

David C. Wyld et al. (Eds): ICAITA, CDKP, SAI, NCO, CMC, SOFT, MLT, AdNLP - 2020

pp. 131-139, 2020. CS & IT - CSCP 2020 DOI: 10.5121/csit.2020.100911

AN ADAPTIVE UTILIZATION

OF CONVOLUTIONAL MATRIX METHODS
ON SLICED HIPPOCAMPAL NEURON

CELL SEGMENTATION WITH AN
APPLICATION INTERFACE

Neeraj Rattehalli1 and Ishan Jain2

1
Computer Science, Menlo-Atherton High School,

Atherton, California, , USA
2Computer Science, Mission San Jose High School,

Fremont, California, USA

ABSTRACT

Current methods of image analysis and segmentation on hippocampal neuron bodies contain

excess and unwanted information like unnecessary noise. In order to clearly analyze each

neural stain like DAPI, Cy5, TRITC, FITC and start the segmentation process, it is pertinent to

preemptively denoise the data and create masked regions that accurately capture the ROI in

these hippocampal regions. Unlike traditional edge detection algorithms like the Canny

methods available in OpenCv libraries, we employed a more targeted approach based on pixel

color intensities to segment out hippocampal neurons from the background. Using the R, G,

and B value thresholds, our algorithm checks if a cell is a boundary point by doing neighboring

pixel level comparisons. Combined with a seamless GUI interface for cropping the highlighted

ROI, the algorithms efficiently work at creating general outlines of neuron bodies. With user
modularity from the various thresholding values, the outlining and denoising presents clean

data ready for analysis with object detection algorithms like FRCNN and YOLOv3.

KEYWORDS

Convolutional Matrix, Computer Vision, Machine Learning, Deep Learning, Automation

Interface

1. INTRODUCTION

Much of the the hippocampal neuron body image data in the current scientific field contains

unwanted data such as noise that is generated. In addition, neuron bodies that have neurons

congregated together are unable to be segmented. Multiple neurons in close proximity are
identified as a singular body. The current methodologies cause them to be grouped together.

Smaller neurons with larger distances among themselves are easier to be segmented. In addition,

some neuron data have different colors. Some images may contain a red-dominant color in the
RGB spectrum, while others may contain a different dominance, and so forth.

Additionally, current filtration algorithms such as OpenCV’s canny edge detection models only

function on black and white images [1]. Other existing models such as the Sobel, Prewitt, and

http://airccse.org/cscp.html
http://airccse.org/csit/V10N09.html
https://doi.org/10.5121/csit.2020.100911

132 Computer Science & Information Technology (CS & IT)

Laplacian edge detection algorithms also leverage a gray-scale conversion while conducting edge
detection processes [4, 5, 6]. The processes remove the color from the image, causing the image

spectrum to be heavily manipulated. Our goal was to create an accurate model that can perform

tasks despite the color gradients present within an image. Hence, our algorithms can process

accurately on neuron data without changing the dynamics of the colors of the image.

As evident from current methods, disparities in hippocampal neuron data can cause future

complexities for data analysis. When neuron data is close together, most algorithms fail to
segment the neurons properly because of the proximities. Because of this, neurons are falsely

grouped together with contours, leading to the failure for adaptive segmentation. In addition,

unwanted data such as synapses are contoured. Without an effective denoising algorithm, such
data will be processed in a further neural network. During the training of the neural network, the

synapses will be used as a feature.

Although such issues relating to synapses may be avoidable in the status quo with cropping tools,
the scientific field lacks a method that includes a cropping tool and data/image processing

algorithms, all in one systematic interface.

Another dilemma in current image analysis methods include the singularity of data that it can

process on. Images that contain a dominant color that is unsuitable for the algorithm is rendered

useless for current algorithms. The RGB combination demonstrates a dominant color for neuron
data. Some neuron stains contain red dominance (TRITC), while other stains such as the FITC

stain contains a green dominance. With these disparities, current algorithms are not adaptive. To

address this lack of modularity, we utilized user-inputted data that receives a threshold value that

compares the image pixel intensities with. With this implementation, the difference in color
dominance can be addressed.

With potential problems in current image segmentation techniques, we propose a solution to
address all scenarios. Our developed interface includes algorithms that can denoise unwanted

data such as synapses, filter through images using convolution methods, and create contours for

neuron data despite proximities with each other (disregarding groupings).

2. METHODS

The general methodology for image preprocessing that we employed starts through a web

interface which allows for easy upload, labeling, masking, and cropping of ROI. After the images
are cropped as targeted for their specific regions, a data.txt file is created containing the relevant

information about image size and the specific points on the freehand cropped region. Due to

resizing changes in the DOM as compared to original image files, the coordinates of the cropped

points must be modulated in accordance to the new dimensions. Once a final correct masked
region is created, it is ultimately ready to undergo subsequent denoising and edge detection to

create general boundaries around each neuron.

