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ABSTRACT 
 
Bladder cancer (BC) is one of the most globally prevalent diseases, attracting various studies 

on BC relevant topics. High-throughput sequencing renders it convenient to extensively explore 

genetic changes, like the variation in gene expression, in the development of BC. In this study, 

we did differential analysis on gene and transcript expression (DGE and DTE) and differential 

transcript usage (DTU) analysis in an RNA-seq dataset of 42 bladder cancer patients. DGE 

analysis reported 8543 significantly differentially expressed (DE) genes. In contrast, DTE 

analysis detected 14350 significantly DE transcripts from 8371 genes, and DTU analysis 

detected 27914 significantly differentially used (DU) transcripts from 8072 genes. Analysis of 

the top 5 DE genes demonstrated that DTE and DTU analysis provided the source of changes in 

gene expression at the transcript level. The transcript-level analysis also identified some DE 

and DU transcripts from previously reported mutated genes that related to BC, like ERBB2, 

ESPL1, and STAG2, suggesting an intrinsic connection between gene mutation and alternative 

splicing. Hence, the transcript-level analysis may help disclose the underlying pathological 

mechanism of BC and further guide the design of personal treatment. 
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1. INTRODUCTION 

 

Bladder cancer (BC) is the 10th most common malignant carcinoma worldwide, with about an 

estimate of 549,000 new cases and 200,000 deaths in 2018 [1]. Depending on the invasion state 

of tumor cells in the muscle layer, bladder cancer is clinically sorted out into two distinct 

subtypes. One is non-muscle invasive bladder cancer (NMIBC), and the other is muscle-invasive 

bladder cancer (MIBC). NMIBCs are rarely muscle-invasive and incline recurrence, reporting a 

rate as high as 70%. Its five-year survival rate is about 90% [2]. MIBCs are, in contrast, 

frequently metastasize, with a five-year survival rate of less than 50%. Currently, the main 

treatments for NMIBCs are transurethral resection and postoperative intravesical chemotherapy. 

In comparison, the treatments of MIBCs involve radical cystectomy or radiotherapy [3-6]. A 

systemic therapy, such as agents targeting dysfunctional or mutational genes or agents acting at 

the molecular level for BC treatment, is not available for BC patients at present and is in an 

urgent need [7-9]. 

 

The advance of the treatment of BC requires a comprehensive understanding of its pathogenesis. 

So far, researchers have paid substantial effort in investigating the potential mechanisms of BC 

[8, 10-14]. For example, elaborate differential gene expression (DGE) analyses of BC expression 

data advance our understanding of BC and are expected to improve its current treatments and 

therapies [15,16]. However, differential expression analysis at the gene level unable to reveal the 

http://airccse.org/cscp.html
http://airccse.org/csit/V10N05.html
https://doi.org/10.5121/csit.2020.100503


30   Computer Science & Information Technology (CS & IT) 

 

details and changes in the composition of gene expression when gene generates more than one 

transcripts. Changes in the population and proportion of the entire transcripts from the same gene 

are vague from the result of DGE analysis. Therefore, transcript-level analysis is requisite and 

necessary to discover variant transcripts that lead to changes in gene expression and contribute to 

abnormality or phenotype of interest [17]. 

 

Consequently, differential transcript expression (DTE) analysis and differential transcript usage 

(DTU) analysis rose to respond to the needs. They are aiming at detecting the transcript that 

presents variance in its expression level or abundance. Here, we combine gene-level analysis 

(DGE analysis) and transcript-level analysis (DTE analysis and DTU analysis) to reveal the 

potential critical biomarkers contributing to the development of BC. 

 

2. MATERIALS AND METHODS 
 

2.1. Data Preparation 
 

Guo G et al. presented an RNA-seq dataset of 42 bladder cancer patients to study the genetic 

basis of transitional cell carcinoma in [18]. We utilized such a dataset throughout this manuscript. 

The cohort contains 42 patients of bladder tumor, 16 of which contained paired morphological 

normal bladder tissue. Among the 42 patients, 6 were females, and 36 were males. The range of 

age of the cohort was 25 to 87 years old at the time when recruited the patients. The overall mean 

and median age was 62.3 and 64.5 years, respectively. Besides, 25 of 42 samples were MIBC, 

while 17 were NMIBC. Table 1 manifests the details about the clinical characteristics of the 

cohort. 

