
David C. Wyld et al. (Eds): CMLA, CIoT, CSEIT, NCS, NLPD, SPM - 2021

pp. 63-70, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111506

DEEP LEARNING FOR IDENTIFYING

MALICIOUS FIRMWARE

David Noever and Samantha E. Miller Noever

PeopleTec, Inc., 4901 Corporate Drive. NW, Huntsville, AL, USA

ABSTRACT

A malicious firmware update may prove devastating to the embedded devices both that make up

the Internet of Things (IoT) and alsothat typically lack the same security verifications now
applied to full operating systems. This work converts the binary headers of 40,000 firmware

examples from bytes into 1024-pixel thumbnail images to train a deep neural network. The aim

is to distinguish benign and malicious variants using modern deep learning methods without

needing detailed functional or forensic analysis tools. One outcome of this image conversion

enables contact with the vast machine learning literature already applied to handle digit

recognition (MNIST). Another result indicates that greater than 90% accurate classifications

prove possible using image-based convolutional neural networks (CNN) when combined with

transfer learning methods. The envisioned CNN application would intercept firmware updates

before their distribution to IoT networks and score their likelihood of containing malicious

variants.

KEYWORDS

Neural Networks, Internet of Things, Image Classification, Firmware, MNIST Benchmark.

1. INTRODUCTION

One classic benchmark for machine learning is handwriting digit recognition (Modified National

Institute of Standards and Technology database, or MNIST) [1-12]. The original digit recognition
challenge has since seen widespread generalization to include alphabetic versions [2] in multiple

languages [10-12] and multiple unrelated topic areas [13-19] ranging across medical [13],

fashion [14], and satellite imagery [17]. A common element of these generalizations has been that
small images (either 28x28 or 32x32) [1,7,16] can be addressed with both statistical machine

learning (e.g. tree-based algorithms) or deep learning (multi-layer neural networks) [7]. We have

recently built many cyber-security challenge datasets for malware and intrusion detection by first

assembling the dataset in formats compatible with previous MNIST solutions [17-19], but also
adding to the conversation begun by Intel and Microsoft Research to go beyond the signature-

based methods of identifying viruses in their STAMINA initiative [20-21]. Our datasets for

malware (V-MNIST) [18] and image-based intrusion detection [19] are starting points for
motivating the current approach to map firmware updates [22-23] that are either malicious, hacks,

or benign into a similar format. The approach builds on the extensive publication history of

mapping integer datasets to images, then applying the power of convolutional neural networks
(CNNs) along with other algorithms to compare their ability to detect malicious or rogue

firmware updates [24-25]. One motivation for converting the malware to imagery stems from the

advanced feature extractions available for performing convolutions on pixel maps. The core

mathematical transformation applied in two-dimensional convolutions includes sliding a small
weight matrix over the image, performing elementwise multiplication within that particular

sliding window, then finally summing up the results to generate new output pixel layers.

http://airccse.org/cscp.html
http://airccse.org/csit/V11N15.html
https://doi.org/10.5121/csit.2021.111506

64 Computer Science & Information Technology (CS & IT)

Successive layers involving convolutions automate feature extraction and hierarchies of related
image parts. A second investigative motivation behind this approach follows from the success

already demonstrated by STAMINA for other categories of malware [20-21], but extended here

for firmware rather than traditional malware.

Figure 1. Firmware ELF binaries as Thumbnail Images

The future of embedded and Internet of Things (IoT) infrastructure depends on updates that users
and industry can trust. What’s unclear presently however is whether these updates will prove

equally trustworthy given the lackadaisical approach to decent password protection or verifiable

software integrity [26-27]. In 2020, 50 billion IoT devices worldwide are specifically designed to
attach to a network with little or no administrative management or oversight [27]. While

advanced persistent threats (APTs) have previously exploited weak passwords for devices like

thermostats, home appliances, and personal assistants, the infection of firmware updates

represents a larger attack surface to exploit. Anecdotal reports from the 2018 Olympics noted that
hacked remote printers were unable to issue gate tickets for the opening ceremonies [27-28].

Ideally, a simple image classifier that quickly identifies and isolates rogue firmware might prove

useful in the same way that program hashes and signatures defined a previous generation of
malware protection layers. The original contribution of this work is to 1) map the firmware

labeled dataset to a representative image and 2) solve the classification problem as a proof of

principle for future development.

