 Computer Science & Information Technology (CS & IT)

1. Adaptation through changing the workflow implemented by the service-based system. This

type of adaptation is possible for all service-based systems considered by the QoSMOS

framework, including those that employ third-party services. It requires that the SBS

developer provide a workflow that is defined in terms of the abstract services needed to

implement the intended SBS functionality, i.e., an abstract workflow.

It is worth emphasizing that developing an abstract workflow is identical to developing a

concrete workflow, minus the step in which the addresses of the concrete services to use are

decided. This last step is carried out at runtime, when the analysis results are used to map the

abstract services within this original workflow to concrete services—a process that takes

place during the planning stage.

Note that it is possible to restrict this adaptation to a subset of the workflow services by

associating a single concrete service with each abstract service that does not belong to this

subset. We actually envisage this as a common use case, and we will illustrate it by means of

a number of experiments in Section 4.3. This use case is supported without having to specify

in the abstract workflow which services should be considered for runtime adaptation and

which services should always be implemented using the same concrete service.

2. Adaptation through modifying the resources allocated to individual services. When internally

administered services are used to implement the SBS, it may be possible to adapt the

resources allocated to these services in line with the variation in their workloads and in the

QoS requirements for the system Potential applications of this type of adaptation include:

achieving performance- related QoS requirements with minimal cost and environ-mental

impact and achieving dependence QoS requirements by running services across a variable

number of servers for redundancy purposes.

The mapping of abstract to concrete services within the QoSMOS architecture can be performed

using one of the mapping patterns described below:

1. In a single mapping (SGL), a concrete service with suitable performance, reliability, and cost

characteristics is used for the abstract service.

2. In sequential one-to-many mapping (SEQ), an abstract service is mapped to a sequence of

concrete services. When the workflow is executed, these services are used one at a time,

starting with the first service in the sequence and carrying on through the sequence until

either a non erroneous response is obtained or all services in the sequence fail to respond

success-fully. This concretization of an abstract service is useful for improving the reliability-

related QoS of an SBS, but can elongate its response time. Note that the sequence of concrete

services for an SEQ mapping pattern may include several instances of the same concrete

service, or even a single concrete service to be invoked repeatedly for redundancy purposes.

3. Finally, in parallel one-to-many mapping (PAR), an abstract service is mapped to a set of

concrete services, all of which are called during the execution of the workflow. This ensures

that an increase in the reliability-related QoS metrics is obtained without impacting the SBS

response time, but potentially at a higher cost the service response time varies linearly with

the value assigned to this parameter, which can therefore be used to adapt the service

behavior to its request arrival rate and to the system requirement

Computer Science & Information Technology (CS & IT) 47

3.2.2 PRISM

PRISM [72], [74] is an open-source probabilistic model checker developed originally at the

University of Birming-ham and currently supported and extended at the University of Oxford.

The tool supports the analysis of a growing number of model types, including discrete and

continuous-time Markov chains (DTMCs and CTMCs), Markov decision processes (MDPs), and

extensions of these models with costs and rewards.The models to be analyzed are specified in the

PRISM modeling language, which is based on the Reactive Modules formalism of Alur and

Henzinger [2]. The proper-ties to be established are specified using PCTL (Probabilistic

Computation Tree Logic) [53] for DTMCs and MDPs, and CSL (Continuous Stochastic Logic)

[8] for CTMCs.

The tool works by first building a symbolic, MTBDD (multiterminal binary decision diagram)

representation of the reachable state space of the analyzed model [72]. It then performs the

analysis by induction over syntax, being capable of handling both bound properties—i.e.,

deciding whether a probability is above or below a specified threshold—and quantitative

properties—i.e., calculating the actual probability of an event or the expectation for cost/ reward

formulas. Particularly important for its integration in the QoSMOS architecture, PRISM supports

the concept of experiments, which allows the automated analysis of several versions of a

parameterized model. We will use this capability within the QoSMOS MAPE loop to

automatically carry out the analysis of a range of possible configurations for a service-based

system.

The model checking algorithms employed by PRISM involve a combination of graph-theoretical

algorithms and numerical computation. The first type of algorithms operates on the underlying

graph structure of the analyzed Markov model, e.g., to determine the reachable states within a

model. Numerical computation (typically using iterative methods) is required for the solution of

linear equation systems and the calculation of the transient probabilities of Markov chains.