 

We collected the data (accession code SRA063495) from the Sequence Read Archive (SRA). The 

mRNA libraries were generated from the TruSeq RNA Sample Preparation kit (Illumina), and the 

sequencing platform was the HiSeq 2000. We refer to [18] for the procedures of reads 

sequencing. We downloaded all the raw “.sra” files from SRA and used the fastq-dump program 

from the SRA toolkit (version 2.9.6) to obtain clean fastq files by decompressing such “.sra” 

files. We then treated those fastq files as the input to our analysis pipeline. 

 

2.2. Expression Quantification 
 

Our analysis pipeline contains three main steps, including expression quantification, differential 

analysis, and gene enrichment analysis. Figure 1 shows the flowchart of our pipeline. In 

expression quantification, we quantified the genome-wide expression level of genomic features, 

i.e., the expression level of genes and transcripts. In the differential analysis, we did differential 

expression analysis on genes and transcripts and differential usage analysis on transcripts. 

Finally, we did gene enrichment analysis on the results from the differential analysis. 

 

In the quantification step, the expression level of each genomic feature (either gene or transcript) 

was represented by the number of reads originated from the feature. We adopted two distinct 

programs to quantify expression levels. More precisely, we used featureCounts from the Subread 

package (version 1.6.4) [19] to measure gene-level expression while applied Salmon (version 

0.13.1) [20] to estimate transcript-level expression. For gene-level expression quantification, we 

first applied STAR (version 2.5.3a) [21] to align reads to human genome reference GRCh38.p2, 

and then adopted featureCounts for each gene to calculate the number of reads mapped to the 

gene (genes that shared overlapping regions were merged into one unique gene). For transcript-

level expression quantification, we incorporated the Salmon to estimate the counts of reads for 

each transcript. The reference human gene annotation utilized in this step was from Ensembl 
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release 79, which consisted of 65217 records of genes and 213622 records of transcripts. After 

quantification, we obtained counts of reads for all the genes as well as the transcripts. We then 

used them in the differential expression analysis. 

 

 
 

Figure 1. Flowcharts of the analysis pipeline. Our analysis pipeline contains three main parts: expression 

quantification, differential analysis, and gene enrichment analysis. 
 

2.3. Differential Analysis 
 

In step 2, we did differential expression analysis at both gene-level and transcript-level to 

compute the variance of expression between tumor and normal samples. Because of alternative 

splicing, major human genes generate more than one transcript. Consequently, we can present 

transcripts’ expression levels in both absolute values (reads counts) and relative values (transcript 

usage, defined as (number of a transcript) / (amount number of transcripts from the same gene)). 

Transcripts from a single gene (i.e., isoforms) may hold comparable usages between conditions 

but increase dramatically in absolute expression, and reverse cases exist as well. Differential 

transcript usage analysis thus complements differential gene/transcript expression analysis. We 

did DGE, DTE, and DTU analysis on a BC cohort, to extensively explore the differences between 

BC and normal tissue and further discover the potential mechanisms behind the development of 

BC. 

 

We made use of an R package DESeq2 (version: 1.24.0) [22] to do differential expression (DE) 

analysis. For each genomic feature and the counts of reads aligned to it, DESeq2 adopts a 

generalized linear model to fit the counts to a negative binomial distribution to detect 

differentially expressed features. Depending on the distinct read-counting programs for genes and 

transcripts, we took diverse data importing methods. For DGE analysis, we directly import reads 
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counts data from the featureCounts. As to DTE analysis, we used an R package tximport 

(version: 1.12.3) [17] to import counts data from the Salmon by setting the argument 

countsFromAbundance to “scaledTPM”. Non-expressed genes/transcripts in all samples (defined 

as genes/transcripts with a sum of counts across all samples less than 10) were filtered out to 

reduce computational burdens. Samples’ sex, age, bladder cancer subtype (muscle / non-muscle 

invasive), cancer grade, cancer recurrence status, and condition (cancer/normal) served as 

independent variables. We did differential comparison between cancer and normal samples. We 

selected significantly DE feature according to its log2 fold change (log2(FC)) and false discovery 

rate (FDR). The threshold was |log2(FC) ≥ 1| and FDR < 0.05. 

