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ABSTRACT 
 

The current fusion-based methods transform LiDAR data into bird’s eye view (BEV) 

representations or 3D voxel, leading to information loss and heavy computation cost of 3D 

convolution. In contrast, we directly consume raw point clouds and perform fusion between two 

modalities. We employ the concept of region proposal network to generate proposals from two 

streams, respectively. In order to make two sensors compensate the weakness of each other, we 

utilize the calibration parameters to project proposals from one stream onto the other. With the 

proposed multi-scale feature aggregation module, we are able to combine the extracted region-

of-interest-level (RoI-level) features of RGB stream from different receptive fields, resulting in 

fertilizing feature richness. Experiments on KITTI dataset show that our proposed network 

outperforms other fusion-based methods with meaningful improvements as compared to 3D 

object detection methods under challenging setting. 
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1. INTRODUCTION 
 

Owing to the speedy development of computer vision technologies, more and more companies 

have started to invest in and invent intelligent vehicles. Therefore, autonomous driving has 

become a popular issue nowadays. The most essential property of autonomous driving is to 

perceive the surroundings of vehicles and provide safety for drivers. Accordingly, the key to this 

property is object detection. Over the past few years, there has been many successful 2D object 

detection approaches proposed, such as Faster R-CNN [1] and RetineNet [2]. However, 2D 

object detection is unable to provide sufficient ability of perceptions in comparison with 3D 

object detection because 2D object detection lacks the information of depth and the knowledge of 

orientation. The depth can hint that the distance of the object is too close, and the orientation is 

capable of knowing whether the object is in the same direction as the vehicle. With the help of 

3D detection, the intelligent vehicles are able to make precise decisions under different situations. 

In order to detect on-road objects, most of the intelligent vehicles are equipped with multiple 
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sensors such as RGB cameras and LiDARs. Thus, various 3D object detectors based on these 

sensors are proposed. 

 

Some image-based approaches were presented to utilize monocular [3,4] or stereo images [5,6] to 

better obtain 3D information of objects. RGB images are good at providing color information and 

detailed contours of front view. Nevertheless, they still suffer from the limitation of insufficient 

depth information. 

 

On the contrary, LiDAR-based methods were also proposed to explore the use of 3D LiDAR 

points. In comparison with RGB images, LiDAR points offer accurate depth information that can 

be leveraged to localize the objects in the 3D space. Some works [7,8,9] transformed 3D point 

clouds into 2D bird’s eye view (BEV) images or 2D front view images and performed typical 

convolutional operations to obtain the latent features. Other methods [10] voxelized the 3D point 

clouds and applied 3D convolution on the generated voxels. However, LiDAR-based methods 

suffer from sparse observations especially at long range. 

 

To compensate the disadvantages of two sensors, we present Regional Fusion network for 3D 

object detection (RF3D), which is a fusion-based framework that leverages both cameras and 

LiDARs jointly. We generate region proposals from both streams, respectively, rather than from 

LiDAR stream only. Thus, proposals can be projected from one stream to the other stream 

mutually. In this way, we can fuse the features in deeper layers for better refinement, taking 

advantage of two sensors and predicting accurate estimations. Furthermore, the presented multi-

scale feature aggregation module makes use of different levels of RGB features to obtain low-

level contents and high-level semantic meanings simultaneously. With the help of proposed 

regional fusion layer, the fusion between two streams of feature maps from different sensors is 

conducted in RoI-level, avoiding cascading redundant feature-level fusion. To verify the 

effectiveness of RF3D, we conduct several experiment on KITTI Vision Benchmark [11]. The 

experimental results manifest that our network outperforms other methods under hard difficulty 

in 3D detection. 

 

In this paper, we design a Multi-Scale Feature Aggregation module (MSFA) with upsampling 

and downsampling layers to aggregate features from different receptive fields. For two stream 

fusion, we propose Regional Fusion Layer to fuse point clouds and RGB images based on the RoI 

estimated in the first stage. Based on above methods, we present a novel two-stream deep 

architecture for 3D detection, Regional Fusion Network (RF3D), that simultaneously conducts on 

both point clouds and RGB images in a fusion way for autonomous driving. 