2. METHODS

This research extends the labeled ELF-binary dataset [22] to image classification. We accept the

multi-class labels for malware, hack-ware, and benign-ware, which include over 40,000 examples
of small compiled binaries. We add class specific to image classification which is grayscale

“unknown” and bears no family resemblance to compiled software. The unknowns are just a

spectrum of flattened backgrounds shades. The original dataset encodes the binary files using the
following annotation and naming scheme:

Computer Science & Information Technology (CS & IT) 65

{Architecture}__{Bit width}__{Endianess}__{ABI}__{Compiler used to compile the
exe}__{Optimization level}__{Whether obfuscation was applied}__{Is the file stripped of

debug symbols}__{Package name}__{Program name}.

2.1. Dataset Preparation

Employing the methods of Project STAMINA from Intel and Microsoft [21], we similarly
convert the first 1024 bytes of each firmware binary to its decimal equivalent then scale those

integers (0-15) to span the full 0-255 interval to create small images as JPEGs. Because the class

imbalances include dominant benign firmware (75% of examples), we produced an alternative
public dataset (published on Kaggle [29]) that includes both a long and a short-form version. The

short-form version includes 3,000 examples of benign-ware, 714 examples of malware, and 100+

examples of hack-ware. While not balanced, it matches with the presentation of a basic confusion
matrix of train-valid-test split. The choice for 1024 bytes as a small thumbnail (32x32 pixels in

grayscale) derives from matching this complex problem to previous MNIST approaches but with

attention to the stride-length (powers of 2) preferred by some modern deep learning frameworks

like Keras. The area of the sliding weight matrix or kernel in 2D convolution determines the
number of input features from the firmware that get passed to generate new output features in the

deeper layers of the neural network.

2.2. Model Parameters and Quantitative Metrics

As an example of applying deep learning, we solve the firmware-image classifier problem using
transfer learning from MobileNetV2 starting networks [30]. This network provides an optimized

algorithm for feature hierarchies but efficiently extends to new areas beyond its original training

datasets. We have previously found this approach useful to understand the image classification
for both malware (V-MNIST) [18] and intrusion detection [19]. We use transfer learning over 50

epochs, with a 0.001 learning rate, and report four firmware classes: “malware”, “hack-ware”,

“benign-ware”, [22] and the new class labeled “unknown”. The unknowns were to handle
images outside of the patterns of ELF headers, such as flat grayscale backgrounds. We generate

all the images using the ImageMagick tool suite [31] after binary-to-scaled decimal conversions

of 1024 pixels, which subsequently rescale to meet the 32x32 requirement. The accuracy and

misclassification (via error matrix) provide a score to assess effectiveness. We assess the learning
parameters and sample sizes [32] using error and accuracy values per training epoch for both

validation and training subsets.

2.3. Traditional Statistical Machine Learning Approaches

To compare the effectiveness of deep learning, we solve the tabular equivalent of the firmware in
pixel format but applying tree-based methods [33]. These methods such as decision trees and

random forests offer robust interpretability for why they may assign a class label to the malicious

firmware. The choice between accuracy, speed, and explainability thus provides additional model
tradeoffs and focuses future avenues for investigation. For example, particularly appealing output

from tree-based methods includes the assignment of variable or feature importance in an

automated way; among the 1024 bytes in the firmware’s header, the method can extract the key

positional bytes that signal a possible malicious operation.

66 Computer Science & Information Technology (CS & IT)

Figure 2. Most Determinant Byte (or Pixel) Positions for Firmware

Class Assignment using Random Forest

3. RESULTS

3.1. Transfer Deep Learning

Table 1 shows the accuracy for class determinations for the small (96x96) and large (224x224)

images when custom training the MobileNetV2 architecture. The choice of small images (which
are rescaled from the original 32x32) accommodates cameras for embedded systems such as

Arduino BLE Sense micro-controllers. The accuracy for a class decision approaches 100% for

the larger images and suggests the ELF headers provide a sufficiently rich pattern in the first

1024 bytes to assign a risk factor to each firmware binary.

Figure 3. Learning Loss Rates over Time in Epochs

The training time versus accuracy (entropy loss) is shown in Figure 3. After 10 epochs, the

network has effectively reached its plateau both for training and validation subsets. The execution

times for this style of MobileNetV2 approaches real-time (equivalent to 30 frames per second),
such that the overall processing for validating firmware might be limited only by the time to read

the first 1024 bytes and flatten them to a decimal equivalent in pictures.