 

As a complementary analysis method, we did DTU analysis by taking advantage of an R package 

DEXSeq (version: 1.30.0) [23, 24]. Anders, et al., incipiently designed it for the exon-level 

differential usage analysis. To infer changes in exon usage, it compared the number of reads 

mapping to a certain exon to the number mapping to any other exons generated from the same 

gene. We used it for the transcript-level differential usage analysis. We applied the same method 

(i.e., tximport) to import reads counts for each transcript and also excluded non-expressed 

transcripts from analysis. The same independent variables used in DE analysis were adopted in 

DTU analysis as well. Besides, the same criteria were applied to choose significant DU 

transcripts. 

 

2.4. Gene Ontology Enrichment Analysis 
 

We used the R package clusterProfiler (version: 3.12.0) [25] to do gene ontology (GO) 

enrichment analysis.Significant genes were employed as input and converted to ENTREZ 

identifiers. A threshold was set to p-value < 0.05 to select significantly enriched GO terms. 

 

3. RESULTS 
 

From differential gene expression analysis, we found 8543 significantly differentially expressed 

genes between bladder cancer samples and normal bladder samples from 65065 tested genes. Of 

all the significant DE genes, 5293 genes were down-regulated with a mean log2(Fold Change) 

equals to -2.52 while 3250 were up-regulated with a mean log2(Fold Change) equals to 1.76. 

Principle component analysis (PCA) with the gene expression data shows that a normal sample 

B77_Normal was more likely to be a cancer sample (Figure 2). However, including this sample 

in DE analysis did not affect its result as DESeq2 sets aside outliers from the analysis. Figure 3 

shows the volcano plot of DE genes, with the gene names of the top 5 over-expressed and 

suppressed genes labeled (names of merged genes contain a plus symbol). We used the 

expression level of the top 500 significant DE genes to do hierarchical clustering (Figure 4). In 

Figure 4, most cancer samples and normal samples were grouped correctly except the sample 

B77_Normal, which was more likely a cancer sample and illustrated by PCA. Among the 37 

significantly mutated genes reported in [18], 10 of them (27%) were found differentially 

expressed (Table 1). 

 

Gene ontology (GO) enrichment analysis was done for DE genes to identify the GO terms that 

were activated by DE genes. GO enrichment analysis demonstrated that extracellular matrix 

(GO:0031012), collagen-containing extracellular matrix (GO:0062023), muscle system process 

(GO:0003012), muscle contraction (GO:0006936), extracellular matrix organization 

(GO:0030198), extracellular structure organization (GO:0043062), extracellular matrix structural 

constituent (GO:0005201), muscle organ development (GO:0007517), regulation of leukocyte 

activation (GO:0002694), external side of plasma membrane (GO:0009897) were the top 10 

significantly enriched terms (Table 2). 



Computer Science & Information Technology (CS & IT)                              33 

 

 

 
 

Figure 2. PCA plot on gene expression data with the first two principal components. Normal samples were 

colored with orange while cancer samples were colored with cyan. Although sample B77_Normal was a 

normal sample, it was closer to cancer samples than normal samples. 

 

 
 

Figure 3. Volcano plot of DE genes. The x axis shows the log2(Fold change) between the cancer samples 

and the normal samples, the y-axis shows the –log10(FDR). Labels in the figure stand for the top 5 

significantly down/up-regulated genes. 
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Table 1. The 37 significantly mutated genes and the distribution in DGE, DTE and DTU. 