The probabilistic model checker PRISM has been used in a large number of case studies that

spawn application domains ranging from communication protocols and security systems to

biological systems and dynamic power management. Many of these case studies are presented in

detail on the PRISM website (www.prismmodelchecker. org). An extensive, independent

performance analysis of a broad selection of probabilistic model checkers [61] ranked PRISM as

the best tool for the quantitative analysis of large models such as the ones encountered in the

adaptive service-based systems targeted by our QoSMOS work.First, the DTMC model depicted

in Fig. 6 is used for the analysis required to achieve the reliability QoS requirements R0 to R3.

This model follows the structure of the BPEL workflow, and assigns probabilities to branches and

failure probabilities to service invocations (failures are represented by states highlighted in gray).

Our approach relies on initial estimates for transition probabilities that come from domain experts

and from monitoring previous versions of the system. Transition probabilities corresponding to

service failure rates are unspecified in the DTMC model and represented by the unknown

parameters a, b, and c because they depend on the mapping patterns and concrete services

selected by the QoSMOS MAPE loop.

48 Computer Science & Information Technology (CS & IT)

3.2.3 ProProST

To ease the formalization of QoS properties as required by the QoSMOS architecture, the idea of

specification patterns [39], [68] has recently been investigated for probabilistic logics [49]. The

outcome of an investigation of 152 proper-ties from academia and 48 properties from CTMC

model for the in-house concrete service s
1

3.

Computer Science & Information Technology (CS & IT) 49

3.3 QoSMOS Scalability

The main overhead of using the QoSMOS approach to add adaptiveness to a service-based

system corresponds to the execution of the PRISM experiments in the analysis stage of the

QoSMOS MAPE loop. All other operations performed by the QoSMOS autonomic manager

including the monitoring of the system state and workload, updating the QoSMOS operational

model, parsing the results of the PRISM experiments, and using these results to plan and enforce

a new system configuration—take a negligible fraction of the overall MAPE loop processing

time. For the QoSMOS-enabled TA system in our case study, each full PRISM evaluation of the

PCTL and CSL properties associated with the QoS requirements R0 to R5 took between 2-3

milliseconds on a 2.4 GHz Intel Core 2 Duo server with4 GB of DDR3 RAM at 1067 MHz.

Given the number of possible configurations examined and the time spent in the communication

steps between the QoSMOS components, the end-to-end execution of the MAPE loop and the

adaptation of the SBS configuration to a new system state and workload can be completed in

between 2.7-3.4 seconds. Note that this time represents the time required to react to changes in

the system objectives, state and/or workload; it does not represent system downtime.

Furthermore, this overhead does not need to be accommodated by a production server running

one of the SBS components such as the BPEL workflow engine or one of the in-house concrete

services.

Instead, the GPAC autonomic manager employed by QoSMOS is itself a service-based system

and can therefore be executed on a separate, management server. In this way, retrofitting

adaptiveness to an existing SBS system can be done without modifying the original system or

adding overheads to the physical servers that are used to execute its components. As these

encouraging results were obtained for a service based system comprised of only three abstract

services and nine associated concrete services, we carried out experiments to assess the scalability

of the QoSMOS approach for service based systems comprising larger numbers of services. We

first considered scenarios involving the original three service abstract TeleAssistance workflow

and larger sets of concrete services.

The increases in the MAPE loop execution time for two such scenarios are presented shows the

MAPE loop execution time required for gradually increasing sizes of the set of concrete services

implementing the AlarmService (i.e., CS1). The size of the other concrete service sets (i.e., sets

CS2 and CS3 implementing the Medical Analysis Service and the Drug Service, respectively)

were maintained at the values from Table 2. As expected, the MAPE loop execution time grows

exponentially due to the background quantitative model checking from the analysis stage.

However, the execution time does not exceed five seconds for CS1 sizes of up to 22 concrete

services, which is well over the number of concrete alarm services that can be expected for our

case study.

When the sizes of all concrete service sets were increased at the same time, the execution

overheads were observed for the QoSMOS MAPE loop. These results suggest that the QoSMOS

approach can be used for systems of similar size to the TA SBS with sets of up to four concrete

services for each abstract service (MAPE loop execution time under 30 seconds) or even up to

five concrete services of similar size to the TA SBS with sets of up to four concrete services for

each abstract service (MAPE loop execution time under 30 seconds) or even up to five concrete

services for each abstract service (MAPE loop execution time under 2 minutes). One way to

accommodate larger sets of concrete services is to preselect and use within the QoSMOS service

50 Computer Science & Information Technology (CS & IT)

based system subsets of three to five concrete services that are most likely to be useful based on

criteria such as cost or provider trustworthiness.

