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ABSTRACT 

Service-based systems that are dynamically composed at runtime to provide complex, adaptive 

functionality are currently one of the main development paradigms in software engineering. 

However, the Quality of Service (QoS) delivered by these systems remains an important 

concern, and needs to be managed in an equally adaptive and predictable way. To address this 

need, we introduce a novel, tool-supported framework for the development of adaptive service-

based systems called QoSMOS (QoS Management and Optimization of Service-based systems). 

QoSMOS can be used to develop service-based systems that achieve their QoS requirements 

through dynamically adapting to changes in the system state, environment, and workload. 

QoSMOS service-based systems translate high-level QoS requirements specified by their 

administrators into probabilistic temporal logic formulae, which are then formally and 

automatically analyzed to identify and enforce optimal system configurations. The QoSMOS 

self-adaptation mechanism can handle reliability and performance-related QoS requirements, 

and can be integrated into newly developed solutions or legacy systems. The effectiveness and 

scalability of the approach are validated using simulations and a set of experiments based on an 

implementation of an adaptive service-based system for remote medical assistance. 
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1   INTRODUCTION 

SERVICE-BASED systems (SBSs) are playing an increasingly important  role  in  application  

domains  ranging  from research and  health care  to  defense  and  aerospace. Built through   the  

dynamic  composition  of  loosely  coupled services offered  by  independent providers, SBSs   

are operating   in   environments  characterized  by continual changes to requirements, state of 

component services, and system usage profiles. In this context, the ability of SBSs to adjust their 

behavior in response to such changes through self-adaptation has become a promising research 

direction [32], [70]. 

 
Several approaches to architecting adaptive software systems (i.e., software systems that 

reconfigure themselves in line with changes in their requirements and/or environment) have 
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already appeared in the literature [70], [66]. These approaches involve the use of intelligent 

control loops that collect information about the current state of the system, make decisions, and 

then adjust the system as necessary (e.g., [5], [22], [26],. Alternative approaches define self-

adaptable architectures that emulate the behavior of biological systems, where the global, 

complex behavior emerges from the cooperation and interaction among distributed, independent 

components [41], 

 

Achieving and maintaining well-defined Quality of Service (QoS) properties in a changing 

environment represents a key challenge for self-adapting architectures. Service-based systems are 

well positioned to address these challenges, as the exploitation of their different composition 

patterns (orchestration and choreography) can represent an efficient way to achieve self-adapting 

architectures [12], [86]. Consider, for example, a highly dynamic system where the set of 

discoverable services may change over time, either because service providers publish (or 

withdraw) service descriptions or because the availability of certain services may vary according 

to the users location or to the network connectivity. In these settings, a more reliable or efficient 

service might become available, and thus self-adaptation may allow its use to improve the overall 

QoS. A further example is that, because of the increase of the number of users concurrently 

accessing the system, the response time experienced by an user could become too high. In this 

case, the system should adopt appropriate reconfiguration strategies (such as using more 

computational resources or changing service providers) to tackle the peaks in the workload. 

Therefore, a significant research effort has been devoted to the definition and analysis of QoS 

properties in SBS systems (e.g., [43], [47], [79], [93]). As illustrated by the overview of related 

approaches later in this section, typical QoS properties associated with SBSs include operation 

cost on one hand and probabilistic quality attributes such as availability, reliability, and reputation 

[101], [5] on the other hand. Among these QoS properties, the management of probabilistic 

quality attributes is particularly challenging due to problems arising from the environment 

variability (e.g., changing service workloads and failure rates). Furthermore, QoS management 

requires self-adaptive SBSs to take into account aspects such as QoS specification, QoS 

evaluation, QoS optimization, and QoS-based adaptation. Nevertheless, guaranteeing a given 

level of QoS in these systems is essential for their success in the envisioned “service market,” 

where service providers will compete by offering services with similar functionality but different 

quality and cost attributes [12] 

 

To deal with the QoS management of SBSs, we define and realize a generic architecture for 

adaptive SBSs called QoSMOS (QoS Management and Optimization of Service-based systems). 

