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ABSTRACT 
 
Uncertain-but-bounded parameters have a significant impact on the natural frequencies of 

structures, and it is necessary to study their inherent relationship. However, their relationship is 

generally nonlinear and thus very complicated. Taking advantage of the strong non-linear 

mapping ability and high computational efficiency of BP neural networks, namely the error 

back-propagation neural networks, a BP neural network-based method is proposed to predict 

the interval natural frequencies of structures with uncertain-but-bounded parameters. To 
demonstrate the proposed method’s feasibility, a numerical example is tested. The lower and 

upper frequency bounds obtained using the proposed approach are compared with those 

obtained using the interval-based perturbation method, which is a commonly used method for 

problems with uncertainties. A Monte Carlo simulation is also conducted because it is always 

referred to as a reference solution for problems related to uncertainties. It can be observed that 

as the varying ranges of uncertain parameters become larger, the accuracy of the perturbation 

method deteriorates remarkably, but the proposed method still maintains a high level of 

accuracy. This study not only puts forward a novel approach for predicting the interval natural 

frequencies but also exhibits the broad application prospect of BP neural networks for solving 

problems with uncertainties. 
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1. INTRODUCTION 
 
Natural frequencies have strong effects on the dynamic behaviours of structures and are of 

considerable importance for analysis, design, and optimization. However, uncertainty is 

ubiquitous in scientific research and engineering applications, and all structural analyses and 

designs involve varying degrees of uncertainty [1-3]. Owing to manufacturing deviations, 
modelling approximations, measurement inaccuracies, and external environmental changes, we 

may encounter many types of information uncertainty, such as external loads, material 
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properties, geometric dimensions, and boundary conditions [4-6]. Thus, the natural frequencies 
of a structure are affected significantly by uncertainties. A commonly used approach to deal with 

an uncertainty problem is to model these uncertain parameters as random variables, and the 

resolution process is conducted using the probabilistic theory [7]. However, information about 

the probabilistic distributions of random variables may be unavailable or sometimes inaccurate, 
and often a small error in probabilistic information may lead to serious errors in probabilistic 

results [8,9]. Therefore, the probabilistic approach has some intrinsic limitations. 

 
Recently, many scholars have shifted from probabilistic theory to interval theory to deal with 

uncertainty problems. In interval theory, all uncertain-but-bounded parameters can be described 

using interval numbers [10-13]. Interval theory has been applied to structural analysis and many 
papers have been published regarding this approach [14-17]. An interval-based perturbation 

method is commonly used to deal with uncertainties and has been successfully employed in the 

prediction of the interval natural frequencies of structures with uncertain-but-bounded parameters 

[18-20]. The perturbation method is highly accurate for linear problems, but its accuracy is poor 
for nonlinear problems. The mathematical relationship between the uncertain parameters and the 

natural frequencies usually remains nonlinear. The perturbation method only remains at a high 

level of accuracy when the varying ranges of interval parameters are small. As the varying ranges 
of interval parameters become larger, the errors generated by the perturbation method also 

increase rapidly. To obtain an accurate interval of natural frequencies with wide varying ranges 

of interval parameters, we focus on the application of artificial neural networks. 
 

Artificial neural networks possess excellent information-handling capacity and have become 

powerful tools to study nonlinear systems [21]. Among all types of networks, the BP neural 

network, namely the error back-propagation neural network, is the most maturely studied neural 
network and has been successfully employed in structural analysis. Xu and Zhang used a BP 

neural network to implement a safety assessment for a bridge crane structure [22]. Yuan et al. 

employed a BP neural network to optimize the static and dynamic characteristics of machine tool 
structures [23]. Yang et al. studied the application of BP neural networks for hydraulic metal 

structure health diagnosing [24]. Li et al. used a BP neural network to predict the mechanical 

properties of shape memory alloy [25]. Although many scholars have aimed attention at the 

adoption of BP neural networks for structural analysis with deterministic parameters, the 
research of BP neural networks for structural analysis with uncertain parameters still remains at 

the initial stage, and very few papers have been published. In this study, we take advantage of the 

BP neural network properties of strong non-linear mapping ability and high computational 
efficiency and propose a BP neural network-based method to predict the interval natural 

frequencies of structures with uncertain-but-bounded parameters. 

 
The remainder of this paper is organized as follows. In Section 2, the problem of predicting the 

lower and upper bounds of natural frequencies for structures with interval parameters is briefly 

introduced. In Section 3, the mechanism of a BP neural network is presented. In Section 4, the 

procedures of a BP neural network-based method are proposed. In Section 5, a numerical 
example is provided to illustrate the accuracy and efficiency of the proposed method. Section 6 

presents the conclusions of this study.  