QoSMoS scalability with the number of concrete

This preselection can be done periodically, either by the SBS administrator or by another instance

of the QoSMOS MAPE loop. One last set of experiments that we present in this section involves

examining the scalability of the QoSMOS framework for larger service-based systems. To

perform these experiments, we increased the size of the abstract TA workflow by considering that

the medical analysis part of the workflow requires the sequential execution of several services,

each of which performs one part of the analysis. In order to choose a realistic range of workflow

sizes, we first carried out a study of the SBS development platform Taverna [57] Taverna is

widely used in the development of scientific workflows in application domains, including

bioinformatics, chemoinformatics, astronomy, and social sciences.

Our study focused on the Taverna workflows with the tag “bioinformatics” and with a download

count of 50 or more from the Taverna workflow repository my Experiment [85]. We selected this

particular set of workflows because it represents the most used set of workflows from an

application domain in which the Taverna platform is used regularly. Out of the 28 workflows in

this set, 13 are comprised of five services or less, seven are comprised of between six and eight

services, five are comprised of 10 services, two have 11 services, and one consists of 32

services.Wetherefore focused our experiments on extensions of theTAabstract workflow of

similar size to these Taverna workflows. Loop for TA workflow variants comprised of up to 13

additional abstract medical services (i.e., up to 16 abstract services in total).

Computer Science & Information Technology (CS & IT) 51

In all experiments, we considered that the sets of concrete services for all but the first three

abstract services contained a single concrete service, i.e., adaptation was applied only to the

original abstract services. The experiments were run for three adaptation scenarios, namely, when

sets of two, three, and four concrete services, respectively, were available for each abstract

service for which QoSMOS adaptation was employed. The results indicate that QoSMOS-based

adaptation can be applied to workflows comprised of up to 16 abstract services, with overheads of

under four seconds in the first scenario, under 20 seconds in the second scenario, and up to two

minutes in the last scenario.

When more than one concrete service is available for every abstract service within the QoSMOS

based workflow (Fig. 18), the workflow sizes for which the QoSMOS MAPE loop completes

within 140 seconds are: eight—when that these experiments cover over 71 percent of the Taverna

workflows from the study described above (i.e., 20 out of 28 workflows), which we consider a

good result for the QoSMOS prototype realization and this scenario in which the adaptation is

applied to every single component of the service-based system.

Furthermore, remember that the SBS objectives in our case study consist of no less than six QoS

requirements, each of which brings an almost equal contribution to the execution times obtained

for the experiments in this section. Adaptation in service-based systems with less complex SLAs

can be achieved with significantly lower overheads. There are several options that we are

investigating in our effort to increase the scalability of QoSMOS.

4.CONCLUSIONS AND FUTURE WORK

In this paper, we have presented QoSMOS, a tool-supported framework for QoS management of

self-adaptive service based systems. QoSMOS defines and implements an autonomic architecture

that combines formal specification of QoS requirements, model-based QoS evaluation,

monitoring and parameter adaptation of the QoS models, and planning and execution of system

adaptation.

The proposed framework has been built through the integration of extended versions of existing

tools and components developed by the authors. Essential strengths of QoSMOS are the use of a

precise and formal specification of QoS requirements with probabilistic temporal logics and the

definition of a model-based quality evaluation methodology for probabilistic QoS attributes

taking into account quality dependencies on other services and on the operational profile.

The monitoring phase of QoSMOS and the consequent possible online update of the quality

models allow discovering requirements violations and triggering adaptation strategies for the

SBS. The possible strategies are based on techniques for service selection, runtime

reconfiguration, and resource assignment to in-house managed services. Furthermore, the quality

models in QoSMOS represent the overall system architecture, so it is possible to detect

requirement violations generated by different causes and not only related to unexpected behaviors

associated with single services of theSBS (e.g., unexpected variations in the usage profile).