2.1. GUI

Current tools for addressing image segmentation processes include cropping methods. Although
images are able to cropped accurately, current available systematic methods lack the full-stack

implementation to create crops, process the region of interest (ROI), and accurately contour the

neurons in a single application. Using web development resources, we created a web app that
includes a cropping tool keeping UX/UI in mind. With an input-image selector, one can input a

given image for processing. After the respective crop is completed, one can download the neuron

Computer Science & Information Technology (CS & IT) 133

data to the local system. By executing a script, the neuron data (preferred threshold, dominant
color, etc.) is taken into account, and the image is processed and contoured accurately in

approximately 10 seconds on a machine with an Intel Core i5 processing unit. With an

application that incorporates a variety of languages (web development and image processing), we

developed an application that combines the resources for cropping and filtering/segmenting
images in a customizable manner. Fig. 1 demonstrates an accurate representation of the web

interface that is employed for the full-stack image segmentation tasks.

Fig 1. A representation of the cropping tool with a generated crop around the region of interest (ROI).

Erasures of different crops can be done via the different options presented.

2.2. Is on Edge

Traditional edge detection algorithms use implemented kernel methodologies to run a
convolutional matrix throughout the image to create edges based on pixel intensity contrast. The

algorithms present in this paper employ similar convolutional matrix methods however without

the use of filtration and substituted with a novel checking system. The algorithm starts by
analyzing a 3x3 pixel matrix of the image. The analysis is simply done on the central cell. It

starts off by checking the presence of null information which occurs with low pixel intensities for

each of the RGB values. For general purposes and through testing, we deemed an ideal value for
such a threshold would be 50. Thus, depending on the stain the user is analyzing, the algorithm

checks for null intensity on the appropriate RGB value (e.g. the TRITC channel which creates a

red stain has a null intensity check for the R value of the pixel). If there exists a pixel in the 3 by

3 matrix other than the center pixel which has a pixel intensity for the respective channel that is
less than 50, then it means the center pixel is in the presence of a cell with null intensity. Now,

there is a second part for edge detection: it is to determine if the center pixel is in contact with a

colored pixel (e.g for the TRITC channel, if the center pixel is in direct contact with a red pixel).
This can be conclusively determined through thresholding. Once again, we deemed an ideal

value for this would be 50 as well. Finally, if the center pixel is in contact with both a colored

pixel and a pixel with null intensity, then it lies on the edge of a neuron. The general algorithm is

presented below in pseudo code.

134 Computer Science & Information Technology (CS & IT)

Line 1: denotes the pixel value intensity for the 3 by 3 cell matrix

pixels = [[i1, i2, i3],[i4, i5, i6],[i7, i8, i9]]

// i_n = the pixel color intensity for the appropriate light signal for

a specific pixel for i = 1,2,3...9.

Line 2, 3: defines threshold limits for null intensity and colored

intensity

thresholdLower = 50 // Can be set by user thresholdUpper = 50 // Can be

set by user

Line 4: function definition for isOnEdge

function isOnEdge(pixels):

Line 5, 6: boolean variables for states of neighboring pixels

doesNullIntensityExist = false doesColorIntensityExist = false

Line 7, 8: double for loop to parse through pixels array

for row in pixels: for pixel in row:

Line 9, 10: Null intensity check

if pixel < thresholdLower: doesNullIntesityExist = true

Line 11, 12: Color intensity check if pixel >

thresholdUpper: doesColorIntesityExist = true

Line 13: returns the boolean function for both color and null

pixel intensity existing.

return doesNullIntensityExist and doesColorIntensityExist

2.3. Edge Detection

In the previous section, a general methodology for determining if a certain pixel resided on the

edge of a neuron was outlined. In order to actually create a new image with the outlines of edges,
this function must be run on each 3 by 3 pixel chunk of the image. If the function returns true,

which indicates that the center pixel neighbors both a null intensity pixel and a colored pixel, the

center pixel’s color is changed to white to indicate that it is on the edge of a neuron. After

running this function through each 3 by 3 section, a general edge outlines are created.

2.4. Denoising

After the general edges have been created, the data can be further augmented to relieve some of

the additional noise. There are 3 specific ways of doing so: thinning out white borders,

strengthening pixel intensities, and removing small regions.

2.4.1. Thinning Out White Borders

Once the edges have been created, there are regions where the border is multiple pixels wide.