QoSMOS is a tool-supported framework for the QoS management of self-adaptive, service-based 

systems that combines, in a novel way, existing techniques and tools developed by our research 

groups: 

 

1. Formal specification of QoS requirements with probabilistic temporal logics and the 

Propose specification system [49], 

2. model-based QoS evaluation with probabilistic verification techniques provided by the 

PRISM model checker [72], 

3. monitoring and Bayesian-based parameter adaptation of the QoS models exploiting 

KAMI [40], and 

4. Planning and execution of system adaptation based on GPAC [20]. 

The QoSMOS framework supports the practical realization of adaptive SBS architectures by 

means of two complementary mechanisms. The first mechanism consists of selecting the services 

that compose a QoSMOS service-based system dynamically. Given a set of functionally 
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equivalent services for each component of an SBS, QoSMOS selects those services whose 

reliability, performance, and cost guarantee the realization of the QoS requirements for the 

system. QoSMOS is capable of dynamically adapting its selection of services to runtime changes 

in both the service characteristics (e.g., reliability or performance) and the system QoS 

requirements. When service selection cannot achieve the QoS requirements, a warning is issued 

to alert the SBS administrator 

 

The second adaptation mechanism employed by QoSMOS consists of adjusting the resources 

(e.g., the CPU) allocated to individual services within a service-based system dynamically. This 

mechanism is applied to services hosted and administered internally by the organization that 

implements the SBS. Its key benefit is the ability to adapt the resources allocated to SBS 

component services to the actual workload of the system, thus ensuring that its QoS requirements 

are satisfied with minimal cost and environmental impact. 

 

Related approaches. One benefit of SBSs is the ability to build applications through composition 

of available ser-vices at runtime. This composition involves several activities, including the 

definition of an integration schema yielding the target application, the selection of concrete 

services that offer the required functionality, and the fulfillment of QoS constraints. While 

services are described and listed in public registries, there is still little support for QoS-based 

service management. To cover this gap, the research area of QoS Management in SBSs has been 

very active in the last five years. 

 

Domain-sorted summary of recent approaches in the area of QoS-driven service selection, 

composition, and adaptation is given in Table 1. 

 

Specifically, we summarize the approaches according to: 

 

1. the considered QoS metrics and QoS Specification languages (QoS Requirement 

Specification), 

2. the models/algorithms adopted for the QoS metric evaluation (QoS Evaluation Methods), 

3. the type of optimization problem defined and solved and/or the adaptation policies 

adopted (QoS Optimization or Adaptation Methods), and finally 

4. Validation of the proposed approaches (Validation). 

 

Considering these approaches, we identify some common points of weakness that we overcome 

with our QoSMOS approach. QoS requirement specification. As illustrated in Table 1, a variety 

of different QoS requirements are considered in the current approaches. However, QoS 

specifications are often tackled in an abstract way by dealing with simple metrics (e.g., by 

considering the failure rate as a metric to evaluate reliability). In our view, a detailed and formal 

specification of QoS requirements is required for a comprehensive management of QoS in 

service-based systems. A concise and unambiguous specification of the QoS requirements 

enables, among other benefits, a systematic management of SBSs based on the quantitative 

analysis of their QoS properties.Current examples of specification languages for QoS aspects in 

the Web services domain are: Web Service Level Agreement (WSLA) [65], the timed Web 

Service Constraint Language (timed WSCoL) [9], which is close to a real-time temporal logic, the 

Web Service Management Language (WSML) [92], and the Web Service Offerings Language 

(WSOL) 
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In addition, formal QoS specification can be achieved using formalisms like real-time and 

probabilistic temporal logics [1], [6], [8], [53], [69], [71], timed Life Sequence Charts [54], 

probabilistic and timed Message Sequence Charts [90], Performance Trees [97], or 

Probabilistic/Timed Behavior Trees [36], [37], [50]). To this end, QoSMOS adopts the 

probabilistic temporal logics PCTL [53] and CSL [8] because these logics are sufficiently 

expressive to formulate a variety of QoS requirements [49] whose formal verification can then be 

carried out using existing probabilistic model checkers. 

 

QoS evaluation methods. To be effective, QoS evaluation approaches should rely on models 

representing the systems in an accurate/realistic way, and whose parameters can be adjusted at 

runtime according to measured data. Several approaches reported in Table 1 rely on the definition 

of simple aggregate QoS functions (like sum, product, max, and average) that can be easily 

defined and managed. However, due to dependencies between different services or between 

services and resources or the operational profiles, these aggregation functions could lead to 

quality estimation that represent optimistic (or pessimistic) bounds rather than a realistic 

estimation. 

 

QoS delivered by its sub services. Examples can be found in [43], [83], [79], [93], where, starting 

from the BPEL business processes modeled by UML activity diagrams or by direct acyclic 

graphs, performance models based on simple queuing networks [83], [79] or reliability models 

based on Markov models are derived [43], [93]. In line with these approaches, we argue that 

comprehensive predictive quality evaluation models are needed. Examples of models that can be 

used for QoS evaluation are: Markov models, state charts like probabilistic UML State Charts 

[59], [60], queuing networks models [18], [76], stochastic process algebras like PEPA [46]. 