 

2. PROBLEM FORMULATION 
 

For a general engineering structure with n degrees of freedom, the governing equation for 

eigenvalue problems is given by:  

Ku = Mu                                                              (1) 
 



Computer Science & Information Technology (CS & IT)                                     13 

 

where ( ) n n

ijk R  K  and ( ) n n

ijm R  M  are the stiffness and mass matrices, respectively;   

represents the eigenvalue and u denotes the eigenvector. The natural frequency corresponding to 

  is: 2f   .  

 
Taking uncertainty into consideration, the stiffness and mass matrices are subjected to the 

following constraints 

 

   K K K,   M M M                                                  (2) 

 

where K  and K  represent the lower and upper bounds of the stiffness matrix, respectively, and 

M  and M  are the lower and upper bounds of the mass matrix, respectively.  

We define the nominal value matrices as 

 

( ) / 2,   ( ) / 2c c
K = K + K M = M + M                                        (3) 

 

and the deviation amplitude matrices as 

 

( ) / 2,   ( ) / 2   K = K K M = M M                                        (4) 

 

By means of interval matrix notation, the inequalities in Eq. (2) can be noted as 

 

[  , ],   [  , ]I c c I c c       K K K K K K M M M M M M                 (5) 

where IK  and I
M  are the interval matrices.  

 

When the stiffness matrix and mass matrix are assigned their nominal values, the nominal 
eigenvalues and the nominal eigenvectors can be obtained as 

 

,  ( 1,2,3,..., )c c c c c

i i i i n K u = M u                                            (6) 

 

where c

i  is the ith order nominal eigenvalue and c

iu  is the ith order nominal eigenvector.  

 

It can be inferred from Eq. (1) that if the matrices K, M involve uncertainties, the eigenvalues 

and the eigenvectors are also uncertain. The eigenvalues with uncertainties can also be expressed 
with interval notation as follows:  

 

,   ( 1,2,3,..., )c
i i i i n                                                   (7) 

 

where i  represents the uncertain part of the ith order eigenvalue i .  

 

An interval-based perturbation method is a commonly used method to deal with problems related 

to uncertainties, and it has already been introduced for the prediction of lower and upper bounds 

of eigenvalues for structures with uncertain parameters. The uncertain part of the eigenvalues can 
be calculated using the perturbation method as follows:  

 

=( ) ( ) ,  ( 1,2,3,..., )c T c c c T c
i i i i i i i n        u K u u M u                         (8) 
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and the interval eigenvalue I
i  can be expressed as:  

 

[ , ],   ( 1,2,3,..., )I c c
i i i i i i n                                            (9) 

 

For an interval parameter [ ,  ] [ ,  ]I c ca a a a a a a     , the percent change   is defined as:  

 
ca a                                                                  (10) 

 

The percent change   is also represented as the uncertainty factor, and it designates the extent to 

which an uncertain parameter changes. With the nominal value remaining constant, the bigger   

is, the wider range the interval parameter varies within.  
 

The perturbation method is convenient for implementation and is widely used in uncertainty 

fields. However, as the percent change   increases, the difference between the results obtained 

using the perturbation method and the exact solutions becomes significant. The bigger   is, the 

bigger the errors are. When dealing with uncertainty problems with large percent changes, the 

results may be wildly inaccurate. This is a prominent problem for the application of the 

perturbation method. To obtain the interval natural frequencies with a high level of accuracy, we 
employ a BP neural network.  

 

3. MECHANISM OF A BP NEURAL NETWORK 
 
An artificial neural network can simulate the human thought process and holds a strong non-

linear mapping ability. The BP neural network, namely the error back-propagation neural 

network, is the most maturely studied neural network and has been successfully employed in 

many research fields. In this study, it is used to predict the bounds of natural frequencies for 
structures with interval parameters. The BP neural network is a multilayer forward, one-way 

transmission network, and it consists of three layers: input layer, hidden layer, and output layer. 

Firstly, the known parameters are inputted to the input layer. Subsequently, each neuron in the 
hidden layer produces an activation signal to the output layer. Finally, the neurons in the output 

layer produce a result based on the linear combination of the activations passed from the hidden 

layer. The topology structure of a BP neural network is presented in Figure 1. 
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Figure 1.  Topology structure of a BP neural network. 
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After training, the BP neural network can establish the correlation between the input data and 

output data, expressed as 

 

:   f x y                                                               (11) 

 

where f is the mathematical relationship function, 1 2[ , ,......, ]
iN

x x xx  is the Ni-dimensional 

input vector, and 1 2[ , ,......, ]
kN

y y yy  is the Nk-dimensional output vector. In between the input 

layer together with the output layer, there is a hidden layer. The hidden layer consists of multiple 

nodes, which are also called neurons. 
 

The input layer firstly transfers the input data to the hidden layer. Each neuron in the hidden 

layer implements an excitation function. The excitation function in the neuron of the hidden layer 
usually uses a sigmoid function, namely: 

 

( ) 1 1 ,   ( 1,2,..., )u
j ju e j N   （ ）                                        (12) 

 

where Nj denotes the number of neurons of the hidden layer.  
 