Table 1. Accuracy Results for Four Class MobileNetV2

Class Lg. Accuracy (Test Samples) Sm. Accuracy (Test

Samples)

Benign-ware 0.98 (451) 0.98 (451)

Malware 1.00 (107) 0.94 (107)

Hack-ware 1.00 (16) 0.81 (16)

Unknown 1.00 (101) 1.00 (101)

Computer Science & Information Technology (CS & IT) 67

3.2. Single Decision Tree

Figure 4 shows a single decision tree based on considering all 1024 pixel values but splitting

firmware class determinations based on ranges of grayscale (or decimal-byte conversions) in the
ELF header. Using a subset (4%) of the full training dataset and further holding out a 15% test

dataset for evaluation, the decision tree method achieves 95.9% accuracy (4.1% error) across all

three classes (benignware, hackware, and malware). This result is competitive with the deep
learning approach (99+% accuracy, Table 1). Single trees offer the additional advantage of easier

interpretability. One can, for instance, envision a simple algorithm for detecting malicious

firmware by examing the decimal conversion of selected key binary bytes in the ELF header.

Figure 4 shows the most important 10 bytes as positions at 1285, 377, 298, and so forth. A
shortcoming of this approach for single decision trees, however, stems from their brittleness,

particularly when applied to test data outside of the narrow training threshold. If an attacker

discovers the key 10 bytes for this method to assign a malware or hackware class to the binary,
then the decision tree suffers from the same fragility as hash-based or signature methods. A

single-byte change can render the detector ineffective.

Figure 4. Single Decision Tree Applied to Firmware ELF Bytes

3.3. Multiple Decision Trees, or Random Forest

To investigate the robustness of statistical methods compared to deep learning, Figure 5
illustrates the application of a random forest [33]. Compared to Table 1 for CNNs, the random

forest achieves 100% class accuracy. The circular plot in Figure 5 is much denser with decision

branches than the single tree shown in Figure 4. Starting in the center of the plot, decision
branches for (yes-no) choices span out until a labeled class can be identified by the outer

(colored) tags. The resulting high accuracy model combines an ensemble of 500 such trees to

render a perfect classification for withheld testing data. The approach of combining many (often
weaker) learners to render an ensembled strong learner is well-known for its enhanced robustness

68 Computer Science & Information Technology (CS & IT)

and ability to generalize better than single trees when confronted with out-of-band or under-
represented data.

Figure 5. Random Forest (Tree 1) For Firmware Class

4. DISCUSSION AND CONCLUSIONS

By applying deep (transfer) learning to converted images of firmware headers, an optimized

neural network can classify malicious Executable and Linkable Files (ELF). The small (32x32)

grayscale images match with a decimal conversion (0-15) of the raw binary and then are scaled to
a wider (0-255) pixel value range. Each pixel represents a byte in order and the underlying

pattern of malicious behavior appears across the file and image nomenclature [22] for

architecture, compiler, program name, etc. A procedure to under-sample the benign firmware
better rebalances the dataset but leaves between 100-3000 images per class. This number of

representative samples has previously been shown to be sufficient, particularly when not training

the network from scratch but inherited the weighted features from a previous run on unrelated

classes (transfer-learning) [32]. Future work can apply the large research efforts of MNIST
derivatives to this firmware classification including simpler or more easily explainable algorithms

that are tree-based methods. The research highlights an accurate tree-based method that offers

additional interpretability advantages and suggests new ways to apply “if-then” filtering to ELF
binaries before firmware updates.

ACKNOWLEDGMENTS

The authors would like to thank the PeopleTec Technical Fellows program for its encouragement

and project assistance.

REFERENCES

[1] LeCun, Yann, Corinna Cortes, and C. J. Burges. "MNIST handwritten digit database." (2010):

18.http://yann.lecun.com/exdb/mnist/ and Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.

http://yann.lecun.com/exdb/mnist/

Computer Science & Information Technology (CS & IT) 69

"Gradient-based learning applied to document recognition." Proceedings of the IEEE, 86(11):2278-

2324, November 1998

[2] Cohen, Gregory, Saeed Afshar, Jonathan Tapson, and Andre Van Schaik. "EMNIST: Extending

MNIST to handwritten letters." In 2017 International Joint Conference on Neural Networks (IJCNN),

pp. 2921-2926. IEEE, 2017.
[3] CV Online (accessed 01/2021) http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm

[4] Google Scholar search (accessed 01/2021), https://scholar.google.com/scholar?q=mnist and

https://trends.google.com/trends/explore?date=all&q=mnist,ImageNet,%2Fg%2F11gfhw_78y

[5] Chen, Li, Song Wang, Wei Fan, Jun Sun, and Satoshi Naoi. "Beyond human recognition: A CNN-

based framework for handwritten character recognition. "In 2015 3rd IAPR Asian Conference on

Pattern Recognition (ACPR), pp. 695-699. IEEE, 2015.