Toward this end, QoSMOS adopts Markov models as modeling formalisms to determine 

quantitatively the reliability and performance quality metrics of service-based systems. However, 

as an enhancement to the existing approaches, we observe composite systems (e.g., usage 

profiles, branching, and failure probabilities) at runtime and update the quality evaluation models. 

 

To check if a Markov model satisfies its QoS requirements, numerical/symbolic [6], [8], [16], 

[53] and statistical [100] techniques have been developed, and extensive tool support is available 

(e.g., PRISM [72]).QoS optimization or adaptation methods. Devising QoS driven adaptation 

methodologies of SBSs is of utmost importance in the envisaged dynamic environment in which 

SBS operate. Most of the proposed methodologies for QoS-driven adaptation of SBS address this 

problem as a service selection problem (e.g., [5], [26], [30], [101]). Other papers have instead 

considered SBS adaptation through workflow restructuring, exploiting the inherent redundancy of 

SBS (e.g., [31], [52], [55].) In [28], a unified framework is proposed where service selection is 

integrated with other kinds of workflow restructuring to achieve greater flexibility in the 

adaptation. 

 

According to this last approach, we conclude that the service selection and composition problem 

is really important for SBS QoS-based adaptation, but we also argue that for a comprehensive 

approach to QoS Management, optimal resource allocation and parameterization of the services is 

also required. 

 

The QoSMOS framework does not aim to invent new techniques, but includes and integrates 

optimization techniques and adaptation strategies derived from approaches already present in 

literature. 
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Validation. An investigation of the validation strategies shows that several approaches perform 

experiments based on generated examples or apply a case study-based validation. To validate the 

QoSMOS approach, we use a similar validation strategy and perform experiments and 

simulations based on an implementation of a service-based system for remote medical assistance 

called TeleAssistance [10], [40].Contribution. Based on the review of the related approaches, the 

main contributions of the QoSMOS framework can be summarized as follows: 

 

• In contrast to the simple and informal metrics that are currently used in the related 

approaches, QoSMOS uses a precise and formal specification of QoS requirements with 

probabilistic temporal logics. 

• QoSMOS uses a tool-supported model-based quality evaluation methodology for 

probabilistic QoS attributes(i.e., performance, reliability, and resource usage) of service-

based systems that significantly improves current approaches that use simple aggregation 

functions for QoS prediction because we could model quality dependencies on other 

services and the operational profile. 

• QoSMOS utilizes techniques and tools for monitoring service-based systems and learning 

the parameters of their model(s) from the observed behavior of the system. 

• QoSMOS adds self-adaptation (e.g., self Configuration and self-optimization) capabilities 

to service based systems through continuous verification of quantitative properties at 

runtime derived from high-level, user-specified system goals encoded with multi 

objective utility functions. The self-adaptation capabilities include service selection, 

runtime reconfiguration, and resource assignment. Consequently, QoSMOS subsumes 

most of the existing approaches. 

 

2 PRELIMINARIES 
 
2.1 Formal Definition of QoS Requirements 
 
The precise specification of QoS requirements or Service Level Agreements (SLAs) is an 

important aspect for service composition, service selection, and optimization of service-based 

systems [42]. In QoSMOS, QoS requirements are specified using real-time temporal logics such 

as MTL (Metric Temporal Logic) [69] and TCTL (Timed Computational Tree Logic) [1], or 

probabilistic temporal logics such as PCTL (Probabilistic Computation Tree Logic) [53], PCTL* 

[6], PTCTL (Probabilistic Timed CTL) [71], and CSL (Continuous Stochastic Logic) [8]. The 

significant benefits of using logic-based requirement specifications include the ability to define 

these requirements concisely and unambiguously, and to analyze those using rigorous, 

mathematically-based tools such as model checkers. 

 

Furthermore, for logic-based specification-formalism, the correct definition of QoS proper-ties is 

supported with specification patterns [39], [49], [48], [68] and structured English grammars [49], 

[68].Traditionally, the semantics of the PCTL/CSL is defined with a satisfaction relation j¼ over 

the states S and possible paths Path
M

ðsÞ that are possible in a state s 2 S of a discrete/continuous 

time probabilistic model M. For de-tails about the formal semantics the reader is referred to [8], 

[33], [53]. Normally, a PCTL/CSL formula is evaluated starting from the initial state of the 

probabilistic model M. However, for convenience, in tools like PRISM any state and also a set of 

states can be chosen with a filter. Syntactically, a filter is specified as logical expression inside 

braces at the end of the PCTL/CSL formula. 
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2.2 Quality Evaluation Models 
 

Several approaches exist in the literature for the model-based quality analysis and prediction, 

spanning the use of Petri nets, queuing networks, layered queuing networks, stochastic process 

algebras, Markov processes, fault trees, statistical models, and simulation models (see [3] for a 

recent review and classification of models for software quality analysis).In this paper, we focus 

on Markov models, which are a very general evaluation model that can be used to reason about 

performance and reliability properties. 