The number of neurons in the hidden layer affects the performance of BP neural networks. 

However, so far, there is no general rule to determine this number. The number of neurons in the 

hidden layer can be determined using the following relationship:  
 

2logj iN N                                                              (13) 

 

where Ni represents the number of input variables. In most situations, the number of 

neurons in the hidden layer obtained using Eq. (13) can satisfy the accuracy requirement. 

If the accuracy requirement is not satisfied, we may increase the number of neurons in 

the hidden layer.  

 
The input of the jth neuron in the hidden layer is aj, expressed as: 

 

1

( ),  ( 1,2,..., ,   1,2,..., )
iN

j ij i j i j

i

a w x i N j N


                            (14) 

 

where ijw  is the weighting factor connecting the ith input layer neuron and the jth hidden layer 

neuron, and j is the threshold value of the jth hidden layer neuron.  

 

The output of the jth neuron in the hidden layer is bj, expressed as: 
 

( ),  ( 1,2,..., )j j j jb a j N                                              (15) 

 

where j  is the excitation function, as given in Eq. (12).  

 
Now calculate the output of the kth neuron in the output layer, expressed as: 
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1

( ),  ( 1,2,..., ,  1,2,..., )
jN

k jk j k j k

j

y w b j N k N


                               (16) 

 

where jkw  is the weight corresponding to the connection between the jth hidden layer neuron and 

the kth output layer neuron, and k is the threshold value of the kth output layer neuron. The 

weights and threshold values reflect the contribution of a certain hidden layer neuron to an 

individual output.  

 
A BP neural network can establish a certain mapping function from an Ni-dimensional space to 
an Nk-dimensional space. A set of input data, for which the corresponding outputs are already 

known, should be provided. These data are called the training samples. The weights and 

threshold values of the network can be determined after the training process. The training process 
of the network is essentially a minimization process of the error function. When a sample, 

indicated by s, is inputted to the BP neural network, an output vector can be calculated. The error 

function corresponding to this sample is the sum of the squared error of each output in the output 

layer, expressed as: 
 

( ) ( ) ( ) 2

1

1
( )

2

kN
s s s

k k
k

E y d


                                                     (17) 

 

where 
( ) ( ) ( ) ( )

1 2[ , ,......, ]s s s s

qy y yy  is the network output vector corresponding to the sth sample, and 

( ) ( ) ( ) ( )

1 2[ , ,......, ]s s s s

qd d dd  is the expected output vector corresponding to the sth sample. 

 
Suppose that there are Ns training samples in total. After all the samples are inputted to the BP 

neural network, the network error function can be obtained as follows: 
 

( ) ( ) ( ) 2

1 1 1

1
( )

2

s s kN N N
s s s

network k k
s s k

E E y d
  

                                      (18) 

 

where networkE  is called the network error function. 

 
The values of the weights and thresholds are first randomly assigned, and then optimized using 

iteration procedures. This approach guarantees the robustness of the network for arbitrary inputs.  

The error corresponding to the kth output at the tth iteration step is defined as 
( )t
ke , expressed as:  

 
( ) ( ) ,   ( 1,2,..., )t t

k kk ke d y k N                                               (19) 

 

where kd  and 
( )t
ky  are the desired output and network output for the kth neuron in the output 

layer, respectively; the superscript (t) represents the tth iteration step. 
 

The iteration equations for the weights which connect two adjacent layers at the (t+1)th iteration 

step are expressed as follows:  
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( 1) ( ) ( ) ( ) ( ) ( )

1

( 1) ( ) ( ) ( )

(1 ) ( )

                                

kN
t t t t t t

ij ij j j i jk k
k

t t t t
jjk jk k

w w b b x w e

w w b e












   




 


                                   (20) 

 

where   is called the learning rate, and (0,1) ; 1,2,..., ii N ; 1,2,..., jj N ; 1,2,..., kk N . 

The iteration equations for the threshold values in the hidden layer and the output layer at the 

(t+1)th iteration step are expressed as follows: 

 

( 1) ( ) ( ) ( ) ( ) ( )

1

( 1) ( ) ( )

(1 ) ( )

                                    

kN
t t t t t t

j j j j jk k
k

t t t
k k k

b b w e

e

  

 








   




 


                                   (21) 

 

where   is also the learning rate; 1,2,..., jj N  and 1,2,..., kk N .  

 

When the network error function networkE  in Eq. (18) is smaller than a specified small 

quantity e0, (for example, e0 = 10-4), one can assume that the iterations for the network 

training have terminated. At this stage, the values of the weights and thresholds are 

assumed to have converged. The termination condition can be expressed as: 

  

0networkE e                                                              (22) 

 
When the termination condition is satisfied, the training process is completed. After the training 

process, the BP neural network is assumed to have successfully established the correct functional 

relationship between the inputs and the outputs. At this stage, the parameters of this network are 

determined, and the network can be used for many applications, such as functional 
approximation, image processing and pattern recognition. In this study, the BP neural network is 

adopted to evaluate the bounds of natural frequencies for structures with interval parameters. 