This starts to take away data from the original image. Thus, it is critical to thin out the white lines

as much as possible; this is done in two steps. The first is to eliminate all the white pixels
between the inner and outer border of the neuron edge. Essentially, an algorithm checks the 3 by

3 pixel cell matrix around a center cell and checks if all of them are the color of the edge (in our

case white). If this is true, the cell color is returned to its original. After this process occurs each

neuron is left with 2 borders: an inner one and an outer border. We then proceed to remove the
inner border. This is done by simply checking for the presence of null intensity around the center

pixel. Null intensity exists around the outer border but not in the inner one. This can eliminate

Computer Science & Information Technology (CS & IT) 135

the inner border. In addition, sometimes there exist lone white cells which are remnants of the
thinning out white borders methods. This can also be removed by checking for the existence of

null intensity around its neighboring pixels.

2.4.2. Strengthening Pixel Intensities

Once the borders have been thinned out, the image is ready to be further processed. In a lot of the
hippocampal data that our lab worked with, there was additional noise present from faint colored

synapses. To remove the synapses, a threshold method was used once again. To determine the

threshold, we created a bucketing algorithm. The bucketing algorithm grouped all pixels based
on their RGB intensity values. It created 10 buckets where each bucket represented intervals of

length 25.6. These intervals contained the coordinates of cells with the specific light intensity

channel within the end points of the appropriate interval. For example, if one was analyzing the

red channel and the specific pixel had an intensity of 14 for its R value, that pixel was bucketed
into the interval [0, 25.6]. Since the neuron’s and the synapse’s intensities differed by at least 50

(this was manually checked), the algorithm looked to find intervals where the quantity of

bucketed pixels was smaller than the quantity of bucket pixels than its neighbors. This created an
automatic way of determining the threshold pixel intensity value. Then, the image was parsed

once more pixel by pixel. If the specific pixel has a lower value than the threshold for the

appropriate channel, it was turned to black like the background; this removed a lot of noise. It
essentially created a completely black background as opposed to a black background with subtle

hints of red.

2.4.3. Removing Small Points

This algorithm is relatively straightforward. It takes 9x9 pixel matrices. The algorithm then
proceeds to check if the boundary of these pixel matrices is entirely black. If so, this means that

either the entire 9x9 section is black or there were small points that were entirely contained in

this 9x9 interval, which need to be removed. If the edge is entirely black, then it blacks out every

pixel in this 9x9 pixel matrix since it's either null information or small points. This works
because all of the cells in our imaging data were much larger than a 9x9 pixel square matrix.

2.5. Data Transfer

In order to adequately incorporate a method that utilizes a cropping tool with the image analysis

algorithms in a systematic full-stack tool, we developed a data transfer method to allow the script
to process the image with the crop data that was generated from the web app. After data is

downloaded from the web tool, the script processes and parses the input data in a correct format.

Then, using our image segmentation algorithms and feature explorations, the image is processed
within the same run time. The analyzed image with contours is exported to the local filesystem.

2.6. Data Parameterization

In order to custom fit the algorithms to user specification, the Python terminal interface contains

convenient methodology for the addition of the various parameters. The code takes in the input
paths to each of the images, a general folder path and naming convention for the various images,

and finally thresholding values for each of the various filters. With these thresholding values, the

user can custom fit the data augmentation to their needs. The user can determine the ideal

threshold value with 8 runs (because there are 256 values for pixel intensity) using a binary
search approach.

136 Computer Science & Information Technology (CS & IT)

3. RESULTS

The following (Fig. 2) describes the application of the edge detection algorithm on the Cy5
channel stain. As evident, the white contours are able to distinguish between each neuron and the

background.

Fig 2. A side-by-side comparison of a before vs. after edge detection process on the Cy5 channel

The following (Fig. 3) describes the application of the edge detection algorithm on the DAPI

channel stain. As evident, the white contours are able to distinguish between each neuron and the

background.

Fig 3. A side-by-side comparison of a before vs. after edge detection process on the DAPI channel

The following (Fig. 4) describes the application of the edge detection algorithm on the TRITC
channel stain. As evident, the white contours are able to distinguish between each neuron and the

background.

Fig 4. A side-by-side comparison of a before vs. after edge detection process on the TRITC channel

The following (Fig. 5) describes the application of the edge detection algorithm on the FITC

channel stain. As evident, the white contours are able to distinguish between each neuron and the

background.

Computer Science & Information Technology (CS & IT) 137

Fig 5. A side-by-side comparison of a before vs. after edge detection process on the FITC channel

The following (Fig. 6) describes the application of the white removal algorithm on the TRITC

channel stain. As exhibited, the density of the white contours has been reduced.

Fig 6. A side-by-side comparison of a before vs. after White Removal algorithm process on the TRITC

channel

The following (Fig. 7) describes the application of the small point removal algorithm on the

TRITC channel stain. As exhibited, the noise due to the synapses (small points) has been
reduced. The final image at the bottom demonstrates the small point removal algorithm with the

crop applied which has crisper quality as opposed to the original data.

