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ABSTRACT
Recent machine learning-based caching algorithm have shown promise. Among them, Learning-From-

OPT (LFO) is the state-of-the-art supervised learning caching algorithm. LFO has a parameter named
Window Size, which defines how often the algorithm generates a new machine-learning model. While using
a small window size allows the algorithm to be more adaptive to changes in request behaviors, experimenting
with LFO revealed that the performance of LFO suffers dramatically with small window sizes. This paper
proposes LFO2, an improved LFO algorithm, which achieves high object hit ratios (OHR) with small window
sizes. This results show a 9% OHR increase with LFO2. As the next step, the machine-learning parameters
will be investigated for tuning opportunities to further enhance performance.
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1. INTRODUCTION
When accessing Internet objects such as web pages and videos, end users experience access latency. To
reduce the access latency, rather than delivering objects to their distant end users, it is increasingly common
for content providers (e.g., web sites and video streaming service providers) to deliver their objects through
content delivery networks [1, 2], where a content delivery network (CDN) is a geographically distributed
network of cache servers. When requesting an object, an end user sends a request to a nearby cache server.
If the object is available on the server, the server delivers the object directly to the end user. Because of
the geographical proximity, the access latency is reduced. Otherwise, the server forwards the request to
the content provider and waits for the requested object to arrive from the provider. Upon the arrival, the
cache server (1) forwards the object to the end user and (2) optionally cache the object into its local storage
for future accesses. While a server may blindly cache each object that it receives from content providers,
admission decisions can be made by a admission algorithm [1]. When caching a new object, if the cache
is already full, the server picks an object to evict. An eviction algorithm [3] decides which object(s) to
evict. Therefore, the factors that decide the cache content (i.e., which objects are being cached) are (1)
requests generated by end-users, (2) the admission algorithm, (3) the eviction algorithm, and (4) the cache
size. Ideally, we would want as many requested objects being serviced by a cache server as is possible. The
effectiveness of a cache server is quantified by its object hit rate (OHR) [4]. If, on average, 30 requests out
of 50 are serviced directly at the cache, the OHR is 60%.

This paper addresses admission and eviction algorithms, collectively, as caching algorithms. There are two
categories of caching algorithms: heuristics-based algorithms and adaption-based algorithms. Heuristics-
based algorithms, such as GDSF [5], make decisions based on specific object properties, or combinations of
them. Adaption-based algorithms constantly monitors request behaviors and self-adjust accordingly. This
algorithm category consists of three sub-catgories: machine learning-based algorithms (e.g., LRB [6]), and
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non-machine learning-based algorithms (e.g., AdaptSize [1]). Existing caching algorithms will be discussed
more thoroughly in the later part of this paper. Among machine learning-based techniques, LFO [7] demon-
strates performance that exceeds several latest (representative) techniques in both categories of heuristics-
based and adaptive-based techniques. Nonetheless, when experimenting with LFO, the experiment results
revealed an opportunity to modify the algorithm, which led to significant improvement in its performance.

The structure of this paper consists of Section 2 that discusses the related work in the literature, Section 3 that
provides an overview of LFO, Section 4 that discusses the proposed modification, Section 5 that illustrates
the evaluations of LFO2 and results, and Section 6 that concludes this paper.

2. RELATED WORK
Existing techniques for achieving high OHRs on CDN servers can be divided into two categories: heuristic-
based technique and adapation-based techniques.

Heuristic-based techniques. These techniques make caching decisions based on assumptions related to
object access properties. Examples of these properties are recency and frequency. Well-known recency-
based techniques are LAMA [8], 2Q [9], and LRU-K [10], where LFU-K [11] is a well-known frequency-
based technique. There are more sophisticated heuristics-based techniques that consider both recency and
frequency. An example of these techniques is LHD [12]. These techniques impose a weight, either as a user-
defined constant or as an adaptive variable, to decide which of the two properties is more decisive in making
the caching decisions. Experiment results show that these techniques are capable of reaching the OHR of
nearly 60%. While being relatively easy to implement, a drawback of heuristic-based technique is that, when
their underlying assumption no longer holds, their performance suffers. Therefore, their performance may
not be robust for request sequences that have varying request behaviors over time.