 

The rest of the paper is organized as follows. The overview including image-based, LiDAR-based 

and fusion-based approaches are introduced in section 2. Then, we define the problem 

formulation in section 3. In section 4, we present the overall architecture and details in our 

proposed RF3D. The experimental results on KITTI dataset are shown in section 5. In section 6, 

we conclude the paper and give directions for future improvement. 

 

2. RELATED WORK 
 

3D object detection is very necessary for intelligent transportation systems. Recently, many 

works on this topic have gradually emerged. After reviewing the existing approaches of 3D 

object detection, we categorize these approaches into three groups, namely, image-based 

approaches, LiDAR-based approaches and fusion-based approaches. To sum up, they are divided 

according to the inputs. 

 



Computer Science & Information Technology (CS & IT)                                              147 

2.1. Image-based Approaches 
 

Using RGB images to infer accurate 2D bounding boxes of objects is no longer difficult for many 

state-of-the-art methods since RGB images can provide texture and color information in the form 

of pixel-wise intensity. Also, there are many works that utilize RGB images to predict 3D 

bounding boxes of objects. MonoFENet [3] used monocular image to additionally generate the 

disparity map to enhance the extracted features. D4LCN [4] firstly generated the depth map using 

the monocular image, and then the depth-guided filtering module was utilized to fuse features of 

image stream and depth stream. DSGN [5] detected 3D objects on a differentiable volumetric 

representation that effectively encoded 3D geometric structure for 3D regular space. Disp R-CNN 

[6] predicted disparity only for pixels on objects of interest and learned a category-specific shape 

prior for more accurate disparity estimation. However, these image-based methods suffer from 

the inherent difficulties of estimating depth from images and as a result perform poorly in 3D 

localization. 

 

2.2. LiDAR-based Approaches 
 

Unlike RGB images, point clouds collected by LiDARs are unordered and discrete. As a result, 

raw point clouds cannot serve as the inputs of the convolutional layer. Pixor++ [7] and 

Pointpillars [9] firstly transformed the 3D point clouds into the 2D BEV images, and utilized a 

2D CNN to learn the point cloud features for the 3D bounding boxes generation. VoxelNet [12] 

grouped the point clouds into the voxels and used a 3D CNN to learn the features of the voxels to 

generate the 3D bounding boxes. However, the BEV projection and voxelization process suffered 

from the information loss due to the data quantization. Moreover, the 3D CNN was both memory 

and computation inefficient. On the other hand, PointRCNN [13] directly learned point-wise 

features and generated 3D bounding boxes from raw point clouds and utilized ground-truth 

augmentation to gain significant improvements. TANet [14] jointly used channel-wise, voxel-

wise, and point-wise attention to alleviate the impact of noisy points. Although depth 

measurements provided by LiDARs are useful for localizing the 3D bounding boxes of objects, 

the observations are usually sparse especially at long range. 

 

2.3. Fusion-based Approaches 
 

Since the fusion mechanism between RGB images and LiDAR point clouds remains an open 

problem nowadays, there are only few approaches that take both RGB images and LiDAR point 

clouds as inputs. AVOD-FPN [15] applied a 2D convolutional network on both RGB images and 

LiDAR BEV representations, and fused them at the intermediate region-wise convolutional 

feature map via feature concatenation. Frustum PointNet [16] utilized mature 2D object detection 

to firstly generate the 2D region proposals based on the RGB images, and lifted the proposals to 

the 3D frustums. Then, the points inside the 3D frustums were used to infer the 3D bounding 

boxes. However, the 2D object detection was the bottleneck. PointPainting [17] designed a 

painted version of PointRCNN [13] by appending the class score from image to each point. PI-

RCNN [18] proposed an Attentive Cont-conv Fusion (PACF) module to fuse point and image 

features. MMF [19] used a joint model to do four tasks, and each task could benefit from other 

tasks. ContFuse [20] performed one-way fusion to fuse the feature maps of the RGB images to 

the BEV feature maps, and CrossFusion [21] utilized the spatial relationship between the BEV 

features and RGB features to perform two-way fusion. Both ContFuse and CrossFusion applied 

hierarchical feature-level fusion, which was time-consuming and redundant. Besides, none of the 

aforementioned methods directly use raw point clouds to perform fusion. Consequently, the 

information may be lost during the process of data quantization. 
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In this work, we aim to propose a fusion-based 3D object detection network that exploits the use 

of raw point clouds and RGB images. In addition, our presented network generates rough 

proposals from two streams, respectively, and the network fuses two inputs in RoI-level, which 

avoids extra computation cost on the fusion of non-interest regions. To increase the richness of 

RGB features, our presented multi-scale feature aggregation module further provides the RGB 

features with richer information from different features that are with various receptive fields. 

