
Ready to Use Virtual Machine Pool Cache
using Warm Cache

Sudeep Kumar, Deepak Kumar Vasthimal, and Musen Wen

eBay Inc., 2025 Hamilton Ave, San Jose, CA 95125, USA
f sudekumar, dvasthimal, mweng@ebay.com

Abstract. Today, a plethora of distributed applications are managed on internally
hosted cloud platforms. Such managed platforms are often multi tenant by nature
and not speci�cally tied to a single use-case. Smaller footprint of infrastructure on
a managed cloud platform has its own set of challenges especially when applications
are required to be infrastructure aware for quicker deployments and response times.
There are often times and challenges to quickly spawn ready to use instances or
hosts on such infrastructure. As part of this paper we outline mechanisms to quickly
spawn ready to use instances for application while also being infrastructure aware.
In addition, paper proposes architecture that provides high availability to deployed
distributed applications.
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1 Introduction

Conventional on-demand Virtual Machine (from now referred as VM [7] or VMs)
provisioning methods on a cloud [12] platform can be time-consuming and error-
prone, especially when there is need to provision [25] VMs in large numbers swiftly.

The following list captures di�erent issues that are often encountered while
trying to provision a new VM [7] instance on the y.

{ Insu�cient availability of compute resources due to capacity constraints.
{ Desire to place VMs on di�erent fault domains to avoid concentration of VM

[7] instances in the same rack [11] and that eventually leads to non-availability
of deployed applications over them.

{ Transient failures or delays in the service provider platform result in failure or
an increase in time to provision a VM [7] instance.

The proposed Elasticsearch-as-a-service platform for VM [7] provisioning is a
cloud-based platform that provides distributed, easy to scale, and fully managed
on demand Elasticsearch [1] clusters. This platform uses the OpenStack [23] based
Nova module to get di�erent compute resources (VMs). Nova is designed to power
massively scalable, on-demand, self-service access to compute resources. The SAAS
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Fig. 1. Rack-1

(Software as a service) [18] platform is available across multiple data centers with
ability to manage massively large number of managed VMs.

Typically, the time taken for provisioning a complete Elasticsearch [1] cluster
via Nova APIs is directly proportional to the largest time taken by the member node
to be in a ready to use state (also known as active state). Typically, provisioning
a single node could take up to three minutes (95th Percentile) but can be up to 15
minutes in worst case scenario. Therefore, in a fairly large size cluster, proposed
platform would take a long time for complete provisioning of an entire VM [7]
farm. This greatly impacts the turnaround time to remediate production issues. In
addition to provisioning time, it is time-consuming to validate newly created VMs.

There are many critical applications within eBay that leverage proposed plat-
form for their search use cases. Therefore, as a platform provider, high availability
and resiliency [15] to failures are of utmost importance to ensure that in a case of
catastrophic cluster event (such as a node or an infrastructure failure), the system
can quickly ex up provisioned clusters in seconds. Node failures are also quite
common in a cloud-centric world [17], and applications need to ensure that there is
su�cient resiliency built in. To avoid over-provisioning nodes, remediation actions
such as ex-up (adding a new node) should ideally be done in seconds to ensure
high availability. Flex-up also ensures that distributed applications are resilient
[15] to node failures. Warm cache is targeted to solve issues mentioned above by
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creating a VM instances cache from which VM will used for cluster provisioning.
The cache will be created by leveraging various internal systems/services such as
NOVA, CONSUL,CMS.

New hardware capacity is acquired as racks from external vendors are procured
and provisioned. Each rack [11] typically has two independent fault domains with
minimal resource overlap (For example, di�erent networks), and sometimes they
dont share a common power source. Each fault domain hosts many hypervisors
[6], which are virtual machine managers. Standalone VMs are provisioned on such
hypervisors [6]. VMs can be of di�erent sizes (tiny, medium, large, and so on). VMs
on the same hypervisor [6] can compete for disk and network I/O resources, and
therefore can lead to noisy neighbor issues.