  

4. BP NEURAL NETWORK-BASED METHOD FOR PREDICTION ON 

INTERVAL NATURAL FREQUENCIES 
 

In this study, we proposed a BP neural network-based method to calculate the lower and upper 

bounds of natural frequencies for structures with interval parameters. The procedures of 

implementing this method are described in the subsequent sections.  
 

4.1. Establishment of FEM Model 
 

The finite element method (FEM) is a well-accepted computational tool for assessing the 

mechanical properties of structures. In this study, we use a FEM model to obtain the natural 

frequencies of a structure. The stiffness matrix K and mass matrix M can be obtained using the 
FEM model, and Eq. (1) can be adopted to calculate the natural frequencies. Usually, the lower 

order natural frequencies have greater effects on the dynamic behaviors than the higher order 

ones, and our study focuses on the lower order natural frequencies. 
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4.2. Designation of Inputs and Outputs 
 

The purpose of this paper is to reveal the inherent law between uncertain parameters and natural 

frequencies. Owing to variances of the environment, measurement errors, or manufacturing 
inaccuracy, the structural parameters will definitely exhibit some uncertainties. The uncertain 

parameters are listed as a vector as follows: 

  

1 2[ , ,......, ]
a

T

N
a a aa                                                              (23) 

 

where Na represents the number of uncertain parameters. The uncertain parameters can be the 
Young’s modulus, the mass density, or Poisson’s ratio. Based on the interval analysis, the vector 

a is assumed to vary within an interval vector Ia , i.e.,  

 

1 2[ , ,......, ]
a

I I I I T

N
a a a a a                                                       (24) 

 

or in the element form as follows: 

 

[ , ],  ( 1,2,..., )I
l l l l aa a a a l N                                                 (25) 

 

where I

la  is an interval number, and ,  l la a  denote the lower and upper bounds of I

la . 

 

The uncertain parameters are designated as the inputs of the BP neural network, expressed as:  

 

x a                                                                           (26) 

 
where x is the input vector expressed in Eq. (11). In addition, we have: 

 

i aN N                                                                        (27) 

 
where Ni is the neuron amount in the input layer of a BP neural network. 
 

The natural frequencies of concern are listed as a vector as follows: 
 

1 2[ , ,......, ]
f

T

N
f f ff                                                           (28) 

 

where Nf is the order of frequencies we care about. In our following numerical example, Nf = 4, 

i.e., our study focuses on the first 4 natural frequencies. 

 
The natural frequencies of concern are designated as the inputs of the BP neural network, 

expressed as: 
 

y f                                                                         (29) 

 
where y is the output vector expressed in Eq. (11). In addition, we have: 

 

k fN N                                                                        (30) 

 

where Nk is the number of neurons in the output layer of a BP neural network. 
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4.3. Generation of Training Samples 
 

Neural networks are mathematical models which are strictly data-driven. The prediction accuracy 
of a BP neural network is highly dependent on the training samples, which are designated to train 

the network to reveal the correct mathematical relationship between the inputs and outputs. Thus, 

the selection of training samples plays a significant role in the BP neural network establishment.  
The training samples are required to cover the design variable space uniformly. Usually, samples 

are generated using the design of experiments (DOE), such as orthogonal arrays design, full 

factorial design, Latin hypercube design, and optimal Latin hypercube design. In this study, the 

training samples are generated by an optimal Latin hypercube design, which is an improvement 
over the classical Latin hypercube design. The optimal Latin hypercube design distributes the 

sample data over the design variable space in a uniform manner and can avoid the occurrence of 

data clustering. 
 

There is no rule for determining the appropriate number of training samples for a BP neural 

network. It is preferable to analyse as many samples as possible to obtain an accurate network. 
However, too many samples mean a heavy computational load, and often, it is unnecessary. 

Therefore, the number of samples should be determined by balancing accuracy and efficiency. 

The number of training samples is firstly assigned with an initial value Ns0, then if this number is 

not enough, we may enhance the accuracy by applying an increment sN . The numbers of 

different sets of training samples are expressed as follows: 
 

0 0 0
1 2,  2 , ,  s s s ss s s

N N N N N N N N s N                             (31) 

 

where sN  represents the number of the sth set of training samples. In the following sub-section 

4.7, the termination condition for sN  is proposed. When the termination condition is satisfied, 

the number of training samples can be assumed to be large enough. 

 

The sth set of training samples can be expressed as follows 
 

( )( ) (1) (2) ( ) ( ){( , ,..., ,..., ) | ,1 }ss
NN i i I

input sS i N   a a a a a a                      (32) 

 

where 
( )sN
inputS  represents the sth set of training samples; 

( )i
a  is the ith input vector and varies within 

the interval Ia ; the samples 
( )  (1 )i

si N a  are distributed by the optimal Latin hypercube 

design; sN  is the number of training samples. 