 

3. PROBLEM FORMULATION 
 

We present a deep learning network that aims to solve the task of 3D object detection consuming 

the inputs of RGB images and LiDAR point clouds. Firstly, an RGB image can be regarded as a 

set of integer pixel values 𝐼𝑅𝐺𝐵, where 𝐼𝑅𝐺𝐵 = {𝑣𝑖𝑗|1 ≤ 𝑖 ≤ 𝑊, 1 ≤ 𝑗 ≤ 𝐻}, 𝑊 denotes the width 

and 𝐻 symbolizes the height of the image. Each element 𝑣𝑖𝑗 in the image is an integer with the 

range of [0, 255]. On the contrary, a LiDAR point cloud can be represented as a set of discrete 

points 𝐼𝐿𝑖𝐷𝐴𝑅, where 𝐼𝐿𝑖𝐷𝐴𝑅 = {𝑃𝑠|𝑠 = 1,2, … , 𝑁} and 𝑁 stands for the number of points in a point 

cloud. Note that 𝑁 might vary among different collected frames. Additionally, each point 𝑃𝑠 can 

be parameterized into a four-dimensional tensor (𝑥𝑠, 𝑦𝑠, 𝑧𝑠, 𝑟𝑠), where (𝑥𝑠, 𝑦𝑠, 𝑧𝑠)is the coordinate 

with regard to the origin of coordinate system and 𝑟𝑠denotes the reflectiveness of the point 𝑃𝑠. 

 

Given RGB images 𝐼𝑅𝐺𝐵  and LiDAR point clouds 𝐼𝐿𝑖𝐷𝐴𝑅 , our goal is to predict accurate 3D 

detection that contains both localization and classification information. In general, the outputs of 

the 3D object detection are represented as a set of 3D bounding boxes 𝑂𝑏𝑜𝑥 , where 𝑂𝑏𝑜𝑥 =
{𝐵𝑘|𝑘 = 1,2, … 𝑀} and 𝑀 symbolizes the number of predicted 3D bounding boxes. Furthermore, 

each 3D bounding box 𝐵𝑘 is composed of an eight-dimensional tensor 

(𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘 , 𝑤𝑘 , ℎ𝑘 , 𝑙𝑘 , 𝜃𝑘 , 𝑐𝑙𝑠𝑘), where (𝑥𝑘 , 𝑦𝑘 , 𝑧𝑘)is the localization information that denotes the 

center coordinate of the bounding box with respect to the coordinate of the LiDAR and 

(𝑤𝑘 , ℎ𝑘 , 𝑙𝑘)represents the size of the bounding box. In the typical 3D on-road object detection, 

there only exists yaw rotation along with the axis perpendicular to the ground which is denoted as 

𝜃𝑘. Last but not the least, the classification information is represented as 𝑐𝑙𝑠𝑘, indicating the 

category that the bounding box belongs to. 

 

To sum up, the entire formula for the 3D object detection task 𝑇𝑑𝑒𝑡 can be denoted as 

 

𝑇𝑑𝑒𝑡(𝐼𝑅𝐺𝐵, 𝐼𝐿𝑖𝐷𝐴𝑅) = 𝑂𝑏𝑜𝑥 = {𝐵𝑘|𝑘 = 1,2, … 𝑀} (1) 
 

The goal is to propose a 3D detection network that can generate accurate 3D bounding boxes 

𝑂𝑏𝑜𝑥based on RGB images 𝐼𝑅𝐺𝐵 and LiDAR point clouds 𝐼𝐿𝑖𝐷𝐴𝑅. 

