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ABSTRACT 
 

A malicious firmware update may prove devastating to the embedded devices both that make up 

the Internet of Things (IoT) and alsothat typically lack the same security verifications now 
applied to full operating systems. This work converts the binary headers of 40,000 firmware 

examples from bytes into 1024-pixel thumbnail images to train a deep neural network. The aim 

is to distinguish benign and malicious variants using modern deep learning methods without 

needing detailed functional or forensic analysis tools. One outcome of this image conversion 

enables contact with the vast machine learning literature already applied to handle digit 

recognition (MNIST). Another result indicates that greater than 90% accurate classifications 

prove possible using image-based convolutional neural networks (CNN) when combined with 

transfer learning methods. The envisioned CNN application would intercept firmware updates 

before their distribution to IoT networks and score their likelihood of containing malicious 

variants. 
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1. INTRODUCTION 
 

One classic benchmark for machine learning is handwriting digit recognition (Modified National 

Institute of Standards and Technology database, or MNIST) [1-12]. The original digit recognition 
challenge has since seen widespread generalization to include alphabetic versions [2] in multiple 

languages [10-12] and multiple unrelated topic areas [13-19] ranging across medical [13],  

fashion [14], and satellite imagery [17]. A common element of these generalizations has been that 
small images (either 28x28 or 32x32) [1,7,16] can be addressed with both statistical machine 

learning (e.g. tree-based algorithms) or deep learning (multi-layer neural networks) [7]. We have 

recently built many cyber-security challenge datasets for malware and intrusion detection by first 

assembling the dataset in formats compatible with previous MNIST solutions [17-19], but also 
adding to the conversation begun by Intel and Microsoft Research to go beyond the signature-

based methods of identifying viruses in their STAMINA initiative [20-21]. Our datasets for 

malware (V-MNIST) [18] and image-based intrusion detection [19] are starting points for 
motivating the current approach to map firmware updates [22-23] that are either malicious, hacks, 

or benign into a similar format.  The approach builds on the extensive publication history of 

mapping integer datasets to images, then applying the power of convolutional neural networks 
(CNNs) along with other algorithms to compare their ability to detect malicious or rogue 

firmware updates [24-25].  One motivation for converting the malware to imagery stems from the 

advanced feature extractions available for performing convolutions on pixel maps. The core 

mathematical transformation applied in two-dimensional convolutions includes sliding a small 
weight matrix over the image, performing elementwise multiplication within that particular 

sliding window, then finally summing up the results to generate new output pixel layers.  

http://airccse.org/cscp.html
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Successive layers involving convolutions automate feature extraction and hierarchies of related 
image parts. A second investigative motivation behind this approach follows from the success 

already demonstrated by STAMINA for other categories of malware [20-21], but extended here 

for firmware rather than traditional malware. 

 

 
 

Figure 1. Firmware ELF binaries as Thumbnail Images 

 

The future of embedded and Internet of Things (IoT) infrastructure depends on updates that users 
and industry can trust. What’s unclear presently however is whether these updates will prove 

equally trustworthy given the lackadaisical approach to decent password protection or verifiable 

software integrity [26-27].  In 2020, 50 billion IoT devices worldwide are specifically designed to 
attach to a network with little or no administrative management or oversight [27].  While 

advanced persistent threats (APTs) have previously exploited weak passwords for devices like 

thermostats, home appliances, and personal assistants, the infection of firmware updates 

represents a larger attack surface to exploit. Anecdotal reports from the 2018 Olympics noted that 
hacked remote printers were unable to issue gate tickets for the opening ceremonies [27-28]. 

Ideally, a simple image classifier that quickly identifies and isolates rogue firmware might prove 

useful in the same way that program hashes and signatures defined a previous generation of 
malware protection layers. The original contribution of this work is to 1) map the firmware 

labeled dataset to a representative image and 2) solve the classification problem as a proof of 

principle for future development. 
 