 

Furthermore, Markov models include other modeling approaches as special cases, such as 

queuing networks, Stochastic Petri Nets [78], and Stochastic Process Algebras [34].Specifically, 

Markov models are stochastic processes defined as state-transition systems augmented with 

probabilities. Formally, a stochastic process is a collection of random variables defined on a 

common sample (probability) space. In Markov models [18], states represent possible 

configurations of the system being modeled. 

 

Transitions among states occur at discrete or continuous time-steps and the probability of making 

transitions is given by exponential probability distributions. The Markov property characterizes 

these models: It means that, given the present state, future states are independent of the past. In 

other words, the description of the present state fully captures all of the information that could 

influence the future evolution of the process. 

 

The most used Markov models include Discrete Time Markov Chains (DTMC), which are the 

simplest Markovian model, where transitions between states happen at discrete time 

steps.Continuous Time Markov Chains (CTMC), where the value associated with each outgoing 

transition from a state is intended not as a probability but as a parameter of an exponential 

probability distribution (transition rate). 

 

Markov Decision Processes (MDP) which are an extension of DTMCs allowing multiple 

probabilistic behaviors to be specified as output of a state. These behaviors are selected non 

deterministically. The analytical solution techniques for Markov models differ according to the 

specific model and to the underlying assumptions (e.g., transient or non transient states, 

continuous versus discrete time, etc.). 

 

For example, the evaluation of the stationary probability _s of a DTMC model requires the 

solution of a linear system whose size is given by the cardinality of the state space S. The exact 

solution of such a system can be obtained only if S is finite or when the matrix of transition 

probabilities has a specific form. A problem of Markov models, which similar evaluation models 

also face, is the explosion of the number of states when they are used to model real systems [18]. 

To tackle this problem, tool support (e.g., PRISM [72]) with efficient symbolic representations 

and state space reduction techniques [64], [73] like partial-order reduction, bi simulation-based 

lumping and symmetry reduction is required. 

 

 

3 QOSMOS ARCHITECTURE 
 
This section introduces the generic QoSMOS architecture of an adaptive service-based system, 

and describes its realization using existing tools and components. As QoSMOS extends existing 
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service-based systems with the capability to adapt dynamically, we start by presenting the 

standard architecture of a service-based system. 

 

A typical SBS consists of a composition of web services that are accessed remotely through a 

software application termed a workflow engine. Several services may provide the same 

functionality, often with different levels of performance and reliability, and at different 

costs.Example. We will illustrate the concepts introduced so far by presenting a service-based 

system for remote medical assistance taken from [10], [40]. 

 

This TeleAssistance (TA) system will be used as a running example throughout the rest of the 

paper, and its associated BPEL workflow is depicted in Fig. 2. The TA system incorporates the 

following abstract services:Alarm Service, which provides the operation sendAlarm,Medical 

Analysis Service, which provides the operation analyzeData, andDrug Service, which provides 

the operations changeDoses and change Drug. 

 

The TA workflow starts executing as soon as a Patient (PA) enables the home device supplied by 

the TA provider, and this device invokes the start Assistance operation of the workflow. The 

workflow then enters an infinite loop whose iterations start with a “pick” activity that suspends 

the execution and waits for one of the following three messages: 1) vitalParamsMsg, 2) 

pButtonMsg, or 3) stopMsg. The first message contains the patient’s vital parameters, which are 

forwarded by the BPEL workflow to the Medical Laboratory service (LAB) by invoking the 

operation analyzeData. 

 

The LAB is in charge of analyzing the data, and replies by sending a result value stored in a 

variable analysis Result. A field of the variable contains a value that can be change Drug, change 

Doses, or send Alarm. A send Alarm value triggers the intervention of a First-Aid Squad (FAS) 

comprised of doctors, nurses, and paramedics whose task is to visit the patient at home in case of 

emergency. To alert the squad, the TA workflow invokes the operation alarm of the FAS. The 

message pButtonMsg caused by pressing a panic button also generates an alarm sent to the FAS. 