 

4. REGIONAL FUSION NETWORK 
 

The architecture of RF3D is shown as Figure 1. Our proposed method is composed of five major 

components including (1) backbone for retrieving latent features, (2) mutual projection for 

projecting proposals from LiDAR to RGB stream and the reverse, (3) multi-scale feature 

aggregation module for generating rich RGB features in different scales, and (4) regional fusion 

layer for performing RoI-level fusion between two input sources. 
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Figure 1. Overview of the proposed Regional Fusion Network 

 

4.1. Backbone Network 
 

The backbone networks aim to obtain discriminative features and generate 2D proposals from 

RGB images and 3D proposals from LiDAR point clouds, respectively. In order to perform 

fusion between RGB images and LiDAR point clouds, there exists two streams in our network. 

One stream is for RGB images and the other is for LiDAR point clouds. However, the discrete 

and unordered data format of point clouds is very different from pure images that we are not able 

to apply conventional convolutional operation on the point clouds. Consequently, we utilize 

separate backbone networks for RGB stream and LiDAR stream. 

 

4.1.1. LiDAR Stream 

 

We utilize PointNet++ [22] as the backbone network, as shown in Figure 2, for the LiDAR 

stream due to its capabilities of handling unordered issue and learning point-wise features of 

point clouds. Specifically, we employ four sets of abstraction layers as well as multi-scale 

grouping that are utilized to subsample original 16,384 points into regions with sizes of 4096, 

1024, 256 and 64, respectively. Then, the feature propagation layer is used to obtain the point-

wise features for the 3D proposal generation and fusion. 

 

 
 

Figure 2. The LiDAR stream backbone PointNet++ 
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4.1.2. RGB Stream 

 

We apply ResNet-50 [23] combined with a feature pyramid network (FPN) [24] as shown in 

Figure 3. It augments a standard convolutional network using lateral connections and atop-down 

pathway so as to obtain rich multi-scale feature maps from a single resolution input image. We 

exploit the feature maps 𝐶2, 𝐶3  and 𝐶4  of ResNet-50 having scales of  1/4, 1/8 and 1/16 to 

build the feature pyramid.  Consequently, the resultant feature pyramid is leveraged to generate 

2D proposals from RGB images and provides multi-scale feature maps for multi-scale feature 

aggregation module. 

 

 
 

Figure 3. The RGB stream backbone ResNet-50-FPN 

 

4.2. Mutual Projection 
 

As aforementioned, LiDARs and RGB cameras have their own disadvantages. LiDARs possess 

sparse observations at long range while RGB cameras have limited usage in nighttime, cloudy 

and rainy weather. Some objects might be detected in one stream while they cannot be captured 

in the other stream. In order to perform regional fusion and make two sensors benefit each other, 

we have to obtain an object in both LiDAR stream and RGB stream. Therefore, we project the 

proposals, which are estimated in the backbone networks, from one stream onto the other. To be 

more specific, 2D proposals from the RGB stream are projected onto the 3D LiDAR coordinate 

system and 3D proposals from the LiDAR stream are projected onto the 2D image coordinate 

system as well, as depicted in Figure 4. 

 

 
 

Figure 4. Illustration of mutual projection. The first row showing a 3D bounding box generated from the 

LiDAR stream is projected onto the RGB image. On the other hand, the second row demonstrating a 2D 

bounding box predicted from the RGB stream is lifted to a 3D frustum with near and far planes. 
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4.2.1. 3D Proposals to Images 

 

Given a 3D proposal whose coordinates of eight corners are {𝐶𝑛
𝐿𝑖𝐷𝐴𝑅|𝑛 = 1,2, … ,8} , where 

𝐶𝑛
𝐿𝑖𝐷𝐴𝑅 = (𝑥𝐿𝑖𝐷𝐴𝑅 , 𝑦𝐿𝑖𝐷𝐴𝑅 , 𝑧𝐿𝑖𝐷𝐴𝑅) and 𝑥𝐿𝑖𝐷𝐴𝑅 , 𝑦𝐿𝑖𝐷𝐴𝑅 , 𝑧𝐿𝑖𝐷𝐴𝑅  represent the coordinates in the 

LiDAR coordinate system, we can utilize the calibration matrix to project each point 𝐶𝐿𝑖𝐷𝐴𝑅 to 

the image coordinate system and generate corresponding eight points 

{(𝑢𝑛
𝑅𝐺𝐵 , 𝑣𝑛

𝑅𝐺𝐵)|𝑛 = 1,2, … ,8} , where 𝐶𝑛
𝑅𝐺𝐵 = (𝑢𝑛

𝑅𝐺𝐵 , 𝑣𝑛
𝑅𝐺𝐵) and 𝑢𝑅𝐺𝐵 , 𝑣𝑅𝐺𝐵 symbolize the 

coordinates in the image coordinate system. The calibration matrix is pre-determined, and the 

entire projecting process can be performed through matrix multiplication. 