The validation of the proposed framework has been performed through the application of

QoSMOS capabilities to a common case study of a service-based system for remote medical

assistance. The results obtained with a high number of numerical experiments and simulations

proved the effectiveness of our solution. On the other hand, we have to also acknowledge some

52 Computer Science & Information Technology (CS & IT)

limitations that should be considered when selecting the QoSMOS framework. One limitation of

the QoSMOS framework is that, due to the statistical methods behind the monitoring and QoS

analysis, it is hard to deal with models that contain extreme probabilities.

As an example, with a Bayesian filter it would require an unfeasibly large number of observations

to change the value of a transition probability. Additionally, we acknowledge that the quality

evaluation with our more realistic modelbased QoS models and probabilistic verification can take

longer than the quality evaluation with simple aggregation functions. Consequently, there is a

trade-off between the improved accuracy of our QoS evaluation compared to the existing

approaches and the time needed to obtain these results.

For most practical service-based systems where QoSMOS was applied the time efficiency was

not a problem. However, when dealing with a workflow with several thousand services and

multiple parameters, a very long time could be necessary to get a result of the quality evaluation.

Furthermore, our approach currently only applies to probabilistically quantifiable and externally

observable QoS properties, such as reliability, availability, and performance. Due to the

underlying techniques for the adaptation and planning procedures, an application to qualitative

nonquantifiable QoS properties is currently not possible.

Besides working on the above-mentioned limitations, our future work will consist of refining the

QoSMOS approach by investigating its range of applicability. We plan to enrich the ongoing

implementation by: enlarging the set of supported models (e.g., Markov Decision Processes,

etc.),integrating black-box monitoring techniques [51], and defining a language aimed at

managing multimodel consistency. Additionally, it would be interesting to explore and extend

other QoS specification formalisms (such as, for example, ALBERT [10] or probabilistic and

timed MSCs [58], [90]) and map them into the ProProST pattern system and the provided

structured English grammar. ACKNOWLEDGMENTS This work was partly supported by the

FP7 European projects CONNECT (FP7 231167), Q-ImPrESS (FP7 215013), and IDEAS-ERC

SMScom (227977), and by the UK Engineering and Physical Sciences Research Council Grants

EP/F001096/1 and EP/H042644/1.

REFERENCES:

[1] R. Alur, C. Courcoubetis, and D. Dill, “Model-Checking in Dense Real-Time,” Information and

Computation, vol. 104, no. 1, pp. 2- 34,1993.

[2] R. Alur and T.A. Henzinger, “Reactive Modules,” Formal Methods in System Design, pp. 207-218,

IEEE CS Press, 1999.

[3] D. Ardagna, C. Ghezzi, and R. Mirandola, “Rethinking the Use of Models in Software Architecture,”

Proc. Fourth Int’l Conf. Quality of Software-Architectures, pp. 1-27, 2008.

[4] D. Ardagna and B. Pernici, “Global and Local QoS Constraints Guarantee in Web Service Selection,”

Proc. IEEE Int’l Conf. Web Services, pp. 805-806, 2005.

[5] D. Ardagna and B. Pernici, “Adaptive Service Composition in Flexible Processes,” IEEE Trans.

Software Eng., vol. 33, no. 6, pp. 369-384, June 2007.

[6] A. Aziz, V. Singhal, and F. Balarin, “It Usually Works: The Temporal Logic of Stochastic Systems,”

Proc. Seventh Int’l Conf. Computer Aided Verification, P. Wolper, ed., pp. 155-165, 1995.

[7] E. Badidi, L. Esmahi, and M.A. Serhani, “A Queuing Model for Service Selection of Multi-Classes

QoS-Aware Web Services,” Proc. IEEE Int’l Conf. Web Services, pp. 204-213, 2005.

[8] C. Baier, J.-P. Katoen, and H. Hermanns, “Approximate Symbolic Model Checking of Continuous-

Time Markov Chains,” Proc. 10
th

 Int’l Conf. Concurrency Theory, J.C.M. Baeten and S. Mauw, eds.,

pp. 146-161, 1999.

Computer Science & Information Technology (CS & IT) 53

[9] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini, “A Timed Extension of WSCoL,”

Proc. IEEE Int’l Conf. Web Services, pp. 663-670, 2007.

[10] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spoletini, “Validation of Web Service

Compositions,” IET Software, vol. 1, no. 6, pp. 219-232, Dec. 2007.