 
The desired outputs corresponding to the training samples should be obtained using the FEM 

analysis, expressed as: 
 

( )( ) (1) (2) ( ) ( ) ( ) ( ) ( )
1 2{ , ,... ..., | [ , ,......, ],1 }ss

f

NN i i i i i
output sN

S f f f i N   f f f f f          (33) 

 

where 
( )sN
outputS  represents the desired outputs corresponding to Ns training samples; 

( )i
f  is the ith 

output natural frequency vector; Nf is the order of frequencies we care about.  
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4.4. Establishment of BP Neural Network 
 

The training samples, presented in Eq. (32), and their desired outputs, presented in Eq. (33), are 

employed to create the BP neural network. The correctness of the outputs is based on the 
topology of the network. In Section 3, the procedures of how to determine the values of weights 

and thresholds are presented, and the process of determining these parameters is called the 

training process. After the BP neural network is successfully trained, the mapping function 
between the input data and the output data can be obtained. At this stage, the BP neural network 

corresponding to Ns training samples is established, and we can retrieve the relationship between 

the uncertain parameters and the natural frequencies. To a certain extent, this implicit 

relationship becomes explicit by utilizing the BP neural network. Subsequently, the established 
BP neural network can be employed to predict the lower and upper bounds of natural frequencies 

for structures with interval parameters. 

 

4.5. Generation of Testing Samples 
 

The established BP neural network reveals the inherent law between the uncertain parameters 
and the natural frequencies. However, our direction is to calculate the lower and upper bounds of 

natural frequencies. To achieve this goal, we need to generate testing samples. The purpose of 

generating testing samples is to set them as inputs to the BP neural network, and we observe the 
maximum and minimum from the corresponding outputs. As for the sampling distribution, we 

also apply the technique of optimal Latin hypercube design, which distributes the sample data 

over the design variable space uniformly and avoids the data clustering problem. The number of 
testing samples is much larger than that of the training samples, because we want these samples 

to fill the design variable space as thoroughly as possible. 

 

The set of testing samples can be expressed as follows: 
 

( )(1) (2) ( ) ( ){( , ,..., ,..., ) | ,1 }TNi i I
input TT i N   a a a a a a                      (34) 

 

where inputT  represents the set of testing samples; 
( )i

a  is the ith input vector and varies within the 

interval Ia ; the samples 
( )  (1 )i

Ti N a  are distributed by the optimal Latin hypercube design; 

NT denotes the number of testing samples and in our study, 610TN  .  

 

4.6. Calculation of Lower and Upper Bounds 
 

At this stage, the BP neural network corresponding to Ns training samples has been established, 
and the testing samples in Eq. (34) can be inputted into the network. The outputs corresponding 

to these testing samples are called the testing outputs, expressed as: 

 
( )( ) (1) (2) ( ) ( ) ( ) ( ) ( )

1 2{ , ,... ,..., | [ , ,......, ],1 }Ts

f

NN i i i i i
output TN

T f f f i N   f f f f f         (35) 

 

where 
( )sN

outputT  represents the set of testing outputs corresponding to Ns training samples; 
( )i

f  is 

the ith output natural frequency vector; Nf is the order of frequencies we care about.  
 

The upper bound vector of the natural frequencies is the maximum of the testing output set 
( )sN

outputT , expressed as: 
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( ) ( )( ) ( )max{ | ,1 N }s s
N Ni i

output TT i   f f f                                         (36) 

 

or in the element form expressed as: 
 

( ) ( ) ( ) ( )
1 2[ , ,......, ]s s s s

f

N N N N

N
f f ff                                                 (37) 

 

where 
( )sN

f  is the upper bound vector corresponding to Ns training samples. 

 
Similarly, the lower bound vector of the natural frequencies is the minimum of the testing output 

set 
( )sN

outputT , expressed as:  

( ) ( )( ) ( )min{ | ,1 N }s s
N Ni i

output TT i   f f f                                          (38) 

 

or in the element form expressed as: 
 

( ) ( ) ( ) ( )
1 2[ , ,......, ]s s s s

f

N N N N

N
f f ff                                                 (39) 

 

where 
( )sN

f  is the upper bound vector corresponding to Ns training samples. 

 
Now, the lower and upper bounds of natural frequencies are obtained using the established BP 

neural network, and presented in Eq. (36) and Eq. (38). It should be noted that the bound results 

obtained here correspond to Ns training samples, and if the bound results do not satisfy the 
termination condition in sub-section 4.7, the number of training samples should be increased. 

Besides, the lower and upper bounds should be calculated again with the increased training 

samples.  
 