 

Finally, the message stopMsg indicates that the patient decided to cancel the TA service, deleting 

each pending invocation to the FAS service. Different providers could be involved in providing 

concrete implementations for the abstract services in the TA service-based system. For example, 

we will consider that the Alarm Service and the Medical Analysis Service are implemented by n1 
¼
 3 and n2 

¼
 5 telecommunication operators, respectively—each such concrete service being 

provided with different cost, performance and reliability characteristics. Finally, we will consider 

that a single, in-house implementation of the Drug Service is available (i.e., n3 
¼ 

1). 

 

3.1 Generic Architecture of QoSMOS 
 
As illustrated in Fig. 3, QoSMOS augments the standard SBS architecture with a component 

termed an autonomic manager. This component employs the autonomic computing monitor 

analyze-plan-execute (MAPE) loop [66], [56] to ensure that the SBS adapts continually in order 

to achieve a set of high-level, multi objective QoS requirements specified by its administrator. 

The four stages of the QoSMOS MAPE loop are described below. 
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3.1.1 Monitoring Stage 
 

The first stage of the MAPE loop involves monitoring either or both of: 

 

1. The performance (e.g., response time) and reliability (e.g., failure rate) of the SBS 

services. These parameters can be monitored for both in-house and third-party services. 

2. The workload of individual concrete services (e.g., their request inter arrival rates) and 

the resources allocated to these services (e.g., CPU, memory, and bandwidth). Note that 

this is possible only for in-house services; these characteristics cannot be monitored for 

third-party services. 

 

This information is used to build and/or to update an operational model of the SBS, an initial 

version of which can be provided by the developer of the service-based system. The model 

updates can happen periodically or when the monitor identifies significant changes in the 

parameters of the system. The types of operational models supported by the QoSMOS approach 

are those described earlier in Section 2.2, i.e., Markovian models. The maximum request service 

rate for this concrete, in-house service represents the request service rate when the service is 

allocated the maximum amount of CPU resources on the server(s) on which it is running. 

 

3.1.2 Analysis Stage 

 
The operational model from the monitoring stage is then employed to analyze the QoS 

requirements specified by the SBS administrator. The model is parameterized by the configurable 

parameters of the SBS, and this analysis step is intended to identify SBS configurations that 

satisfy the QoS requirements for the system. The analysis step includes a preprocessing step in 

which the QoS requirements specified by the SBS administrator in a high-level language are 

converted automatically into formally defined QoS requirements of the form presented in Section 

2.1. Example. The high-level requirements for the TA service-based system from our running 

example are comprised of reliability and performancerelated requirements. Note that the 

reliability-related requirements take into account the fact that the average number of alarms 

associated with a particular patient throughout his or her utilization of the TA service-based 

system (i.e., the lifetime of the system) is 10 
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3.1.3 Planning Stage 
 
The planning stage of the QoSMOS MAPE loop uses the results of the analysis stage to build a 

plan for adapting the configuration of the SBS. The two types of adaptation made possible by the 

QoSMOS approach and implemented in the execution step of its MAPE loop are described 

below. 
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1. Adaptation through changing the workflow implemented by the service-based system. This 

type of adaptation is possible for all service-based systems considered by the QoSMOS 

framework, including those that employ third-party services. It requires that the SBS 

developer provide a workflow that is defined in terms of the abstract services needed to 

implement the intended SBS functionality, i.e., an abstract workflow. 

 

It is worth emphasizing that developing an abstract workflow is identical to developing a 

concrete workflow, minus the step in which the addresses of the concrete services to use are 

decided. This last step is carried out at runtime, when the analysis results are used to map the 

abstract services within this original workflow to concrete services—a process that takes 

place during the planning stage. 

 

Note that it is possible to restrict this adaptation to a subset of the workflow services by 

associating a single concrete service with each abstract service that does not belong to this 

subset. We actually envisage this as a common use case, and we will illustrate it by means of 

a number of experiments in Section 4.3. This use case is supported without having to specify 

in the abstract workflow which services should be considered for runtime adaptation and 

which services should always be implemented using the same concrete service. 

 

2. Adaptation through modifying the resources allocated to individual services. When internally 

administered services are used to implement the SBS, it may be possible to adapt the 

resources allocated to these services in line with the variation in their workloads and in the 

QoS requirements for the system Potential applications of this type of adaptation include: 

achieving performance- related QoS requirements with minimal cost and environ-mental 

impact and achieving dependence QoS requirements by running services across a variable 

number of servers for redundancy purposes. 