Nova provides ways to be fault-aware and hypervisor-aware. However, it is still
di�cult to successfully achieve guaranteed rack [11] isolation during run-time pro-
visioning of VM [7] instances. For example, once we start provisioning VMs, there
is no guarantee that we will successfully create VM [7] instances on di�erent racks.
This depends entirely on the underlying available hardware at that point in time.
Rack [11] isolation is important to ensure high availability of Elasticsearch [1] mas-
ter nodes (cluster brain). Every master node in an Elasticsearch [1] cluster must
reside on a di�erent rack [11] for fault tolerance. If a rack fails, at least some other
master node in another rack [11] can take up active master role. Additionally, all
data nodes of a given cluster must reside on di�erent hypervisors [6] for logical iso-
lation. Proposed platform’s VM [7] provisioning APIs must fail immediately when
we cannot get VMs on di�erent racks or hypervisors [6]. A subsequent retry will
not necessarily solve this problem.

2 Solution

The warm-cache module intends to solve these issues by creating a cache pool
[21] of VM [7] instances well ahead of actual provisioning needs. Many pre-baked
VMs are created and loaded in a cache pool [21]. These ready-to-use VMs cater to
the cluster provisioning needs of the Software As A Service (SAAS) platform. The
cache is continuously built, and it can be continuously monitored via alerts and
user-interface (UI) dashboards. Nodes are periodically polled for health status, and
unhealthy nodes are auto-purged from the active cache. At any point, interfaces on
warm-cache can help tune or inuence future VM [7] instance preparation.

The image in 2 shows a sample Consuls [2] web UI.
The warm-cache module leverages open source technologies like Consul [2], Elas-

ticsearch [1], Kibana [4], Nova [5], and MongoDB for realizing its functionality.
Consul [2] is an open-source distributed service discovery tool and key value

store. Consul [2] is completely distributed, highly available, and scalable to thou-
sands of nodes and services across multiple data centers. Consul [2] also provides
distributed locking mechanisms with support for TTL (Time-to-live).
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Fig. 2. Consul Web Interface

Figure 3 shows a representative warm-cache KV store in Consul [2].
We use Consul [2] as key-value (KV) store for these functions:

{ Con�guring VM build rules: VM build rules uses di�erent instance templates.
These instance templates are well-known or prede�ned. For Example: ‘g16highmem‘
instance would imply 16 VCPUs, 100GB RAM and 1 TB solid state storage.
The number of instances is con�gured as rules against every instance template.

{ Storing VM avor con�guration metadata [20]: To ensure availability, multi-
ple instances are started. These instances are responsible for creation of warm
caches. To avoid, multiple instances working on the same set of rules at any
given time and ensure mutual exclusion of work, leader election via distributed
locks is used that is provided by consul.

{ Leader election [13] (via distributed locks)
{ Persisting VM-provisioned information: Once these instances are created, meta-

data information relating to provisioned instances must be persisted as this
information is looked up during during user-initiated provisioning requests.

3 Architecture

Elasticsearch [1] is a highly scalable open-source full-text search and analytics en-
gine. It allows you to store, search, and analyze big volumes of data quickly and in
near real time. It is generally used as the underlying engine/technology that powers
applications that have complex search features and requirements. Apart from pro-
visioning and managing Elasticsearch [1] clusters for our customers, we ourselves
use Elasticsearch [1] clusters for our platform monitoring [3] needs. This is a good
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Fig. 3. Warm Cache KV Store in Consul

way to validate our own platform o�ering. Elasticsearch [1] backend is used for
warm-cache module monitoring [3].

Kibana [4] is built on the power of Elasticsearch [1] analytics capabilities to
analyze your data intelligently, perform mathematical transformations, and slice
and dice your data as you see �t. We use Kibana [4] to depict the entire warm-cache
build history stored in Elasticsearch [1]. This build history is rendered on Kibana
[4] dashboard with various views. The build history contains information such as
how many instances were created and when were they created, how many errors had
occurred, how much time was taken for provisioning, how many di�erent Racks are
available, and VM [7] instance density on racks/hypervisors. Warm-cache module
can additionally send email noti�cations whenever the cache is built, updated, or
a�ected by an error.

We use the Kibana [4] dashboard to monitor active and ready-to-use VM in-
stances of di�erent avors in a particular datacenter, as shown in 4.

MongoDB is an open-source, document database designed for ease of develop-
ment and scaling. warm-cache uses this technology to store information about avor
details. Flavor corresponds to the actual VM-underlying hardware used. (They can
be tiny, large, xlarge, etc.). Flavor details consist of sensitive information such as
image-id, avour-id, which are required for actual Nova [5] compute calls. warm-
cache uses a Mongo [9] service abstraction layer (MongoSvc) to interact with the
backend MongoDB [9] in a secure and protected manner. The exposed APIs on
MongoSvc are authenticated and authorized via Keystone integration.