4.7. Termination Condition 
 
The number of training samples is of tremendous significance for the BP neural network 

establishment, because insufficient training samples may lead to inaccurate outputs, whereas, 

excessive training samples consume too many computing resources. It is crucial to determine a 
proper number of training samples. In this study, the number of training samples is presented in 

Eq. (31), and we put forward the termination condition below to check whether the number is 

enough or not. This is a feasible approach to strike a good balance between the demands of 

accuracy and efficiency for determining the number of training samples. 
 

The lower and upper bounds of natural frequencies corresponding to Ns training samples are 
( )sN

f  and 
( )sN

f , respectively, and the lower and upper bounds of natural frequencies 

corresponding to Ns-1 training samples are 1( )sN f  and 1( )sN f , respectively. We propose a bound 

error function based on the adjacent sets of bounds obtained using different training samples, 

expressed as:  
 

1 1( ) ( ) ( ) ( )2 2|| || || ||s s s sN N N N
boundE     f f f f                                (40) 
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where boundE  is the bound error function; the symbol || || is the Euclidean norm of a vector; Ns 

and Ns-1 are the numbers of different training samples, presented in Eq. (31). 

 

The bound error function boundE  can also be expressed in the element form as follows: 

  

1 1 1

1 1 1

( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 1 2 2

( ) ( ) ( ) ( ) ( ) ( )2 2 2
1 1 2 2

[ ] [ ] ...... [ ]

              +[ ] [ ] ...... [ ]

s s s s s s

f f

s s s s s s

f f

N N N N N N
bound N N

N N N N N N

N N

E f f f f f f

f f f f f f

  

  

      

     
             (41) 

 

where Nf is the order of natural frequencies of concern. 

 

When the bound error function boundE  in Eq. (40) is smaller than a specified small quantity 0 , 

(for example, 0 0.1  ), we can assume that the value Ns is adequate for network establishment, 

and we do not have to increase the number of training samples anymore. This termination 
condition can be expressed as follows: 

  

boundE                                                               (42) 

 

and at this stage, the calculation of lower and upper bounds of natural frequencies is assumed to 
be completed. 
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Figure 2.  Flowchart of the proposed BP neural network-based method. 
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If the termination condition is not satisfied, the number of training samples should be increased, 

expressed as:  

1s s sN N N                                                          (43) 

 

where 1sN   correspond to the (s+1)th set of training samples, and the BP neural network should 

be re-established. In addition, the lower and upper bounds of natural frequencies should be re-

calculated. 
 

Now, the BP neural network based method to predict the lower and upper bounds of natural 

frequencies for structures with uncertain-but-bounded parameters has been thoroughly put 
forward, and in the next section, a numerical example is tested to demonstrate the feasibility of 

the proposed method. To illustrate the procedures of the proposed method, a flowchart is 

presented in Figure 2. 

 

5. NUMERICAL EXAMPLE 
 
In order to demonstrate the feasibility of the proposed method to predict the interval of natural 

frequencies of structures with interval parameters, the following numerical example is presented. 

The accuracy of the proposed method is compared with that of the perturbation method. The 
lower and upper bounds calculated using the Monte Carlo simulation are regarded as reference 

solutions. The Monte Carlo simulation obtains the distribution of responses through an extremely 

large number of samples and is very time-consuming. Thus, the Monte Carlo simulation is 
always used to verify the accuracy of other methods; however, it is not convenient or suitable for 

engineering applications. 
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Figure 3.  A 108-bar space truss structure 
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Consider a 108-bar space truss structure. Figure 3 indicates the dimensions and boundary 

conditions of the truss. The cross-sectional area of each rod is 4 21.0 10  mA   . Young’s 

modulus of the material is 210 GPaE  , the mass density is 37900 kg/m  , and Poisson’s 

ratio is 0.3  . In FEM analysis, each bar is regarded as a rod element. So, there are 108 

elements in total. When the structural parameters are assigned their nominal values, we can 

obtain the nominal natural frequencies by using the existing FEM theory. The first 4 nominal 

natural frequencies are listed in Table 1.  

 
Table 1.  First 4 nominal natural frequencies (Unit: Hz) 

 

Order f1 f2 f3 f4 

Value 13.6241 25.6548 49.4426 69.4558 

 

Owing to variances of the environment, manufacturing inaccuracy, or measurement errors, the 

parameters exhibit some uncertainties. In this example, Young’s modulus and the mass density 
are considered to be the uncertain-but-bounded parameters. Young’s modulus is assumed to vary 

within the interval [1 ,  1 ]I cE E     , where 210 GPacE  ; the mass density is assumed to 

vary within the interval [1 ,  1 ]I c       , where 37900 kg/mc  ;   is the percent 

change or also called the uncertainty factor, and in this example it is assigned the following 

values:   = 2%, 4%, 6%, 8%, 10%.  