 

After obtaining eight corners in the image view, we find the tightest 2D bounding box that can 

bound all eight corners as the corresponding projected 2D proposals. Hence, RGB features inside 

2D bounding boxes are utilized to conduct RoI-level fusion in proposed regional fusion layer. 

 

4.2.2. 2D Proposals to Point Clouds 

 

A 2D proposal which is in the image coordinate system can be lifted to a frustum. A frustum is 

constructed with two planes which are near-plane and far-plane in the LiDAR coordinate system 

as shown in Figure 5. The near one is generated with smaller predefined depth 𝑑𝑛𝑒𝑎𝑟 and the far 

one is obtained from predefined larger depth 𝑑𝑓𝑎𝑟. As a result, a 3D frustum is generated through 

connecting these two planes. However, there might be some points that do not belong to the 

object detected from the RGB stream. Inspired by Frustum PointNet [16], we only select the 3D 

points whose confidence scores generated in the backbone are greater than the predefined 

threshold in the frustum. Therefore, those selected points and original 2D proposals are fed into 

the presented regional fusion layer to conduct RoI-level fusion so as to make two sensors benefit 

each other. 

 

 
 

Figure 5. Back projection from the 2D proposals to the 3D space 
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4.3. Multi-scale Feature Aggregation Module 
 

Features are the most demanding components for the network to generate high-quality 

predictions. In general, a CNN comprises a number of convolutional layers to extract 

discriminative features of images. In addition, convolutional layers that are located in different 

levels can generate various kinds of features. Low-level features are more content descriptive. 

Besides, the receptive field of the low-level layer is relatively small so that the information of 

small-size objects can be preserved well. On the other hand, deep high-level layers usually 

generate class-specific features having more semantic meanings. Since the receptive field of the 

high-level layer is large, some knowledge of small-sized objects might lose, leaving only global 

information. In order to perform RoI-level fusion and localize the objects precisely, we have to 

keep information from multiple receptive fields together as shown in Figure 6. Therefore, we rely 

not only on low-level features that indicate the appearances of objects but also high-level features 

that give the semantic meanings of objects. 

 

Accordingly, the 2D proposals from the RGB stream and projected 2D proposals from the 

LiDAR stream are generated through the backbone networks. Both of them are 2D bounding 

boxes in nature. In order to generate high-quality RGB features that contain high-level and low-

level information simultaneously, we aggregate features from multiple receptive fields. Inspired 

by Mask R-CNN [25], given the bounding box and multi-scale feature maps 𝑃2, 𝑃3 and 𝑃4, we 

apply RoIAlign to extract the corresponding features and pool the feature maps into the sizes of 

16 × 16, 8 × 8 and 4 × 4 based on different receptive fields, respectively. After that, we utilize 

upsampling operation as well as downsampling operation to resize the features and aggregate 

them together. Hence, the multi-scale spatial features containing both high-level semantic 

meanings and low-level geometric information are generated. Then, these features representing 

potential foreground objects are used to perform RoI-level with the point-wise features in the 

proposed regional fusion layer. 

 

 
 

Figure 6. Architecture of multi-scale feature aggregation module 

 

4.4. Regional Fusion Layer 
 

Generally, RGB images provide rich color information of objects while LiDAR point clouds have 

fine-grained 3D structures. Each kind of data has its own superiority. In order to obtain high-

quality detection results, fusion between RGB images and LiDAR point clouds is inevitable. 