Adaptation-based techniques. This category of techniques continuously monitor the behavior of the re-
quest sequence and the system, and adjust their internal parameters accordingly. Among them, there are
two sub-categories: machine learning-based techniques and non-machine learning-based techniques. Some
machine-learning based techniques, such as Harvesting Randomness [13], are based on reinforcement learn-
ing, while some, such as LFO [7] and Pecc [14], are based on supervised learning. LFO is the state-of-the-
art supervised-learning caching algorithm. Some non-machine learning-based techniques are based on Hill
Climbing [15, 1, 16], where some are based on mathematical prediction [17, 18, 19]. A hill-climbing al-
gorithm usually runs multiple simulations simultaneously, where each simulates the effect of a parameter
candidate. After the simulation, the algorithm re-configures itself to adopt the best parameter candidate.

3. LFO OVERVIEW
LFO is an iterative algorithm, where window size, a user-specified constant, specifies the length of an it-
eration. The default value of window size is 1 million, which implies that a new window starts after each
sequence of 1 million requests. Figure 1 describes the mechanism of LFO on a high level. During each
window, for each incoming request, LFO collects information of (1) timestamp, (2) object ID, (3) object
size, and (4) remaining caching space at the request arrival. These information constitutes the features of
the request. At the end of each window, LFO deduces a machine-learning model to guide caching decisions
during the next window. For each request, the model takes its features and decides if to cache the requested
object. It is worth noting that if the model has decided to not cache an object that has just generated a hit,
LFO evicts the object anyway. As a result, LFO may consume only a fraction of the cache space. LFO uses
lightweight boosted decision trees based on the LGBM library [20] to create such a model using the input of
(1) the features of each request arrived during the window, and (2) the best decision that it could have made
for each of those requests. To deduce the latter, LFO first budget the cache resources in a window in terms
of cache size (i.e., space) and window size (i.e., time). Then, LFO attempts to fit as many requests into the
budget as is possible, where requests that fit into the budget are marked as to-cache. To maximize OHR,
LFO prioritizes requests that consume little resource in terms of cache space and time, where time refers to
how long the requested object stayed in the cache before generating a hit. LFO marks requests that do not
fit into the budget as not-to-cache. This paper calls the resultant sequence of decisions the optimal caching
decisions and the process described above that produces the sequence Optimal Caching. Practically, such a
model maps the feature of each request to the best decision that could have been made. In the next window,
given the features of each request, the model predicts the best caching decision for the request aiming at
maximizing the OHR of the next window.
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Figure 1: Using the request features collected throughout a window, LFO deduces the optimal
caching decisions and generates a model for making caching decisions in the next window. [7]

4. THE EFFECTS OF WINDOW SIZE ON PERFORMANCE AND LFO2
When experimenting with LFO, experiment results revealed that Window Size has a significant impact on
the performance of LFO in terms of OHR. Section 4.1 presents the performance results of LFOwith different
window sizes and the analysis of the performance differences. While the results show that LFO performs
better with large window sizes, using small window sizes allows LFO to be more adaptive to changes in
request behaviors. This observation agrees with the common understanding in the literature [21, 22, 23].
Based on this performance analysis, This paper proposes LFO2, a revised LFO design, which allows LFO
to achieve high OHRs using small window sizes. Section 4.2 presents LFO2 in detail.

4.1 Window Size Influences on The Performance

The default window size of LFO is 1 million. LFO, which was implemented on WebCacheSim2 [24], was
evaluated with window sizes of 1, 2, 4, and 8 millions using the CDN1 trace [25]. Table 1 summarizes
the results. As Window Size increases, OHR increases. Achieving high OHRs requires simultaneously
meeting two necessary conditions. First, optimal caching must produce a sequence of caching decisions that
leads to high OHR. Second, the machine-learning models produce caching decisions that closely assimilate
the optimal caching decisions. To quantify the quality of caching decisions produced by the models, this
paper introduces a metric named Decision Accuracy, which measures the percentages of caching decisions
generated by the models that match the optimal caching decisions.

Table 1: Effects of Window Size on OHR, Decision Accuracy, and the number of False Negatives.
window OHR decision false
size accuracy negatives

(million) (%) (%)
1 48.72% 84.12% 39.96%
2 58.08% 82.22% 33.49%
4 67.29% 81.60% 26.85%
8 74.76% 82.75% 21.35%

As shown in Table 1, the general trend is that decision accuracy decreases as window size increases with
the exception of the window size of 8M requests, which slightly exceeds the decision accuracy when the
window size of 2M requests by approximately 0.5%. As window size is doubled, the amount of data used
for training is doubled accordingly, which enhances the accuracy of the model [26]. This suggests why the 8
million-requests window size achieves a decision accuracy higher than when the window sizes are 2 millions
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and 4 millions requests.