 

The mapping of abstract to concrete services within the QoSMOS architecture can be performed 

using one of the mapping patterns described below: 

 

1. In a single mapping (SGL), a concrete service with suitable performance, reliability, and cost 

characteristics is used for the abstract service. 

 

2. In sequential one-to-many mapping (SEQ), an abstract service is mapped to a sequence of 

concrete services. When the workflow is executed, these services are used one at a time, 

starting with the first service in the sequence and carrying on through the sequence until 

either a non erroneous response is obtained or all services in the sequence fail to respond 

success-fully. This concretization of an abstract service is useful for improving the reliability-

related QoS of an SBS, but can elongate its response time. Note that the sequence of concrete 

services for an SEQ mapping pattern may include several instances of the same concrete 

service, or even a single concrete service to be invoked repeatedly for redundancy purposes. 

 

3. Finally, in parallel one-to-many mapping (PAR), an abstract service is mapped to a set of 

concrete services, all of which are called during the execution of the workflow. This ensures 

that an increase in the reliability-related QoS metrics is obtained without impacting the SBS 

response time, but potentially at a higher cost the service response time varies linearly with 

the value assigned to this parameter, which can therefore be used to adapt the service 

behavior to its request arrival rate and to the system requirement 
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3.2.2 PRISM 

 
PRISM [72], [74] is an open-source probabilistic model checker developed originally at the 

University of Birming-ham and currently supported and extended at the University of Oxford. 

The tool supports the analysis of a growing number of model types, including discrete and 

continuous-time Markov chains (DTMCs and CTMCs), Markov decision processes (MDPs), and 

extensions of these models with costs and rewards.The models to be analyzed are specified in the 

PRISM modeling language, which is based on the Reactive Modules formalism of Alur and 

Henzinger [2]. The proper-ties to be established are specified using PCTL (Probabilistic 

Computation Tree Logic) [53] for DTMCs and MDPs, and CSL (Continuous Stochastic Logic) 

[8] for CTMCs. 

 

The tool works by first building a symbolic, MTBDD (multiterminal binary decision diagram) 

representation of the reachable state space of the analyzed model [72]. It then performs the 

analysis by induction over syntax, being capable of handling both bound properties—i.e., 

deciding whether a probability is above or below a specified threshold—and quantitative 

properties—i.e., calculating the actual probability of an event or the expectation for cost/ reward 

formulas. Particularly important for its integration in the QoSMOS architecture, PRISM supports 

the concept of experiments, which allows the automated analysis of several versions of a 

parameterized model. We will use this capability within the QoSMOS MAPE loop to 

automatically carry out the analysis of a range of possible configurations for a service-based 

system. 

 

The model checking algorithms employed by PRISM involve a combination of graph-theoretical 

algorithms and numerical computation. The first type of algorithms operates on the underlying 

graph structure of the analyzed Markov model, e.g., to determine the reachable states within a 

model. Numerical computation (typically using iterative methods) is required for the solution of 

linear equation systems and the calculation of the transient probabilities of Markov chains. 

 

The probabilistic model checker PRISM has been used in a large number of case studies that 

spawn application domains ranging from communication protocols and security systems to 

biological systems and dynamic power management. Many of these case studies are presented in 

detail on the PRISM website (www.prismmodelchecker. org). An extensive, independent 

performance analysis of a broad selection of probabilistic model checkers [61] ranked PRISM as 

the best tool for the quantitative analysis of large models such as the ones encountered in the 

adaptive service-based systems targeted by our QoSMOS work.First, the DTMC model depicted 

in Fig. 6 is used for the analysis required to achieve the reliability QoS requirements R0 to R3. 

This model follows the structure of the BPEL workflow, and assigns probabilities to branches and 

failure probabilities to service invocations (failures are represented by states highlighted in gray). 

Our approach relies on initial estimates for transition probabilities that come from domain experts 

and from monitoring previous versions of the system. Transition probabilities corresponding to 

service failure rates are unspecified in the DTMC model and represented by the unknown 

parameters a, b, and c because they depend on the mapping patterns and concrete services 

selected by the QoSMOS MAPE loop. 
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3.2.3 ProProST 
 
To ease the formalization of QoS properties as required by the QoSMOS architecture, the idea of 

specification patterns [39], [68] has recently been investigated for probabilistic logics [49]. The 

outcome of an investigation of 152 proper-ties from academia and 48 properties from CTMC 

model for the in-house concrete service s
1

3. 
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3.3 QoSMOS Scalability 
 

The main overhead of using the QoSMOS approach to add adaptiveness to a service-based 

system corresponds to the execution of the PRISM experiments in the analysis stage of the 