 

We employ the proposed method, the perturbation method and the Monte Carlo simulation to 

calculate the lower and upper bounds of the first 4 natural frequencies. The training samples play 
a significant role in neural network establishment. In this example, the sample data for training 

are generated by the optimal Latin hypercube design, which distributes the sample data over the 

design variable space in a uniform manner and can avoid the occurrence of data clustering. To 
study the effect of the sample number on BP neural network, we use different numbers of 

samples for training.  

 

When 10%  , the lower bounds of natural frequencies obtained using the BP neural network 

corresponding to different numbers of training samples are listed in Table 2 and plotted in Figure 

4; the upper bounds of natural frequencies obtained using the BP neural network corresponding 
to different numbers of training samples are listed in Table 3 and plotted in Figure 5. It can be 

observed that when the number of samples is greater than 40, the difference between the bound 

results of the two adjacent sample sets is smaller than 0.001. At this stage, the results can be 

assumed to have converged.  
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Table 2.  Lower bounds of natural frequencies (Unit: Hz) obtained using the BP neural network with 

respect to different numbers of training samples ( =10% ) 

 

Number of Training Samples 1f  2f  3f  4f  

5 12.5496 23.4988 45.3548 63.9491 

10 12.3528 23.2130 44.7763 62.9616 

15 12.3223 23.1863 44.7066 62.8249 

20 12.3109 23.1822 44.6772 62.7784 

25 12.3095 23.1795 44.6721 62.7543 

30 12.3092 23.1789 44.6709 62.7527 

35 12.3094 23.1794 44.6718 62.7540 

40 12.3091 23.1787 44.6706 62.7522 

45 12.3091 23.1788 44.6707 62.7524 

50 12.3091 23.1788 44.6707 62.7524 

 

 

   
 

(a) 1st order                                                            (b) 2nd order 

 

   
 

(c) 3rd order                                                           (d) 4th order 

 
Figure 4.  Lower bounds of natural frequencies (Unit: Hz) obtained using the BP neural network with 

respect to different numbers of training samples ( =10% ) 
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Table 3.  Upper bounds of natural frequencies (Unit: Hz) obtained using the BP neural network with 

respect to different numbers of training samples ( =10% ) 

 

Number of Training Samples 1f  2f  3f  4f  

5 14.8221 27.9108 53.7903 75.5634 

10 15.0326 28.3070 54.5539 76.6361 

15 15.0736 28.3843 54.7028 76.8453 

20 15.0744 28.3859 54.7059 76.8496 

25 15.0742 28.3854 54.7050 76.8483 

30 15.0758 28.3884 54.7107 76.8563 

35 15.0762 28.3892 54.7122 76.8585 

40 15.0761 28.3890 54.7119 76.8580 

45 15.0762 28.3892 54.7122 76.8585 

50 15.0763 28.3894 54.7127 76.8592 

 

   
 

(a) 1st order                                                         (b) 2nd order 

 

   
 

(c) 3rd order                                                           (d) 4th order 

 
Figure 5.  Upper bounds of natural frequencies (Unit: Hz) obtained using the BP neural network with 

respect to different numbers of training samples ( =10% ) 
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The lower and upper bounds of the first 4 natural frequencies obtained using the proposed 
method, the perturbation method and the Monte Carlo simulation with respect to different values 

of percent change   are listed in Tables 4 to 7 and plotted in Figure 6.  

 
Table 4.  Lower and upper bounds of the 1st natural frequency with respect to different  

values of percent change    

 

  
1f   

1f   

BP Neural 
Network 

Perturbation 
Method 

Monte Carlo 
Simulation 

BP Neural 
Network 

Perturbation 
Method 

Monte Carlo 
Simulation 

0 13.6241 13.6241 13.6241 13.6241 13.6241 13.6241 

0.02 13.3517 13.3497 13.3543 13.9028 13.9048 13.8993 

0.04 13.0837 13.0658 13.0896 14.1852 14.2022 14.1804 

0.06 12.8211 12.7788 12.8298 14.4762 14.5168 14.4676 

0.08 12.5601 12.4750 12.5745 14.7756 14.8491 14.7613 

0.10 12.3091 12.1782 12.3234 15.0763 15.1995 15.0620 

 
Table 5.  Lower and upper bounds of the 2nd natural frequency with respect to  

different values of percent change   

 

  
2f   

2f   

BP Neural 
Network 

Perturbation 
Method 

Monte Carlo 
Simulation 

BP Neural 
Network 

Perturbation 
Method 

Monte Carlo 
Simulation 

0 25.6548 25.6548 25.6548 25.6548 25.6548 25.6548 

0.02 25.1419 25.1365 25.1468 26.1797 26.1834 26.1732 

0.04 24.6372 24.6073 24.6484 26.7099 26.7435 26.7024 

0.06 24.1429 24.0664 24.1591 27.2664 27.3359 27.2432 

0.08 23.6513 23.5131 23.6784 27.8234 27.9615 27.7963 

0.10 23.1788 22.9467 23.2057 28.3894 28.6215 28.3625 

 
Table 6.  Lower and upper bounds of the 3rd natural frequency with respect to  

different values of percent change   

 