However, it is commonly known that request behaviors, including reuse distance and object size, vary over
time [21, 22, 27]. As a result, a model generated at the beginning of a window may no longer accurately
reflect the request behaviors during the later part in the window. Therefore, this explains why the decision
accuracy decreases as the window size increases. Despite of the 8 million-request window size being an
exception, the window size of 1 million request still yields the highest decision accuracy among all window
sizes.

While the decision accuracy values suggest that our models are fairly accurate, OHRs remained low with
small window sizes. Given the two necessary conditions for achieving high OHRs discussed above, the
only plausible explanation is that Optimal Caching is unable to produce caching decisions that lead to high
OHRs when windows are small. An in-depth analysis shows that Optimal Caching misses many caching
opportunities, where it should mark the requests as to-cache as those requests may yield hits with relatively
little resources, in terms of space and time. These missed opportunities happen at the final request to each
object that is accessed during a window. In the absence of future access information, Optimal Caching
assumes that the requested object will not be accessed again and marks request as not-to-cache. While
reasonable, those requests may potentially lead to hits if they were, otherwise, marked as to-cache. This
paper calls those requests false negatives. Figure 2 illustrate how reducing the window size increases the
number of false negatives. Given the full knowledge of object access in the trace, we would ideally mark
each of the first 8 requests, except the second request to Object 3, as to-cache. Given the window size of
8 requests, without knowing that Objects 1, 2, and 4 will soon be accessed at the beginning of the next
window, Optimal Caching marks the last 3 requests in the window as not-to-cache. However, marking them
as to-cache would yields 3 additional hits in the next window. Therefore, the last 3 requests in the window
are false negatives. As shown on the lower part of the figure, as the window size is reduced by half to 4, the
number of false negatives increases to 6. The smaller the window size, the more false negatives there are in
the optimal caching decisions. This increases the likeliness that the machine-learning model decides to not
cache the accessed objects. This explains why OHR increases as the window size increases.
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Figure 2: The smaller the window size, the more request are marked as not-to-cache. F’s denote
false negatives.

To count the number of false negatives in the window sizes of 1, 2, 4, and 8 millions, an ideal sequence
of caching decisions, as shown in Figure 2, is needed. Since the number of false negatives decreases as
the window size increases, the window size that equals to the trace length yields the sequence of caching
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decisions containing the fewest false negatives possible. This is because the caching decisions are made with
the full knowledge of object accesses. This paper calls such sequence the ultimate caching decisions, where
the process for deducing the sequence Ultimate Caching.

The sequences of optimal and ultimate caching decisions were compared to obtain the percentage of false
negatives for each window size, which is presented in Table 1. By increasing the window size from 1 million
to 8 millions, OHR increases by over 25% while the percentage of false negatives drops from 19%. This
observation hints us that if we manage to reduce false negatives by a certain amount with the window size
of 1 million, we should be increase the OHR by a similar amount.

4.2 LFO2 Algorithm

This is how LFO2 reduces the number of false negatives. When its Optimal Caching encounters the final
request to each object accessed during a window, rather than marking it as not-to-cache, it gives the request
a ``second chance,'' by consulting the model for the likelihood that the requested object will be accessed
again. If the likelihood is high enough, LFO2 marks it as to-cache. Since this is the second chance, it is
reasonable for the request to be subject to higher requirement, in terms of the likelihood. LFO2 marks the
request as to-cache only if its likelihood is higher than a threshold, known as Likelihood Threshold in this
paper. The idea of giving objects that are about to be evicted a second chance has been shown to be enhance
performance in areas such as memory paging [28]. Note that it is inevitable that LFO2 mistakenly marks a
request as to-cache when trying to give the request a second chance. In the actual request arrival sequence,
those requests may actually consumemuch cache resource in order to generate hits and, therefore, should not
be cached. This paper calls those requests false positives. As for false negatives, false positives are identified
by comparing the sequences of ultimate and optimal caching decisions. Section 5 presents the performance
results of LFO2 and the effects of Likelihood threshold on the numbers of false negatives and positives.

5. EVALUATION
This section evaluates the effectiveness of LFO2 and compares its performance with that of LFO. Section 5.1
discusses the experiment setup that we used for the evaluation, while Section 5.2 discusses and analyzes the
evaluation results.