QoSMOS MAPE loop. All other operations performed by the QoSMOS autonomic manager 

including the monitoring of the system state and workload, updating the QoSMOS operational 

model, parsing the results of the PRISM experiments, and using these results to plan and enforce 

a new system configuration—take a negligible fraction of the overall MAPE loop processing 

time. For the QoSMOS-enabled TA system in our case study, each full PRISM evaluation of the 

PCTL and CSL properties associated with the QoS requirements R0 to R5 took between 2-3 

milliseconds on a 2.4 GHz Intel Core 2 Duo server with4 GB of DDR3 RAM at 1067 MHz. 

 

Given the number of possible configurations examined and the time spent in the communication 

steps between the QoSMOS components, the end-to-end execution of the MAPE loop and the 

adaptation of the SBS configuration to a new system state and workload can be completed in 

between 2.7-3.4 seconds. Note that this time represents the time required to react to changes in 

the system objectives, state and/or workload; it does not represent system downtime. 

Furthermore, this overhead does not need to be accommodated by a production server running 

one of the SBS components such as the BPEL workflow engine or one of the in-house concrete 

services. 

 

Instead, the GPAC autonomic manager employed by QoSMOS is itself a service-based system 

and can therefore be executed on a separate, management server. In this way, retrofitting 

adaptiveness to an existing SBS system can be done without modifying the original system or 

adding overheads to the physical servers that are used to execute its components. As these 

encouraging results were obtained for a service based system comprised of only three abstract 

services and nine associated concrete services, we carried out experiments to assess the scalability 

of the QoSMOS approach for service based systems comprising larger numbers of services. We 

first considered scenarios involving the original three service abstract TeleAssistance workflow 

and larger sets of concrete services. 

 

The increases in the MAPE loop execution time for two such scenarios are presented shows the 

MAPE loop execution time required for gradually increasing sizes of the set of concrete services 

implementing the AlarmService (i.e., CS1). The size of the other concrete service sets (i.e., sets 

CS2 and CS3 implementing the Medical Analysis Service and the Drug Service, respectively) 

were maintained at the values from Table 2. As expected, the MAPE loop execution time grows 

exponentially due to the background quantitative model checking from the analysis stage. 

However, the execution time does not exceed five seconds for CS1 sizes of up to 22 concrete 

services, which is well over the number of concrete alarm services that can be expected for our 

case study. 

 

When the sizes of all concrete service sets were increased at the same time, the execution 

overheads were observed for the QoSMOS MAPE loop. These results suggest that the QoSMOS 

approach can be used for systems of similar size to the TA SBS with sets of up to four concrete 

services for each abstract service (MAPE loop execution time under 30 seconds) or even up to 

five concrete services of similar size to the TA SBS with sets of up to four concrete services for 

each abstract service (MAPE loop execution time under 30 seconds) or even up to five concrete 

services for each abstract service (MAPE loop execution time under 2 minutes). One way to 

accommodate larger sets of concrete services is to preselect and use within the QoSMOS service 
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based system subsets of three to five concrete services that are most likely to be useful based on 

criteria such as cost or provider trustworthiness. 

 

 
QoSMoS scalability with the number of concrete 

 

This preselection can be done periodically, either by the SBS administrator or by another instance 

of the QoSMOS MAPE loop. One last set of experiments that we present in this section involves 

examining the scalability of the QoSMOS framework for larger service-based systems. To 

perform these experiments, we increased the size of the abstract TA workflow by considering that 

the medical analysis part of the workflow requires the sequential execution of several services, 

each of which performs one part of the analysis. In order to choose a realistic range of workflow 

sizes, we first carried out a study of the SBS development platform Taverna [57] Taverna is 

widely used in the development of scientific workflows in application domains, including 

bioinformatics, chemoinformatics, astronomy, and social sciences. 

 

Our study focused on the Taverna workflows with the tag “bioinformatics” and with a download 

count of 50 or more from the Taverna workflow repository my Experiment [85]. We selected this 

particular set of workflows because it represents the most used set of workflows from an 

application domain in which the Taverna platform is used regularly. Out of the 28 workflows in 

this set, 13 are comprised of five services or less, seven are comprised of between six and eight 

services, five are comprised of 10 services, two have 11 services, and one consists of 32 

services.Wetherefore focused our experiments on extensions of theTAabstract workflow of 

similar size to these Taverna workflows. Loop for TA workflow variants comprised of up to 13 

additional abstract medical services (i.e., up to 16 abstract services in total). 
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In all experiments, we considered that the sets of concrete services for all but the first three 

abstract services contained a single concrete service, i.e., adaptation was applied only to the 

original abstract services. The experiments were run for three adaptation scenarios, namely, when 

sets of two, three, and four concrete services, respectively, were available for each abstract 

service for which QoSMOS adaptation was employed. The results indicate that QoSMOS-based 

adaptation can be applied to workflows comprised of up to 16 abstract services, with overheads of 

under four seconds in the first scenario, under 20 seconds in the second scenario, and up to two 

minutes in the last scenario. 