[6] Image Classification on MNIST, (accessed 01/2021), https://paperswithcode.com/sota/image-

classification-on-mnist

[7] Grim, Jirı, and Petr Somol. "A Statistical Review of the MNIST Benchmark Data

Problem."http://library.utia.cas.cz/separaty/2018/RO/grim-0497831.pdf

[8] Schott, Lukas, Jonas Rauber, Matthias Bethge, and Wieland Brendel. "Towards the first adversarially

robust neural network model on MNIST." arXiv preprint arXiv:1805.09190 (2018).
[9] Cheng, Keyang, Rabia Tahir, LubambaKasangu Eric, and Maozhen Li. "An analysis of generative

adversarial networks and variants for image synthesis on MNIST dataset." Multimedia Tools and

Applications 79, no. 19 (2020): 13725-13752.

[10] Preda, Gabriel, Chinese MNIST: Chinese Numbers Handwritten Characters Images, (accessed

01/2021) https://www.kaggle.com/gpreda/chinese-mnist

[11] CoMNIST: Cyrillic-oriented MNIST, A Dataset of Latin and Cyrillic Letters, (accessed 01/2021)

https://www.kaggle.com/gregvial/comnist

[12] Prabhu, Vinay Uday. "Kannada-MNIST: A new handwritten digits dataset for the Kannada

language." arXiv preprint arXiv:1908.01242 (2019).https://www.kaggle.com/higgstachyon/kannada-

mnist

[13] Noever, David, Noever, Sam E.M. “Expressive Multimodal Integrated Learning (EMIL): A New
Dataset for Multi-Sense Integration and Training”, 2020 Southern Data Science Conference, August

12-14 2020, Atlanta, GA (poster) and Sign Language MNIST: Drop-In Replacement for MNIST for

Hand Gesture Recognition Tasks, https://www.kaggle.com/datamunge/sign-language-mnist

[14] Mader, K Scott, Skin Cancer MNIST: HAM 10000, A Large Collection of Multi-Source

Dermatoscopic Images of Pigmented Lesions, (accessed 01/2021)

https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000

[15] Xiao, Han, Kashif Rasul, and Roland Vollgraf. "Fashion-MNIST: a novel image dataset for

benchmarking machine learning algorithms." arXiv preprint

arXiv:1708.07747 (2017).https://www.kaggle.com/zalando-research/fashionmnistSee also Fashion-

MNIST, (accessed 01/2021), https://paperswithcode.com/sota/image-classification-on-fashion-mnist

and https://github.com/zalandoresearch/fashion-mnist

[16] Lu, Arlen, “Convert-own-data-to-MNIST-format” (accessed 01/2021)

https://github.com/Arlen0615/Convert-own-data-to-MNIST-format

[17] Noever, D., & Noever, S. E. M. (2021). Overhead MNIST: A benchmark satellite dataset. arXiv

preprint arXiv:2102.04266.https://www.kaggle.com/datamunge/overheadmnist and Github,

https://github.com/reveondivad/ov-mnist

[18] Noever, D., & Noever, S. E. M. (2021). Virus-MNIST: A Benchmark Malware Dataset. arXiv

preprint arXiv:2103.00602.
[19] Noever, D. A., & Noever, S. E. M. (2021). Image Classifiers for Network Intrusions. arXiv preprint

arXiv:2103.07765.