 

Gene set Genes 

Significantly 

Mutated 

genes 

ANK2, ANK3, ARID1A, ATM, CHD6, CREBBP, CSMD3, ELF3, EP300, ERBB2, 

ERBB3, ERCC2, ESPL1, FAT4, FGFR3, HRAS, KALRN, KRAS, LAMA4, LRP2, 

MLL, MLL3, NCOR1, NF1, NFE2L3, PDZD2, PIK3CA, PIK3R4, RB1, STAG2, 

SYNE1, SYNE2, TP53, TRAK1, TRRAP, TSC1, UTX 

DE genes ANK2, CSMD3, ERBB2, ESPL1, FAT4, FGFR3, HRAS, LAMA4, SYNE1, 

TRAK1 

DTE genes ANK2, ARID1A, ATM, CREBBP, ELF3, ERBB2, ERBB3, ESPL1, FAT4, FGFR3, 

HRAS, KRAS, LAMA4, NF1, NFE2L3, STAG2, SYNE1, TP53, TRAK1 

DTU genes ANK2, ANK3, ARID1A, ATM, CREBBP, CSMD3, ELF3, ERBB2, ERBB3, 

ERCC2, ESPL1, FGFR3, HRAS, KALRN, LAMA4, NCOR1, NF1, PDZD2, 

PIK3R4, RB1, STAG2, SYNE2, TP53, TRAK1, TRRAP 

 

Differential transcript expression (DTE) analysis and differential transcript usage (DTU) analysis 

provide details of the change in gene expression. From 213622 transcripts that were generated by 

all 65065 genes, DTE analysis identified 14350 significant DE transcripts, in which 6053 were 

up-regulated and 8297 were down-regulated. Table 3 lists the top 10 differentially expressed 

transcripts. In contrast, DTU analysis detected 27914 significant DU transcripts where contained 

15012 over-expressed transcripts and 12902 down-regulated transcripts. Table 4 presents the top 

10 differentially used transcripts. To discover the contrast of the results from DTE analysis and 

DTU analysis, we separated both results in positive (over-expressed) and negative (down-

regulated) subgroups and showed their intersections in Figure 5a. The figure shows that 5502 

transcripts changed their absolute expression level as well as their proportions in gene expression 

simultaneously. Among such 5502 transcripts, most of them showed the same direction of 

changes. That is, 2623 (46.7%) transcripts’ absolute expression level and relative usage level 

obtained increase in BC samples, and 2742 (49.8%) transcripts got both types of levels decreased. 

However, some transcripts displayed opposite directions of changes. For example, there were 9 

(0.2%) transcripts whose absolute expression level got promoted while usage level reduced in BC 

samples. Besides, there were 128 (2.3%) transcripts had pure expression level decreased while 

relative usage increased. 

 
Table 2. The top 10 enriched GO terms of differentially expressed genes. 

 

Ontology ID Functional Term Gene Count Adjusted p-

value 

CC GO:0031012 extracellular matrix 218 8.59E-38 

CC GO:0062023 

collagen-containing extracellular 

matrix 194 5.26E-37 

BP GO:0003012 muscle system process 192 1.19E-25 

BP GO:0006936 muscle contraction 159 1.21E-25 

BP GO:0030198 extracellular matrix organization 147 5.62E-21 

BP GO:0043062 extracellular structure organization 163 5.62E-21 

MF GO:0005201 

extracellular matrix structural 

constituent 85 1.16E-18 

BP GO:0007517 muscle organ development 157 3.25E-16 

BP GO:0002694 regulation of leukocyte activation 181 6.04E-16 

CC GO:0009897 external side of plasma membrane 93 8.64E-16 
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Figure 4.The hierarchical clustering result of the top 500 DE genes. Columns stood for samples while rows 

indicated genes. The vertical white band separated samples into two subgroups. The degree of gene 

expression corresponded to the transition from blue to red. Independent variables were shown as well. 

 

 

 
 

 

 

 

Figure 5. (a) the left Venn diagram exhibits the transcript overlaps among DTE.POS, DTE.NEG, 

DTU.POS and DTU.NEG and (b) the right diagram exposes gene intersections from DGE, DTE, and DTU 

analysis. POS and NEG stand for over-expressed and down-expressed features, respectively. 
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Table 3. The top 10 differentially expressed transcripts.  