5.1 Experiment Methodology

We implemented LFO2 onWebCacheSim2 and evaluated it with the CDN1 trace that we used in Section 4.1.
To ensure that none of the caching algorithm may achieve high OHRs by naively caching every object re-
quested for future use, the cache size was set to 256GB, which is only one tenth of the total size of objects
requested by the cache. Asmentioned in Section 4, LFO attempts to correct the false negatives among the op-
timal caching decisions. To quantify the optimality of the optimal caching decisions generated by LFO2, we
measured the percentage of optimal caching decisions that matched the ultimate caching decisions. Among
the mismatches, there are false negatives and false positives, where the latter are those requests that Ultimate
Caching recommends not to cache while LFO2 mistakenly suggested to cache. To understand how LFO2
affect the cache space consumption, we reported the maximum amount of cache space consumed in each
experiment. The literature recognizes that small windows all scheduling algorithms to be more adaptive to
changes in workload characteristics through more frequent self-adjusting. To reaffirm this common belief,
we measured the Decision Correctness, the percentage of decisions made by the model during a window
that matches the optimal caching decisions deduced at the end of the window.

5.2 Evaluation Results

To evaluated the claim that LFO2 is capable of achieving high OHRs even with small windows, LFO2
was experimented with the window size of 2 million requests. Table 2 presented the results. The table
also includes the LFO results for window sizes of 2 and 8 millions for reference. Note that, among the 4
window sizes experimented with LFO, it performed the best with the window size of 8 millions. LFO2
outperformed LFO with the window size of 8 million requests by nearly 9%. It achieved so by dramatically
reducing the number of false negatives, by up to 33%, as shown in the table. The results show that, as
Likelihood Threshold decreases, the number of false negatives decrease accordingly. This is because, the
lower the threshold is, the more likely Optimal Caching marks the final request to each object begin accessed

Computer Science & Information Technology (CS & IT) 65



during a window as to-cache.

Table 2: The performance (OHR) of LFO2 with window size of 2 million requests. Data of false
negatives and positives and maximum cache occupancy are presented to help understanding per-
formance. LFO results of window sizes of 2 and 8 million requests are presented for readers’
reference.

window Likelihood OHR false false maximum
size threshold negatives positives cache

(million) (%) (%) occupancy
(GB)

LFO 2 N/A 58.08% 33.48% 0.00% 58
LFO 8 N/A 74.76% 74.76% 0.00% 177
LFO2 2 0.5 83.64% 0.53% 3.73% 254

2 0.6 83.65% 0.74% 3.72% 254
2 0.7 83.31% 1.01% 3.70% 254
2 0.8 81.42% 4.60% 3.49% 254
2 0.9 58.10% 33.44% 0.00% 58

However, lowering the likelihood threshold also increases the possibility that Optimal caching mistakenly
marks requests as to-cache. This explains why, as Likelihood Threshold decreases, the percentage of false
positives increased, though slightly. Nonetheless, the percentage of false positives never exceeded 4%.

By reducing false negatives in optimal caching decisions, LFO2 creates models that have higher tendency
to cache objects. This is reflected at the max cache occupancy (i.e., the largest amount of cache occupied
throughout an experiment). For LFO, as the window size increases from 2 to 8 million requests, the the
models become more inclined to cache objects. As a result, the maximum cache occupancy increases from
58 to 177GB. Similarly, in LFO2, with Likelihood Threshold below 0.9, the models identified more requests,
whose accessed objects, if cached, would generate hits to enhance the OHR. Therefore, the maximum cache
occupancy further increases to 254GB, which almost filled up the cache. This paper argues that the increase
in occupancy is justifiable based on the OHR improvements by LFO2. Indeed, in the literature, high resource
utilization is a desirable property.

6. CONCLUSION
Achieving highOHRs on content delivery networks is crucial to end-user experiencewhen accessing Internet
content. Among machine learning-based techniques for achieving high OHR, LFO is one of the state-of-the-
art algorithms. This paper presented LFO2, an improved version of LFO. LFO2's machine-learning models
are more accurate in identifying objects that increase the OHR, if cached. We evaluated LFO2 using a trace
of requests captured in a production environment. LFO2 achieves a 9%OHR improvement over LFO.While
LFO2 almost fully occupied the entire cache in order to achieve such a performance improvement, we see it
as LFO2's advantage as it better utilizes cache resources. In the future, the possibility of machine-learning
parameter tuning for enhancing caching performance will be investigated.
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