Fig 7. Top: A side-by-side comparison of a before vs. after Small Points Removal algorithm process on the

TRITC channel

Fig 7. Bottom: Small Point Removal algorithm process on the TRITC channel With Crop

The following (Fig. 8) describes the application of the strengthen pixel intensity algorithm on the
TRITC channel stain. Paired with the small point removal algorithm, this final data is the most

138 Computer Science & Information Technology (CS & IT)

clean as it contains thin borders/contours, an accurate crop, and little to none noise due to the
synapses.

Fig 8. A Side-By-Side Comparison of A Before and After of the Strengthen Intensity

Algorithm on TRITC Channel

4. CONCLUSIONS

In summary, this study demonstrates an algorithmic architecture that is capable of automating the

segmentation of neuron data on various stains experimented on different hippocampus slices. In

addition, the use of an interface to allow researchers and scientists to input image data in a robust

method exhibited the increase in image segmentation techniques in the field of machine learning
and automation. This approach provides sufficient resources for further analysis on images, for

the contoured neurons can act as training data for future training or analysis.

ACKNOWLEDGEMENTS

We would like to thank our mentors, Professor Lu Chen and Dr. Bing Cao for guiding us through
our project and helping us with the sufficient resources. In addition, we would like to thank Dr.

Jie Li for providing us with our training and input data. We thank Dr. Amy Shon for providing us

with access to GPU and computing resources such as the Sherlock cluster for us to train and run
our models and matrices. Finally, we thank the Lu Chen lab from Stanford for providing us with

the images and data that was adequate for conducting our research.

REFERENCES

[1] J. Canny, "A Computational Approach to Edge Detection," in IEEE Transactions on Pattern Analysis

and Machine Intelligence, vol. PAMI-8, no. 6, pp. 679-698, Nov. 1986, doi: 10.1109/

TPAMI.1986.4767851.

[2] I I. Culjak, D. Abram, T. Pribanic, H. Dzapo and M. Cifrek, "A brief introduction to OpenCV," 2012

Proceedings of the 35th International Convention MIPRO, Opatija, 2012, pp. 1725-1730.

[3] Joseph Redmon, Santosh Divvala, Ross Girshick, Ali Farhadi; The IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2016, pp. 779-788

[4] Dey, D. and Polley, D., 2020. Edge Detection By Using Canny And Prewitt. [online] Ijser.org.
Available at: <https://www.ijser.org/researchpaper/Edge-Detection-by-Using-Canny-and-

Prewitt.pdf> [Accessed 25 June 2020].

[5] Owlnet.rice.edu. 2020. Laplacian Edge Detection. [online] Available at: <https://

www.owlnet.rice.edu/~elec539/Projects97/morphjrks/laplacian.html>

http://www.ijser.org/researchpaper/Edge-Detection-by-Using-Canny-and-
http://www.owlnet.rice.edu/~elec539/Projects97/morphjrks/laplacian.html
http://www.owlnet.rice.edu/~elec539/Projects97/morphjrks/laplacian.html

Computer Science & Information Technology (CS & IT) 139

AUTHORS

Neeraj Rattehalli is a Bay Area high school student with a passion to automate

the modern world. Growing up in a rapidly changing progressive society,

Rattehalli has found machine learning and computational biology around every

corner, and in order to stay steps ahead of the crowd, Rattehalli is conducting

novel research at Stanford under the guidance of Lu Chen, Professor of

Neuroscience. Rattehalli works with the intention and the zeal to solve today's

most intricate challenges.

Ishan Jain is a Bay Area high school student with a passion in machine learning

and computer vision. Ishan has worked on a variety of projects at Stanford
Medicine, including analytical methods for assessing patients with peripheral

artery disease (PAD) and developing mobile tools to create a remote surveillance

application for postoperative surgery treatment using opioid medications.

Furthermore, Ishan has worked with research professionals at the University of

California, Santa Barbara, where he developed a meta-analysis tool to automate

research manuscripts. Ishan is highly passionate about utilizing computer vision

methods in application to the modern world.

© 2020 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org/

	1Computer Science, Menlo-Atherton High School,
	Atherton, California, , USA
	2Computer Science, Mission San Jose High School,
	Fremont, California, USA
	1. Introduction
	2. Methods

	2.1. GUI
	2.2. Is on Edge
	2.3. Edge Detection
	2.4. Denoising
	2.4.1. Thinning Out White Borders
	2.4.2. Strengthening Pixel Intensities
	2.4.3. Removing Small Points

	2.5. Data Transfer
	2.6. Data Parameterization
	3. Results
	4. Conclusions
	Acknowledgements
	References