 
Transcript Gene Mean 

Expression 

log2FoldChange Adjusted p-value 

ENST00000588553 AC005786.3 11.53 27.66 2.37E-14 

ENST00000618836 UBE2D3 13.20 16.16 1.64E-05 

ENST00000557860 ACTC1 550.95 -12.24 9.05E-19 

ENST00000492726 DES 466.95 -11.39 1.21E-13 

ENST00000290378 ACTC1 831.71 -11.13 7.32E-27 

ENST00000611814 PI16 614.92 -10.87 1.55E-70 

ENST00000373960 DES 11908.26 -10.85 4.78E-48 

ENST00000560765 FGF7 287.42 -10.78 1.37E-15 

ENST00000461273 RP11-274B21.5 11.39 10.54 1.63E-02 

ENST00000347557 SMTN 159.59 -10.47 2.57E-19 

 
Table 4. The top 10 differentially used transcripts 

 

Transcript Gene Mean 

Expression 

log2FoldChange Adjusted p-value 

ENST00000543780 IGJ 3632.15 -60.74 1.25E-22 

ENST00000305046 ADH1B 28.92 -49.90 0.00E+00 

ENST00000355722 TRPM8 10.63 -48.37 1.66E-06 

ENST00000577017 MAPT 11.82 -47.00 3.37E-06 

ENST00000510545 CLDND1 54.47 44.93 2.80E-13 

ENST00000466266 PRUNE2 30.03 -39.34 6.97E-20 

ENST00000355426 EFEMP1 426.46 -36.24 2.52E-119 

ENST00000472859 SGK1 32.38 -35.94 1.15E-02 

ENST00000457773 PLCD4 36.87 -33.52 0.00E+00 

ENST00000618157 HLA-DRB4 13.78 -27.55 1.26E-07 

 
Table 5. The top 10 enriched GO terms of genes that produced differentially expressed transcripts 

 

Ontology ID Functional Term Gene Count Adjusted p-

value 

CC GO:0062023 collagen-containing extracellular matrix 244 1.91E-22 

CC GO:0005925 focal adhesion 241 8.23E-22 

CC GO:0005924 cell-substrate adherens junction 241 1.25E-21 

CC GO:0030055 cell-substrate junction 243 1.25E-21 

CC GO:0031012 extracellular matrix 273 1.25E-21 

CC GO:0005912 adherens junction 286 1.25E-21 

BP GO:0030198 extracellular matrix organization 209 2.06E-19 

BP GO:0043062 extracellular structure organization 228 7.88E-17 

CC GO:0015629 actin cytoskeleton 238 1.30E-14 

MF GO:0005201 

extracellular matrix structural 

constituent 112 2.68E-14 
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Table 6. The top 10 enriched GO terms of genes that produced differentially used transcripts 

 

Ontology ID Functional Term Gene 

Count 

Adjusted p-value 

CC GO:0005925 focal adhesion 306 2.19E-33 

CC GO:0005924 cell-substrate adherens junction 306 4.56E-33 

CC GO:0030055 cell-substrate junction 309 4.56E-33 

CC GO:0005912 adherens junction 364 1.31E-32 

CC GO:0005813 centrosome 320 7.28E-19 

CC GO:0031252 cell leading edge 268 1.29E-18 

BP GO:0000226 microtubule cytoskeleton organization 314 3.02E-17 

BP GO:0043087 regulation of GTPase activity 285 3.02E-17 

CC GO:0005819 spindle 229 2.09E-16 

BP GO:0006914 autophagy 315 1.51E-15 

 

We then look at genes that generated significant DE and DU transcripts. In total, 8371 genes 

produced all the significant DE transcripts compared to 8072 genes that generated such DU 

transcripts. A Venn diagram in Figure 5b exhibits the overlaps among genes from distinct 

analysis methods (i.e., DGE, DTE, and DTU). From Figure 5b, 3841 (45%) DE genes generated 

either significant DE transcripts or significant DU transcripts or both. We also explored the 

transcript-level changes in the 37 significantly mutated genes. We found that 19 of 37 (51.4%) 

genes produced DE transcripts, and 25 of such genes (67.6%) had DU transcripts (Table 1). 