[11] L. Baresi and S. Guinea, “Towards Dynamic Monitoring of WS-BPEL Processes,” Proc. Third Int’l

Conf. Service Oriented Computing, 2005.

[12] L. Baresi, E.D. Nitto, and C. Ghezzi, “Toward Open-World Software: Issue and Challenges,”

Computer, vol. 39, no. 10, pp. 36-43, Oct. 2006.

[13] R. Berbner, M. Spahn, N. Repp, O. Heckmann, and R. Steinmetz, “Heuristics for QoS-Aware Web

Service Composition,” Proc. IEEE Int’l Conf. Web Services, pp. 72-82, 2006.

[14] J.O. Berger, Statistical Decision Theory and Bayesian Analysis, second ed. Springer, 1985.

[15] C. Bettini, D. Maggiorini, and D. Riboni, “Distributed Context Monitoring for the Adaptation of

Continuous Services,” World Wide Web, vol. 10, no. 4, pp. 503-528, 2007.

[16] A. Bianco and L. de Alfaro, “Model Checking of Probabilistic and Nondeterministic Systems,” Proc.

15th Conf. Foundations of Software Technology and Theoretical Computer Science,

P.S.Thiagarajan, ed., pp. 499-513, 1995.

[17] D. Bianculli and C. Ghezzi, “Monitoring Conversational Web Services,” Proc. Second Int’l

Workshop Service Oriented Software Eng., pp. 15-21, 2007.

[18] G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi, Queuing Network and Markov Chains. John

Wiley, 1998.

[19] B. Boonea, S. Van Hoeckea, G. Van Seghbroecka, N. Jonckheereb, V. Jonckersb, F.D. Turcka, C.

Develdera, and B. Dhoedta, “SALSA: QoS-Aware Load Balancing for Autonomous Service

Brokering,” J. Systems and Software, vol. available online, p. in print, 2010.

[20] R. Calinescu, “General-Purpose Autonomic Computing,” Autonomi Computing and Networking,

M.K. Denko, L.T. Yang, and Y. Zhang, eds., pp. 3-30, Springer, 2009.

[21] R. Calinescu, “Reconfigurable Service-Oriented Architecture for Autonomic Computing,” Int’l J.

Advances in Intelligent Systems, vol. 2, no. 1, pp. 38-57, June 2009

[22] R. Calinescu and M. Kwiatkowska, “CADS*: Computer-Aided Development of Self-* Systems,”

Fundamental Approaches to Software Eng., M. Chechik and M. Wirsing, eds., pp. 421-424,

Springer, Mar. 2009.

[23] R. Calinescu and M.Z. Kwiatkowska, “Using Quantitative Analysis to Implement Autonomic IT

Systems,” Proc. 31st Int’l Conf. Software Eng., pp. 100-110, 2009.

[24] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani, “An Approach for QoS-Aware Service

Composition Based on Genetic Algorithms,” Proc. Conf. Genetic and Evolutionary Computation,pp.

1069-1075, 2005.

[25] G. Canfora, M.D. Penta, R. Esposito, and M.L. Villani, “QoSAware Replanning of Composite Web

Services,” Proc. IEEE Int’l Conf. Web Services, pp. 121-129, 2005.

[26] G. Canfora, M.D. Penta, R. Esposito, and M.L. Villani, “A Framework for QoS-Aware Binding and

Re-Binding of Composite Web Services,” J. Systems and Software, vol. 81, no. 10, pp. 1754- 1769,

2008.

[27] L. Cao, J. Cao, and M. Li, “Genetic Algorithm Utilized in Cost- Reduction Driven Web Service

Selection,” Proc. Int’l Conf. Computational Intelligence and Security, Y. Hao, J. Liu, Y. Wang,

Y.M. Cheung, H. Yin, L. Jiao, J. Ma, and Y.-C. Jiao, eds., pp. 679- 686, 2005.

[28] V. Cardellini, E. Casalicchio, V. Grassi, F. Lo Presti, and R. Mirandola, “QoS-Driven Runtime

Adaptation of Service Oriented Architectures,” Proc. European Software Eng. Conf. and ACM

SIGSOFT Symp. Foundations of Software Eng., pp. 131- 140, 2009.

[29] V. Cardellini, E. Casalicchio, V. Grassi, and R. Mirandola, “A Framework for Optimal Service

Selection in Broker-Based Architectures with Multiple QoS Classes,” Proc. Services Computing

Workshops, pp. 105-112, 2006.