CMS (Con�guration Management System) is a high-performance, metadata-
driven persistence and query service for con�guration data with support for REST-
ful [16] API and client libraries (Java and Python). This system is internal to eBay,
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Fig. 4. Kibana Dashboard

and it is used by warm-cache to get hardware information of various compute nodes
(including rack [11] and hypervisor [6] info).

4 System Design

The warm-cache module is built as a plug-gable library that can be integrated or
bundled into any long running service or daemon process. On successful library
initialization, a warm-cache instance handle is created. Optionally, a warm-cache
instance can enroll for leader election [13] participation. Leader instances are re-
sponsible for preparation of VM cache pools for di�erent avors. warm-cache will
consist of all VM pools for every avor across the di�erent available data centers.
The �gure 5 the system design of warm-cache.

Fig. 5. System Design
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The �gure 6 depicts the system dependencies of warm-cache.

Fig. 6. System Dependency

The warm-cache module is expected to bring down VM instance preparation
time to few seconds. It should also remedy a lot of exceptions and errors that occur
while VM instances get ready to a usable state, because these errors are handled
well in advance of actual provisioning [25] needs. Typical errors that are encountered
today are nodes not available in Foreman due to sync issues and waiting for VM
instances to get to the active state.

The �gure 7 below depicts the internal state diagram of the warm-cache service.
This state ow is triggered on every warm-cache service deployed. Leader election
[13] is triggered at every 15-minute boundary interval (which is con�gurable).

This leader election is done via Consul [2] which locks with an associated TTL
(Time-to-live). After a leader instance is elected, that particular instance holds the
leader lock and reads metadata from Consul [2] for each Availability Zone (AZ,
equivalent to a data center). These details include information such as how many
minimum instances of each avor are to be maintained by warm-cache. Leader
instance spawns parallel tasks for each availability zone (AZ) and starts preparing
the warm cache based on prede�ned rules. Preparation of a VM instance is marked
as complete when the VM instance moves to an active state (for example, as directed
by an open-stack Nova [5] API response). All successfully created VM instances are
persisted on an updated warm-cache list maintained on Consul [2]. The leader
instance releases the leader lock on the complete execution of its VMs build rules
and waits for next leader election [13] cycle. The con�guration of each speci�c
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Fig. 7. System-State Diagram

avor (for example, g2-highmem-16) is persisted in Consul [2] as build rules for
that particular avor. The �gure 8 shows an example.

Fig. 8. Sample Rule

In above sample rule, the maxinstance per cycle attribute indicates how many
instances are to be created for this avor in one leadership cycle. minfault domain
is used for the Nova [5] API to ensure that at least two nodes in a leader cycle go
to di�erent fault domains. reserve cap speci�es the number of instances that will
be blocked and unavailable via warm-cache. userdata is the base64-encoded Bash

Computer Science & Information Technology (CS & IT)92



script that a VM instance executes on �rst start-up. total instances keeps track
on total number of instances that need to be created for a particular avor. An
optional group hint can be provided that ensures that no two instances with the
same group-id are con�gured on the same hypervisor [6].

For every VM instance added to warm-cache, following metadata is persisted
to Consul [2]:

{ Instance Name
{ Hypervisor ID
{ Rack ID
{ Server ID
{ Group name (OS scheduler hint used)
{ Created time

Since there are multiple instances of the warm-cache service deployed, only of
them is elected leader to prepare the warm-cache during a time interval. This is
necessary to avoid any conicts among multiple warm-cache instances. Consul [2] is
again used for leader election [13]. Each warm-cache service instance registers itself
as a warm-cache service on Consul [2]. This information is used to track available
warm cache instances. The registration has a TTL (Time-To-Live) value (one hour)
associated with it. Any deployed warm cache service is expected to re-register itself
with the warm-cache service within the con�gured TTL value (one hour). Each
of the registered warm-cache services on Consul [2] attempts to become to elect
itself as a leader by making an attempt to acquire the leader lock on Consul [2].
Once a warm-cache service acquires a lock, it acts as a leader for VM cache pool
[21] preparation. All other warm-cache service instances move to a stand-by mode
during this time. There is a TTL associated with each leader lock to handle leader
failures and to enable leader reelection.