We also did GO enrichment analysis for the genes that generated DE transcripts and DU 

transcripts. GO enrichment analysis on DTE genes found that collagen-containing extracellular 

matrix (GO:0062023), focal adhesion (GO:0005925), cell-substrate adherens junction 

(GO:0005924), cell-substrate junction (GO:0030055), extracellular matrix (GO:0031012), 

adherens junction (GO:0005912), extracellular matrix organization (GO:0030198), extracellular 

structure organization (GO:0043062), actin cytoskeleton (GO:0015629), extracellular matrix 

structural constituent (GO:0005201) were the top 10 significantly enriched terms (Table 5). In 

contrast, the top 10 terms found from DTU genes were focal adhesion (GO:0005925), cell-

substrate adherens junction (GO:0005924), cell-substrate junction (GO:0030055), adherens 

junction (GO:0005912), centrosome (GO:0005813), cell leading edge (GO:0031252), 

microtubule cytoskeleton organization (GO:0000226), regulation of GTPase activity 

(GO:0043087), spindle (GO:0005819), autophagy (GO:0006914) (Table 6). 

 

4. DISCUSSION 
 

This study of RNA-seq of human bladder reveals some crucial genes and transcripts as well as 

functional characteristics related to bladder cancer development. From the differential analysis of 

expression of gene and transcript and usage of the transcript, we identified potential biomarkers 

that may help in bladder cancer diagnosis, treatment, and prognoses. 

 

Human bladder cancer is a type of disease that full of complex genetic causes. DGE analysis 

discovered 8543 differentially expressed genes that enriched in plenty of GO terms in distinct 

biological processes and molecular functions, while DTE analysis discovered 14350 transcripts 

originated from 8371 genes, and DTU analysis revealed 27914 transcripts from 8072 genes, all of 

which may contribute to the development of BC. 

 

Although DGE analysis discovered a large range of genes related to BC, DTE analysis and DTU 

analysis provided a new dimension to explore cancer RNA-seq data. There were 4814 and 5765 

novel genes found by DTE analysis and DTU analysis, respectively. Furthermore, changes in the 

expression of some DE genes were attributable to its transcripts. We identified ACTC1 as the 
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most down-regulated gene in bladder cancer, which was previously recognized as a commonly 

down-regulated gene in BC [26]. Gene ACTC1 had expressed three transcripts, i.e., 

ENST00000290378, ENST00000557860, and ENST00000560563, in the dataset. DTE analysis 

found that such three transcripts were significantly decreased (log2FC < -8.2, adjusted p-value < 

7E-8). DTU analysis revealed that only transcript ENST00000560563 displayed a significant 

change in relative usage (log2FC = 1.3, adjusted p-value < 1E-2). A similar situation happened 

on two of the most suppressed genes, DES and PI16, where their transcripts’ expression 

decreased in tumor and each had only one significant DU transcript. Another two genes, ASB5 

and PCP4, however, showed a more complicated pattern. Although expression degrees at the 

gene level and the transcript level both inhibited in BC, some of their isoforms’ usage presented 

an opposite direction of change. For example, isoform ENST00000510578 from gene ASB5 

gained an increase in its relative usage level. 

 

Differential analysis verified that some significantly mutated BC-related genes also experienced 

variations in expression (Table 1). DGE analysis found that 10 of 37 significantly mutated genes 

were differentially expressed. Moreover, extra genes were detected to contain either DE 

transcripts or DU transcripts (19 genes and 25 genes, respectively). It suggests that there may be 

an underlying link from gene mutation to gene expression and transcriptional composition that 

contributed to the development of bladder cancer. 

 

This work was based on the analysis of RNA-seq data and revealed potential biomarkers 

associated with bladder cancer. Further expansion of the study may be an experimental validation 

to fortify and narrow the findings so that promising therapies can be derived. 

 

5. CONCLUSION 
 

In conclusion, we conducted both gene-level and transcript-level differential analyses on 42 

bladder cancer samples, including differential expression analysis and differential usage analysis. 

Transcript level analysis results revealed details contributing to the significant changes in gene 

expression level. Furthermore, we discovered additional genes that didn’t detect by gene-level 

analysis and may relate to the development of bladder cancer.  We also did GO enrichment 

analysis based on the differential analysis results and disclosed candidate pathways that 

potentially associated with bladder cancer. Despite the analytical study we completed, 

experimental validation is expected to fortify our findings.   
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