Besides, the spatial relationship between RGB images and LiDAR point clouds is necessary to 

reason the fusion process. Without utilizing the spatial relationship between two sources, the 

fusion process may result in severe errors and lack the ability to learn representative fused 
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features. With a known calibration projection matrix, the projection from a point cloud to an 

RGB image can be completed. Each point of point clouds in the 3D space is related to a pixel in 

an image. This one-to-one correspondence can be utilized to fuse the data and supply each point 

feature with additional information from the RGB stream. 

 

As illustrated in Figure 7, the proposed regional fusion layer leverages spatial features from the 

RGB stream and the point-wise features from the LiDAR stream to conduct the data fusion 

between two sources. For each proposal generated in the backbone network, our main purpose is 

to associate its point-wise features with pixel-wise RGB features so as to increase the feature 

richness of the LiDAR features for the box refinement. As a matter of fact, we choose to enrich 

LiDAR features because they are more suitable for performing 3D object detection than the RGB 

features. 

 

At the first step of regional fusion layer, we apply 1 × 1 convolution on the spatial features and 

resize the spatial features along with the height and width dimension on the RGB feature map 

𝐹𝑅𝐺𝐵 , where 𝐹𝑅𝐺𝐵 ∈ ℝ𝐻×𝑊×𝐶 . The transformed resized RGB features are denoted as 𝐹′𝑅𝐺𝐵 , 

where 𝐹′𝑅𝐺𝐵 ∈ ℝ𝐻𝑊×𝐶, and 𝐻𝑊 stands for the number of pixels and 𝐶 represents the number of 

channels. Then, we apply attention mechanism to find the correspondence between RGB features 

𝐹′𝑅𝐺𝐵 and LiDAR point-wise features 𝐹𝐿𝑖𝐷𝐴𝑅, where 𝐹𝐿𝑖𝐷𝐴𝑅 ∈ ℝ𝑁×𝐶, and 𝑁 denotes the number 

of sampled points in the proposal and 𝐶 symbolizes the channels. In our experiments, the number 

of sampled points in each 3D proposal is set 512. In the procedure of attention mechanism, we 

first calculate the attention scores 𝑀, whose formula is defined as 

 

𝑀 = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝐹𝐿𝑖𝐷𝐴𝑅 × 𝐹′
𝑅𝐺𝐵
𝑇

) (2) 

 

where the superscript T represents the transpose matrix and 𝑀 ∈ ℝ𝑁×𝐻𝑊 . In addition, the 

softmax function is applied along each row in the matrix. As a result, each row vector in 𝑀, 

representing the importance scores of pixels contributing to each LiDAR point, is set as the size 

of 1 × 𝐻𝑊. After obtaining the attention scores 𝑀, we use the matrix 𝑀 to calculate the weighted 

summation of pixel-level RGB features with respect to each LiDAR point, whose formula is 

defined as 

 

𝐹𝑎𝑡𝑡𝑒𝑛𝑅𝐺𝐵 = 𝑀 × 𝐹′
𝑅𝐺𝐵 (3) 

 

where 𝐹𝑎𝑡𝑡𝑒𝑛𝑅𝐺𝐵 ∈ ℝ𝑁×𝐶, and 𝐹𝑎𝑡𝑡𝑒𝑛𝑅𝐺𝐵 serves as the additional RGB information for the point-

wise features. Finally, we concatenate 𝐹𝐿𝑖𝐷𝐴𝑅  and 𝐹𝑎𝑡𝑡𝑒𝑛𝑅𝐺𝐵  together and generate fully fused 

features, which can be utilized for the box refinement. 

 

 
 

Figure 7. Operational steps of regional fusion layer 
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4.5. Loss Function 
 

In our network, we use a multi-task loss to train our network. To be more specific, we define the 

total loss function as the summation of regression loss and classification loss. Since large 

regression targets are not good for training a detector, we normalize the center and the size of 

each ground-truth as well as anchor box. The center of each ground-truth and anchor box is 

normalized as 

 

∆𝑥 =
𝑥𝑔 − 𝑥

𝑤𝑔
, ∆𝑦 =

𝑦𝑔 − 𝑦

ℎ𝑔
, ∆𝑧 =

𝑧𝑔 − 𝑧

𝑙𝑔
(4) 

 

where g stands for the ground-truth. In contrast, the size of each ground-truth and anchor box is 

normalized as 

 