 

When more than one concrete service is available for every abstract service within the QoSMOS 

based workflow (Fig. 18), the workflow sizes for which the QoSMOS MAPE loop completes 

within 140 seconds are: eight—when that these experiments cover over 71 percent of the Taverna 

workflows from the study described above (i.e., 20 out of 28 workflows), which we consider a 

good result for the QoSMOS prototype realization and this scenario in which the adaptation is 

applied to every single component of the service-based system. 

 

Furthermore, remember that the SBS objectives in our case study consist of no less than six QoS 

requirements, each of which brings an almost equal contribution to the execution times obtained 

for the experiments in this section. Adaptation in service-based systems with less complex SLAs 

can be achieved with significantly lower overheads. There are several options that we are 

investigating in our effort to increase the scalability of QoSMOS. 

 

4.CONCLUSIONS AND FUTURE WORK 

 
In this paper, we have presented QoSMOS, a tool-supported framework for QoS management of 

self-adaptive service based systems. QoSMOS defines and implements an autonomic architecture 

that combines formal specification of QoS requirements, model-based QoS evaluation, 

monitoring and parameter adaptation of the QoS models, and planning and execution of system 

adaptation. 

 

The proposed framework has been built through the integration of extended versions of existing 

tools and components developed by the authors. Essential strengths of QoSMOS are the use of a 

precise and formal specification of QoS requirements with probabilistic temporal logics and the 

definition of a model-based quality evaluation methodology for probabilistic QoS attributes 

taking into account quality dependencies on other services and on the operational profile. 

 

The monitoring phase of QoSMOS and the consequent possible online update of the quality 

models allow discovering requirements violations and triggering adaptation strategies for the 

SBS. The possible strategies are based on techniques for service selection, runtime 

reconfiguration, and resource assignment to in-house managed services. Furthermore, the quality 

models in QoSMOS represent the overall system architecture, so it is possible to detect 

requirement violations generated by different causes and not only related to unexpected behaviors 

associated with single services of theSBS (e.g., unexpected variations in the usage profile). 

 

The validation of the proposed framework has been performed through the application of 

QoSMOS capabilities to a common case study of a service-based system for remote medical 

assistance. The results obtained with a high number of numerical experiments and simulations 

proved the effectiveness of our solution. On the other hand, we have to also acknowledge some 
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limitations that should be considered when selecting the QoSMOS framework. One limitation of 

the QoSMOS framework is that, due to the statistical methods behind the monitoring and QoS 

analysis, it is hard to deal with models that contain extreme probabilities. 

 

As an example, with a Bayesian filter it would require an unfeasibly large number of observations 

to change the value of a transition probability. Additionally, we acknowledge that the quality 

evaluation with our more realistic modelbased QoS models and probabilistic verification can take 

longer than the quality evaluation with simple aggregation functions. Consequently, there is a 

trade-off between the improved accuracy of our QoS evaluation compared to the existing 

approaches and the time needed to obtain these results. 

 

For most practical service-based systems where QoSMOS was applied the time efficiency was 

not a problem. However, when dealing with a workflow with several thousand services and 

multiple parameters, a very long time could be necessary to get a result of the quality evaluation. 

Furthermore, our approach currently only applies to probabilistically quantifiable and externally 

observable QoS properties, such as reliability, availability, and performance. Due to the 

underlying techniques for the adaptation and planning procedures, an application to qualitative 

nonquantifiable QoS properties is currently not possible. 

 

Besides working on the above-mentioned limitations, our future work will consist of refining the 

QoSMOS approach by investigating its range of applicability. We plan to enrich the ongoing 

implementation by: enlarging the set of supported models (e.g., Markov Decision Processes, 

etc.),integrating black-box monitoring techniques [51], and defining a language aimed at 

managing multimodel consistency. Additionally, it would be interesting to explore and extend 

other QoS specification formalisms (such as, for example, ALBERT [10] or probabilistic and 

timed MSCs [58], [90]) and map them into the ProProST pattern system and the provided 
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