[20] Freitas, S., Duggal, R., & Chau, D. H. (2021). MalNet: A Large-Scale Cybersecurity Image Database

of Malicious Software. arXiv preprint arXiv:2102.01072

[21] Chen, L., Sahita, R., Parikh, J., Marino, M. (2020). STAMINA: Scalable Deep Learning Approach

for Malware Classification,

https://www.intel.com/content/dam/www/public/us/en/ai/documents/stamina-scalable-deep-learning-

whitepaper.pdf

[22] Partush, N. (2021). Labeled-Elfs, https://github.com/nimrodpar/Labeled-Elfs

http://homepages.inf.ed.ac.uk/rbf/CVonline/Imagedbase.htm
https://scholar.google.com/scholar?q=mnist
https://trends.google.com/trends/explore?date=all&q=mnist,ImageNet,%2Fg%2F11gfhw_78y
https://paperswithcode.com/sota/image-classification-on-mnist
https://paperswithcode.com/sota/image-classification-on-mnist
http://library.utia.cas.cz/separaty/2018/RO/grim-0497831.pdf
https://www.kaggle.com/gpreda/chinese-mnist
https://www.kaggle.com/gregvial/comnist
https://www.kaggle.com/higgstachyon/kannada-mnist
https://www.kaggle.com/higgstachyon/kannada-mnist
https://www.kaggle.com/datamunge/sign-language-mnist
https://www.kaggle.com/kmader/skin-cancer-mnist-ham10000
https://www.kaggle.com/zalando-research/fashionmnist
https://paperswithcode.com/sota/image-classification-on-fashion-mnist
https://github.com/zalandoresearch/fashion-mnist
https://github.com/Arlen0615/Convert-own-data-to-MNIST-format
https://www.kaggle.com/datamunge/overheadmnist
https://github.com/reveondivad/ov-mnist
https://www.intel.com/content/dam/www/public/us/en/ai/documents/stamina-scalable-deep-learning-whitepaper.pdf
https://www.intel.com/content/dam/www/public/us/en/ai/documents/stamina-scalable-deep-learning-whitepaper.pdf

70 Computer Science & Information Technology (CS & IT)

[23] Kairajärvi, S., Costin, A., &Hämäläinen, T. (2019). Towards usable automated detection of

CPUarchitecture and endianness for arbitrary binary files and object code sequences. arXiv preprint

arXiv:1908.05459.

[24] Clemens, J. (2015). Automatic classification of object code using machine learning. Digital

Investigation, 14, S156-S162.
[25] Xie, H., Abdullah, A., &Sulaiman, R. (2013). Byte frequency analysis descriptor with spatial

information for file fragment classification. In Proceeding of the International Conference on

Artificial Intelligence in Computer Science and ICT (AICS 2013).

[26] Constantin, L. (2015). Cisco warns customers about attacks installing rogue firmware on networking

gear, Network World. Aug 10, 2015. https://www.networkworld.com/article/2970954/cisco-warns-

customers-about-attacks-installing-rogue-firmware-on-networking-gear.html

[27] Microsoft Threat Intelligence Center(2019). Corporate IoT – a path to intrusion. https://msrc-

blog.microsoft.com/2019/08/05/corporate-iot-a-path-to-intrusion/

[28] Greenberg, A. (2019). The Untold Story of the 2018 Olympics Cyberattack, the Most Deceptive Hack

in History. Wired Magazine. https://www.wired.com/story/untold-story-2018-olympics-destroyer-

cyberattack/

[29] Noever, D. (2021). IoT Firmware Image Classifier: Rendered ELF Binaries by Class as Malware,
Kaggle. https://www.kaggle.com/datamunge/iot-firmware-image-classification

[30] Sandler, Mark, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.

"Mobilenetv2: Inverted residuals and linear bottlenecks." In Proceedings of the IEEE conference on

computer vision and pattern recognition, pp. 4510-4520. 2018.

[31] Salehi, Sohail. ImageMagick Tricks. Packt publishing ltd, 2006.

[32] Warden, P. "How many images do you need to train a neural network?"

(2017).https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-

network/

[33] Morales-Molina, C. D., Santamaria-Guerrero, D., Sanchez-Perez, G., Perez-Meana, H., & Hernandez-

Suarez, A. (2018, November). Methodology for malware classification using a random forest

classifier. In 2018 IEEE International Autumn Meeting on Power, Electronics and Computing
(ROPEC) (pp. 1-6). IEEE.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://www.networkworld.com/article/2970954/cisco-warns-customers-about-attacks-installing-rogue-firmware-on-networking-gear.html
https://www.networkworld.com/article/2970954/cisco-warns-customers-about-attacks-installing-rogue-firmware-on-networking-gear.html
https://www.kaggle.com/datamunge/iot-firmware-image-classification
https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-network/
https://petewarden.com/2017/12/14/how-many-images-do-you-need-to-train-a-neural-network/
http://airccse.org/

	Abstract
	Keywords
	Neural Networks, Internet of Things, Image Classification, Firmware, MNIST Benchmark.