  
3f   

3f   

BP Neural 
Network 

Perturbation 
Method 

Monte Carlo 
Simulation 

BP Neural 
Network 

Perturbation 
Method 

Monte Carlo 
Simulation 

0 49.4426 49.4426 49.4426 49.4426 49.4426 49.4426 

0.02 48.4540 48.4436 48.4634 50.4540 50.4613 50.4415 

0.04 47.4814 47.4236 47.5029 51.4759 51.5407 51.4614 

0.06 46.5286 46.3813 46.5599 52.5449 52.6823 52.5037 

0.08 45.5813 45.3150 45.6334 53.6218 53.8881 53.5697 

0.10 44.6707 44.2233 44.7225 54.7127 55.1601 54.6608 
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Table 7.  Lower and upper bounds of the 4th natural frequency with respect to  

different values of percent change   

 

  
4f   

4f   

BP Neural 
Network 

Perturbation 
Method 

Monte Carlo 
Simulation 

BP Neural 
Network 

Perturbation 
Method 

Monte Carlo 
Simulation 

0 69.4558 69.4558 69.4558 69.4558 69.4558 69.4558 

0.02 68.0671 68.0525 68.0803 70.8766 70.8869 70.8591 

0.04 66.7007 66.6197 66.7310 72.3122 72.4032 72.2919 

0.06 65.3624 65.1554 65.4063 73.8199 74.0069 73.7560 

0.08 64.0316 63.6575 64.1048 75.3267 75.7007 75.2534 

0.10 62.7524 62.1239 62.8251 76.8592 77.4875 76.7863 

 
The results obtained using the Monte Carlo simulation are referred to as exact solutions. The 

sampling size of the Monte Carlo simulation is 106. It can be observed that when the percent 

change   is relatively small, there is no fundamental difference between the bounds obtained 

using the proposed method and the perturbation method. However, as the percent change   

increases, the difference between the bounds obtained using the proposed method and the 
perturbation method is significant. The comparison indicates that the bounds obtained using the 

proposed method are more accurate than those obtained using the perturbation method.  

 

   
 

(a) 1st order                                                        (b) 2nd order 

 

   
(c) 3rd order                                                      (d) 4th order 

 
Figure 6.  Bounds of the first 4 natural frequencies with respect to different values of percent change   
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Table 8.  Details of the computation environment 

 

Computation Environment 

CPU : 3.40 GHz 

Memory : 16 GB 

System Type : 64 bit 

Number of Processors : 8 

Operating System : Windows 7 

Programing Environment : ANSYS 16.0 APDL;  MATLAB R2013a 

 
The computation time of the proposed method, the perturbation method and Monte Carlo 

simulation are presented. The details of the computation environment for this numerical example 

are listed in Table 8. When the percent change =10% , the computation time corresponding to 

different methods are listed in Table 9. The Monte Carlo simulation requires a large number of 

FEM computation samplings, which leads to a heavy computation load. Especially when the 

structure is complicated, even a one-time FEM computation would be time-consuming. The 
proposed method also requires FEM computation samplings, but the sampling size is much 

smaller than that of the Monte Carlo simulation. Thus, the proposed method is more applicable 

for engineering structures than the Monte Carlo simulation. 
 

Table 9. Comparison of the computation time corresponding to different methods in  

the numerical example when  =10%  

 

Method  BP Neural Network Perturbation Method Monte Carlo Simulation 

Computation 

Time  
145.39 s  32.12 s  7.79×104 s  

 
The computation time of our proposed method is more than that of the perturbation method 

within an acceptable range, in this example, it is about 113 s longer, but the comparison results in 

Figure 6 indicate that the accuracy of the proposed method is much higher than that of the 

perturbation method. The results obtained using the proposed method are in good accordance 
with those obtained using the Monte Carlo simulation. The proposed method can strike a good 

balance between the demands of accuracy and efficiency. This is the principal advantage of the 

proposed method to predict the interval natural frequencies of structures with interval 
parameters.  

 

6. CONCLUSION 
 

In this study, a BP neural network-based method was proposed to predict the interval natural 
frequencies of structures with uncertain-but-bounded parameters. The inherent law between the 

uncertain parameters and the natural frequencies is revealed using a BP neural network. A 

numerical example is employed to manifest the feasibility of the proposed method. The results 
indicate that the interval natural frequencies obtained using the proposed method are of higher 

accuracy than those obtained using the perturbation method, especially when the varying ranges 

of interval parameters are large. Our purpose is not only to put forward a novel method to predict 
the interval natural frequencies with a high level of accuracy but also to manifest the enormous 

potential of BP neural networks for solving uncertain problems in mechanics, such as uncertain 

static problems, uncertain dynamic problems, and uncertain buckling problems.  
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