In the �gure 9, leader is a Consul [2] key that is managed by a distributed lock
[10] for the leadership role. The last leader node name and leader start timestamp
are captured on this key. When a warm-cache service completes it functions in the
leader role, this key is released for other prospective warm-cache service instances
to become the new leader.

The leadership time-series graph 10 depicts which node assumed the leadership
role. The number 1 in the graph below indicates a leadership cycle.

When a leader has to provision a VM instance for a particular avor, it �rst looks
up for meta information for the avor on MongoDB [9] (via MongoSvc). This lookup
provides details such as image-Id and avor-Id. This information is used when cre-
ating the actual VM instance via Nova [5] APIs. Once a VM is created, its rack-id
information is available via CMS. This information is stored in Consul [2] associated
with a Consul [2] keyAZ=INSTANCE, where AZistheAvailabilityZoneand INSTANCE
is the actual instance name. This information is also then persisted on Elasticsearch
[1] for monitoring [3] purpose.
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Fig. 9. Leader

Fig. 10. Leadership time-series graph

The �gure 11 shows a high-level system sequence diagram [22] (System Sequence
Diagram) of a leader role instance:

A Kibana [4] dashboard as shown in �gure 12 can be used to check how VM
[7] instances in the cache pool are distributed across available racks. The following
�gure shows how many VM [7] instances are provisioned on each rack. Using this
information, Dev-ops can change the warm-cache build attributes to inuence how
the cache should be built in future.

The following options are available for acquiring VM instances from the warm-
cache pool:

{ The Rack-aware mode option ensures that all nodes provided by warm-cache
reside on di�erent racks.

{ The hypervisor-aware mode option returns nodes that reside on di�erent hy-
pervisors [6] with no two nodes sharing a common hypervisor [6].

{ The Best-e�ort mode option tries to get nodes from mutually-exclusive hyper-
visors [6] but does not guarantee it.

The �gure 13 illustrates the sequence diagram [22] for acquiring a VM.
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Fig. 11. System Sequence Diagram

Fig. 12. VM Instances distribution

The corresponding metadata [20] information on Consul [2] for acquired VM
instances is updated and removed from the active warm-cache list.

Apart from our ability to quickly ex up, another huge advantage of the warm-
cache technique compared to conventional run-time VM creation methods is that
before an Elasticsearch [1] cluster is provisioned, we know exactly if we have all
the required non-error-prone VM nodes to satisfy to our capacity needs. There
are many generic applications hosted [24] on a cloud [12] environment that require
the ability to quickly ex up or to guarantee non-error-prone capacity for their
application deployment needs.These distributed applications generate logs [8] on
individual VMs or Nodes that needs to be collected and made available for applica-
tion developers for debugging. They can take a cue from the warm-cache approach
for solving similar problems.
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Fig. 13. Sequence Diagram of Acquiring a VM

5 Related Work

There are other published methods around instance caching. In order to speed up
virtual server provisioning, there have been approaches to expedite the transfer of
host speci�c metadata �les using di�erent transfer techniques. To reduce boot time,
these approaches instantiate a VM, and store it in cache on standby mode. This
saves time to create an instance from a template and boot VMs. Our paper focuses
on providing infrastructure-aware custom caching mechanism with instance build
rules for distributed applications, such as Elasticsearch. Also, our proposed method
provides instance provisioning at faster pace. We have been able to get to cater to
user initiated instance requests within few seconds.

6 Future Work

Currently our implementation outlines on a mechanism of creating cached instance
on OpenStack [23] for a distributed application [14] like Elasticsearch [1]. We intend
to extend this to other managed platforms such as Kubernetes [19] and Apache
Mesos [26] . Platform will be made more generic to easily extend to support other
applications on potentially di�erent managed platform o�erings. Currently, rules
managed requires user prompt and we intend to automate instance creation rules
based on historic usage.
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7 Conclusion

Managed platforms such as Kubernetes [19], Mesos [26] etc, provide ability to spawn
on demand instances. These instances would take up to few minutes, to be com-
pletely ready which might not be acceptable for critical hosted applications. In-
stance provisioning [25] mechanisms like the one outlined in the paper can alleviate
such issues. Also a ready to use instance cache guarantees the availability of nodes
in case of capacity ex up. There are additional infrastructure rules that are ap-
plication speci�c such as being rack [11] aware. The outlined mechanism in the
paper allows creating similar abstractions on top of managed cloud [12] o�erings
out there.
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