2. METHODS 
 

This research extends the labeled ELF-binary dataset [22] to image classification. We accept the 

multi-class labels for malware, hack-ware, and benign-ware, which include over 40,000 examples 
of small compiled binaries. We add class specific to image classification which is grayscale 

“unknown” and bears no family resemblance to compiled software. The unknowns are just a 

spectrum of flattened backgrounds shades. The original dataset encodes the binary files using the 
following annotation and naming scheme:  
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{Architecture}__{Bit width}__{Endianess}__{ABI}__{Compiler used to compile the 
exe}__{Optimization level}__{Whether obfuscation was applied}__{Is the file stripped of 

debug symbols}__{Package name}__{Program name}. 

 

2.1. Dataset Preparation 
 

Employing the methods of Project STAMINA from Intel and Microsoft [21], we similarly 
convert the first 1024 bytes of each firmware binary to its decimal equivalent then scale those 

integers (0-15) to span the full 0-255 interval to create small images as JPEGs. Because the class 

imbalances include dominant benign firmware (75% of examples), we produced an alternative 
public dataset (published on Kaggle [29]) that includes both a long and a short-form version. The 

short-form version includes 3,000 examples of benign-ware, 714 examples of malware, and 100+ 

examples of hack-ware. While not balanced, it matches with the presentation of a basic confusion 
matrix of train-valid-test split. The choice for 1024 bytes as a small thumbnail (32x32 pixels in 

grayscale) derives from matching this complex problem to previous MNIST approaches but with 

attention to the stride-length (powers of 2) preferred by some modern deep learning frameworks 

like Keras. The area of the sliding weight matrix or kernel in 2D convolution determines the 
number of input features from the firmware that get passed to generate new output features in the 

deeper layers of the neural network. 

 

2.2. Model Parameters and Quantitative Metrics 
 

As an example of applying deep learning, we solve the firmware-image classifier problem using 
transfer learning from MobileNetV2 starting networks [30]. This network provides an optimized 

algorithm for feature hierarchies but efficiently extends to new areas beyond its original training 

datasets. We have previously found this approach useful to understand the image classification 
for both malware (V-MNIST) [18] and intrusion detection [19].  We use transfer learning over 50 

epochs, with a 0.001 learning rate, and report four firmware classes: “malware”, “hack-ware”, 

“benign-ware”, [22] and the new class labeled “unknown”.  The unknowns were to handle 
images outside of the patterns of ELF headers, such as flat grayscale backgrounds.  We generate 

all the images using the ImageMagick tool suite [31] after binary-to-scaled decimal conversions 

of 1024 pixels, which subsequently rescale to meet the 32x32 requirement. The accuracy and 

misclassification (via error matrix) provide a score to assess effectiveness. We assess the learning 
parameters and sample sizes [32] using error and accuracy values per training epoch for both 

validation and training subsets.  

 

2.3. Traditional Statistical Machine Learning Approaches 
 

To compare the effectiveness of deep learning, we solve the tabular equivalent of the firmware in 
pixel format but applying tree-based methods [33]. These methods such as decision trees and 

random forests offer robust interpretability for why they may assign a class label to the malicious 

firmware. The choice between accuracy, speed, and explainability thus provides additional model 
tradeoffs and focuses future avenues for investigation. For example, particularly appealing output 

from tree-based methods includes the assignment of variable or feature importance in an 

automated way; among the 1024 bytes in the firmware’s header, the method can extract the key 

positional bytes that signal a possible malicious operation.  
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Figure 2. Most Determinant Byte (or Pixel ) Positions for Firmware  

Class Assignment using Random Forest 

 

3. RESULTS 
 

3.1. Transfer Deep Learning 
 

Table 1 shows the accuracy for class determinations for the small (96x96) and large (224x224) 

images when custom training the MobileNetV2 architecture. The choice of small images (which 
are rescaled from the original 32x32) accommodates cameras for embedded systems such as 

Arduino BLE Sense micro-controllers.  The accuracy for a class decision approaches 100% for 

the larger images and suggests the ELF headers provide a sufficiently rich pattern in the first 

1024 bytes to assign a risk factor to each firmware binary.  
 