[30] V. Cardellini, E. Casalicchio, V. Grassi, and F.L. Presti, “Scalable Service Selection for Web

Service Composition Supporting Differentiated QoS Classes,” Technical Report RR-07.59, Dip. Di

Informatica, Sistemi e Produzione, Univ. di Roma Tor Vergata, 2007.

54 Computer Science & Information Technology (CS & IT)

[31] G. Chafle, P. Doshi, J. Harney, S. Mittal, and B. Srivastava, “Improved Adaptation of Web Service

Compositions Using Value of Changed Information,” Proc. IEEE Conf. Web Services, pp. 784- 791,

2007.

[32] B.H.C. Cheng, H. Giese, P. Inverardi, J. Magee, and R. de Lemos, “08031—Software Engineering

for Self-Adaptive Systems: A Research Road Map,” Software Eng. for Self-Adaptive Systems,

Springer-Verlag, 2008.

[33] F. Ciesinski and M. Gro¨ ßer, “On Probabilistic Computation Tree Logic,” Validation of Stochastic

Systems—A Guide to Current Research, C. Baier, B.R. Haverkort, H. Hermanns, J.-P. Katoen, and

M. Siegle, eds., pp. 147-188, Springer, 2004.

[34] A. Clark, S. Gilmore, J. Hillston, and M. Tribastone, “Stochastic Process Algebras,” Seventh Int’l

School Formal Methods, pp. 132- 179, Springer, 2007.

[35] M. Colombo, E. Di Nitto, M. Mauri, “Scene: A Service Composition Execution Environment

Supporting Dynamic Changes Disciplined through Rules,” Lecture Notes in Computer Science, vol.

4294, pp. 191-202, Springer, 2006.

[36] R. Colvin, L. Grunske, and K. Winter, “Probabilistic Timed Behavior Trees,” Proc. Int’l Conf.

Integrated Formal Methods, J. Davies and J. Gibbons, eds., pp. 156-175, 2007.

[37] R. Colvin, L. Grunske, and K. Winter, “Timed Behavior Trees for Failure Mode and Effects

Analysis of Time-Critical Systems,” J. Systems and Software, vol. 81, no. 12, pp. 2163-2182, 2008.

[38] A. Dan, D. Davis, R. Kearney, A. Keller, R. King, D. Kuebler, H. Ludwig, M. Polan, M. Spreitzer,

and A. Youssef, “Web Services on Demand: WSLA-Driven Automated Management,” IBM

Systems J., vol. 43, no. 1, pp. 136-158, 2004.

[39] M.B. Dwyer, G.S. Avrunin, and J.C. Corbett, “Property Specification Patterns for Finite-State

Verification,” Proc. 21st Int’l Conf. Software Eng., pp. 411-420, 1999.

[40] I. Epifani, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Model Evolution by Runtime Parameter

Adaptation,” Proc. 31st Int’l Conf. Software Eng., pp. 111-121, 2009.

[41] R. Frei, G.D.M. Serugendo, and J. Barata, “Designing Self- Organization for Evolvable Assembly

Systems,” Proc. Second IEEE Int’l Conf. Self-Adaptive and Self-Organizing Systems, pp. 97-106,

2008.

[42] S. Frolund and J. Koistinen, “Quality-of-Service Specification in Distributed Object Systems,”

Distributed Systems Eng. J., vol. 5, no. 4, pp. 179-202, Dec. 1998.

[43] S. Gallotti, C. Ghezzi, R. Mirandola, and G. Tamburrelli, “Quality Prediction of Service

Compositions through Probabilistic Model Checking,” Proc. Fourth Int’l Conf. Quality of Software-

Architectures, S. Becker, F. Plasil, and R. Reussner, eds., pp. 119-134, 2008.

[44] R. Garcia, J. Jarvi, A. Lumsdaine, J. Siek, and J. Willcock, “A Comparative Study of Language

Support for Generic Programming,” ACM SIGPLAN Notices, vol. 38, no. 11, pp. 115-134, Nov.

2003.

[45] C. Ghezzi and G. Tamburrelli, “Predicting Performance Properties for Open Systems with KAMI,”

Proc. Fifth Int’l Conf. Quality of Software Architectures, pp. 70-85, 2009.