 
 

Figure 3. Learning Loss Rates over Time in Epochs 

 

The training time versus accuracy (entropy loss) is shown in Figure 3. After 10 epochs, the 

network has effectively reached its plateau both for training and validation subsets. The execution 

times for this style of MobileNetV2 approaches real-time (equivalent to 30 frames per second), 
such that the overall processing for validating firmware might be limited only by the time to read 

the first 1024 bytes and flatten them to a decimal equivalent in pictures.  

 

 

 

 

 

Table 1. Accuracy Results for Four Class MobileNetV2 

Class Lg. Accuracy (Test Samples) Sm. Accuracy (Test 

Samples) 

Benign-ware 0.98     (451) 0.98    (451) 

Malware 1.00     (107) 0.94    (107) 

Hack-ware 1.00     (16) 0.81    (16) 

Unknown 1.00     (101) 1.00    (101) 
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3.2. Single Decision Tree 
 

Figure 4 shows a single decision tree based on considering all 1024 pixel values but splitting 

firmware class determinations based on ranges of grayscale (or decimal-byte conversions) in the 
ELF header. Using a subset (4%) of the full training dataset and further holding out a 15% test 

dataset for evaluation, the decision tree method achieves 95.9% accuracy (4.1% error) across all 

three classes (benignware, hackware, and malware). This result is competitive with the deep 
learning approach (99+% accuracy, Table 1). Single trees offer the additional advantage of easier 

interpretability. One can, for instance, envision a simple algorithm for detecting malicious 

firmware by examing the decimal conversion of selected key binary bytes in the ELF header. 

Figure 4 shows the most important 10 bytes as positions at 1285, 377, 298, and so forth. A 
shortcoming of this approach for single decision trees, however, stems from their brittleness, 

particularly when applied to test data outside of the narrow training threshold.  If an attacker 

discovers the key 10 bytes for this method to assign a malware or hackware class to the binary, 
then the decision tree suffers from the same fragility as hash-based or signature methods. A 

single-byte change can render the detector ineffective. 

 

 
 

Figure 4. Single Decision Tree Applied to Firmware ELF Bytes 

 

3.3. Multiple Decision Trees, or Random Forest 
 

To investigate the robustness of statistical methods compared to deep learning, Figure 5 
illustrates the application of a random forest [33]. Compared to Table 1 for CNNs, the random 

forest achieves 100% class accuracy.  The circular plot in Figure 5 is much denser with decision 

branches than the single tree shown in Figure 4.  Starting in the center of the plot, decision 
branches for (yes-no) choices span out until a labeled class can be identified by the outer 

(colored) tags. The resulting high accuracy model combines an ensemble of 500 such trees to 

render a perfect classification for withheld testing data. The approach of combining many (often 
weaker) learners to render an ensembled strong learner is well-known for its enhanced robustness 
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and ability to generalize better than single trees when confronted with out-of-band or under-
represented data. 

 

 
 

Figure 5. Random Forest (Tree 1) For Firmware Class 

 

4. DISCUSSION AND CONCLUSIONS 
 
By applying deep (transfer) learning to converted images of firmware headers, an optimized 

neural network can classify malicious Executable and Linkable Files (ELF). The small (32x32) 

grayscale images match with a decimal conversion (0-15) of the raw binary and then are scaled to 
a wider (0-255) pixel value range. Each pixel represents a byte in order and the underlying 

pattern of malicious behavior appears across the file and image nomenclature [22] for 

architecture, compiler, program name, etc. A procedure to under-sample the benign firmware 
better rebalances the dataset but leaves between 100-3000 images per class. This number of 

representative samples has previously been shown to be sufficient, particularly when not training 

the network from scratch but inherited the weighted features from a previous run on unrelated 

classes (transfer-learning) [32].   Future work can apply the large research efforts of MNIST 
derivatives to this firmware classification including simpler or more easily explainable algorithms 

that are tree-based methods. The research highlights an accurate tree-based method that offers 

additional interpretability advantages and suggests new ways to apply “if-then” filtering to ELF 
binaries before firmware updates. 
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