[46] S. Gilmore and J. Hillston, “The PEPA Workbench: A Tool to Support a Process Algebra-Based

Approach to Performance Modelling,” Proc. Seventh Int’l Conf. Computer Performance Evaluation,

Modeling Techniques and Tools, G. Haring and G. Kotsis, eds., pp. 353-368, 1994.

[47] V. Grassi, “Architecture-Based Reliability Prediction for Service- Oriented Computing,” Proc.

Workshop Architecting Dependable Systems, pp. 279-299, 2004.

[48] V. Gruhn and R. Laue, “Patterns for Timed Property Specifications,” Electronic Notes in Theoretical

Computer Science, vol. 153, no. 2, pp. 117-133, 2006.

[49] L. Grunske, “Specification Patterns for Probabilistic Quality Properties,” Proc. 30th Int’l Conf.

Software Eng., Robby, ed., pp. 31-40, 2008.

[50] L. Grunske, K. Winter, and R. Colvin, “Timed Behavior Trees and Their Application to Verifying

Real-Time Systems,” Proc. Australian Software Eng. Conf., pp. 211-222, 2007

[51] L. Grunske and P. Zhang, “Monitoring Probabilistic Properties,” Proc. Seventh Joint Meeting of the

European Software Eng. Conf. and the ACM SIGSOFT Int’l Symp. Foundations of Software Eng.,

H. VanVliet and V. Issarny, eds., pp. 183-192, 2009.

[52] H. Guo, J. Huai, H. Li, T. Deng, Y. Li, and Z. Du, “ANGEL: Optimal Configuration for High

Available Service Composition,” IEEE Int’l Conf. Web Services, pp. 280-287, 2007.

Computer Science & Information Technology (CS & IT) 55

[53] H. Hansson and B. Jonsson, “A Logic for Reasoning about Time and Reliability,” Formal Aspects of

Computing, vol. 6, no. 5, pp. 512- 535, 1994.

[54] D. Harel and R. Marelly, “Playing with Time: On the Specification and Execution of Time-Enriched

LSCs,” Proc. 10th Int’l Workshop Modeling, Analysis, and Simulation of Computer and Telecomm.

Systems, pp. 193-202, 2002.

[55] J. Harney and P. Doshi, “Speeding Up Adaptation of Web Service Compositions Using Expiration

Times,” Proc. Int’l Conf. World Wide Web, pp. 1023-1032, 2007.

[56] M.C. Huebscher and J.A. McCann, “A Survey of Autonomic Computing—Degrees, Models, and

Applications,” ACM Computing Surveys, vol. 40, no. 3, pp. 1-28, 2008.

[57] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. Pocock, P. Li, and T. Oinn, “Taverna: A Tool for

Building and Running Workflows of Services,” Nucleic Acids Research, vol. 34, no. Web Server

issue, pp. 729-732, July 2006.

[58] ITU-TS, “ITU-TS Recommendation Z.120: Message Sequence Chart 1999 (MSC99),”technical

report, Int’l Telecomm. Union (ITU-TS), 1999.

[59] D.N. Jansen, H. Hermanns, and J.-P. Katoen, “A Probabilistic Extension of UML Statecharts,” Proc.

Seventh Int’l Symp. Formal Techniques in Real-Time and Fault-Tolerant Systems, W. Damm and

E.-R. Olderog, eds., pp. 355-374, 2002.

[60] D.N. Jansen, H. Hermanns, and J.-P. Katoen, “A QoS-Oriented Extension of UML Statecharts,”

Proc. Sixth Int’l Conf.—The Unified Modeling Language. Model Languages and Applications,P.

Stevens, J. Whittle, and G. Booch, eds., pp. 76-91, 2003.

[61] D.N. Jansen, J.-P. Katoen, M. Oldenkamp, M. Stoelinga, and I.Zapreev, “How Fast and Fat Is Your

Probabilistic Model Checker? An Experimental Comparison,” Hardware and Software: Verification

and Testing, K. Yorav, ed., pp. 69-85, Springer, 2008.

[62] M.B. Juric, B. Mathew, and P. Sarang, Business Process Execution Language for Web Services.

Packt Publishing, 2004.

[63] D. Karastoyanova and F. Leymann, “BPEL‘n’Aspects: Adapting Service Orchestration Logic,”

Proc. IEEE Int’l Conf. Web Services, pp. 222-229, 2009.

[64] J.-P. Katoen, T. Kemna, I.S. Zapreev, and D.N. Jansen, “Bisimulation Minimisation Mostly Speeds

Up Probabilistic Model Checking,” Proc. Int’l Conf. Tools and Algorithms for the Construction and

Analysis of Systems, O. Grumberg and M. Huth, eds., pp. 87-101, 2007.

[65] A. Keller and H. Ludwig, “The WSLA Framework: Specifying and Monitoring Service Level

Agreements for Web Services,” J. Network and Systems Management, vol. 11, no. 1, pp. 57-81,

2003.

[66] J.O. Kephart and D.M. Chess, “The Vision of Autonomic Computing,” Computer, vol. 36, no. 1, pp.

41-50, Jan. 2003.

[67] J.M. Ko, C.O. Kim, and I.-H. Kwon, “Quality-of-Service OrientedWeb Service Composition

Algorithm and Planning Architecture,”J. Systems and Software, vol. 81, no. 11, pp. 2079-2090,

2008.

[68] S. Konrad and B.H.C. Cheng, “Real-Time Specification Patterns,”Proc. 27th Int’l Conf. Software

Eng., G.-C. Roman, W.G. Griswold, and B. Nuseibeh, eds., pp. 372-381, 2005.

[69] R. Koymans, “Specifying Real-Time Properties with Metric Temporal Logic,” Real-Time Systems,

vol. 2, no. 4, pp. 255-299, 1990.

[70] J. Kramer and J. Magee, “Self-Managed Systems: An Architectural Challenge,” Proc. Future of

Software Eng., pp. 259-268, 2007.

[71] M.Z. Kwiatkowska, G. Norman, D. Parker, and J. Sproston, “Performance Analysis of Probabilistic

Timed Automata Using Digital Clocks,” Formal Methods in System Design, vol. 29, no. 1, pp. 33-

78, 2006.

[72] M.Z. Kwiatkowska, G. Norman, and D. Parker, “Probabilistic Symbolic Model Checking with

PRISM: A Hybrid Approach,” Int’l J. Software Tools for Technology Transfer, vol. 6, no. 2, pp.

128-142, Aug. 2004.

[73] M.Z. Kwiatkowska, G. Norman, and D. Parker, “Symmetry Reduction for Probabilistic Model

Checking,” Proc. 18th Int’l Conf. Computer Aided Verification, T. Ball and R.B. Jones, eds., pp.

234- 248, 2006.

56 Computer Science & Information Technology (CS & IT)

[74] M.Z. Kwiatkowska, G. Norman, J. Sproston, and F. Wang, “Symbolic Model Checking for

Probabilistic Timed Automata,” Information and Computation, vol. 205, no. 7, pp. 1027-1077, 2007.

[75] D.D. Lamanna, J. Skene, and W. Emmerich, “Slang: A Language for Defining Service Level

Agreements,” Proc. Ninth IEEE Int’l Workshop Future Trends of Distributed Computing Systems,

pp. 100- 107, 2003.

[76] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik, Quantitative System Performance:

Computer System Analysis Using Queueig Network Models. Prentice-Hall, 1984.

[77] Y. Ma and C. Zhang, “Quick Convergence of Genetic Algorithm for QoS-Driven Web Service

Selection,” Computer Networks, vol. 52, no. 5, pp. 1093-1104, 2008.

[78] M.A. Marsan, “Stochastic Petri Nets: An Elementary Introduction,” Advances in Petri Nets, pp. 1-

29, Springer, June 1989.

[79] M. Marzolla and R. Mirandola, “Performance Prediction of Web Service Workflows,” Proc. Int’l

Conf. Quality of Software Architectures, pp. 127-144, 2007.

[80] D.A. Menasce´, E. Casalicchio, and V. Dubey, “A Heuristic Approach to Optimal Service Selection

in Service Oriented Architectures,” Proc. Seventh Int’l Workshop Software and Performance, A.

Avritzer, E.J. Weyuker, and C.M. Woodside, eds., pp. 13-24, 2008.

[81] D.A. Menasce´ and V. Dubey, “Utility-Based QoS Brokering in Service Oriented Architectures,”

Proc. Int’l Conf. Web Services, pp. 422-430, 2007.

[82] D.A. Menasce´, J.M. Ewin