∆𝑤 =
𝑤𝑔

𝑤
, ∆ℎ =

ℎ𝑔

ℎ
, ∆𝑙 =

𝑙𝑔

𝑙
(5) 

 

As for the orientation of each ground-truth and anchor box, it is defined as 

 

∆𝜃 = 𝜃𝑔 − 𝜃 (6) 
 

By normalizing the anchor box and the ground-truth, we can obtain a regression tensor 𝑇 for each 

of them, where 𝑇 = (∆𝑥, ∆𝑦, ∆𝑧, ∆𝑤, ∆ℎ, ∆𝑙, ∆𝜃). To calculate box regression loss 𝐿𝑏𝑜𝑥, we apply 

the common smooth L1 loss being represented as 

 

𝐿𝑏𝑜𝑥(𝑇𝑔, 𝑇𝑎) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑇𝑗
𝑔

, 𝑇𝑗
𝑎)

𝑗∈{∆𝑥,∆𝑦,∆𝑧,
∆𝑤,∆ℎ,∆𝑙,∆𝜃}

(7)
 

 

in which 

 

𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑇𝑗
𝑔

, 𝑇𝑗
𝑎) = {

0.5(𝑇𝑗
𝑔

− 𝑇𝑗
𝑎)2

|𝑇𝑗
𝑔

− 𝑇𝑗
𝑎| − 0.5

, 𝑖𝑓|𝑇𝑗
𝑔

− 𝑇𝑗
𝑎| < 1

, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (8) 

 

where 𝑎 denotes the anchor box. On the other hand, we utilize simply binary cross-entropy loss 

as our classification loss 𝐿𝑐𝑙𝑠, which can be expressed as 

 

𝐿𝑐𝑙𝑠(𝑐𝑙𝑠𝑔, 𝑐𝑙𝑎) = −[𝑐𝑙𝑠𝑔 log(𝑐𝑙𝑠𝑎) + (1 − 𝑐𝑙𝑠𝑔) log(1 − 𝑐𝑙𝑠𝑎)] (9) 
 

After all, the multi-task loss we use to train our model is a weighted sum of the box regression 

loss 𝐿𝑏𝑜𝑥 and the classification loss 𝐿𝑐𝑙𝑠, which can be expressed as 

 

𝐿 = 𝛼
1

𝑁
∑ 𝐿𝑐𝑙𝑠(𝑐𝑙𝑠𝑖

𝑔
, 𝑐𝑙𝑠𝑖

𝑎)

𝑁

𝑖=1

+ 𝛽
1

𝑁𝑝𝑜𝑠
∑ 𝐿𝑏𝑜𝑥(𝑇𝑖

𝑔
, 𝑇𝑖

𝑎)

𝑖∈𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

(10) 

 

where 𝑁  symbolizes the total number of positive and negative samples, that is to say, 𝑁 =
𝑁𝑝𝑜𝑠 + 𝑁𝑛𝑒𝑔, and 𝛼,𝛽 are the hyperparameters controlling the ratio of these two losses. 
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5. EXPERIMENT 
 

5.1. Experimental Data 
 

In this paper, we choose the task of 3D object detection in KITTI Vision Benchmark to validate 

our proposed RF3D. In the task of 3D object detection of the benchmark, there are 7,481 training 

data and 7,518 testing data, and each of them comprises an RGB image, a LiDAR point cloud as 

well as a calibration file. There are three object categories annotated in the dataset, including car, 

pedestrian and cyclist. Besides, the category of car has the most sufficient training samples in the 

dataset. As a consequence, we choose the category of car to evaluate the testing set performance 

of our approaches as other methods selected. Following the KITTI setting, we accomplish 

evaluations on three difficulty regimes, namely easy, moderate and hard, which is decided 

occlusion level, truncated level and distance of the object. 

 

5.2. Evaluation Metric 
 

The predicted results of 3D detection are verified by submitting to KITTI official testing server. 

The Average Precision (AP) with 40 points is adopted as the evaluation metric for both 3D and 

BEV detection. In the class of car, the threshold of Intersection over Union (IoU) is set as 0.7 to 

determine whether the prediction belongs to true positive or false positive. 

 

5.3. Implementation Details 
 

For the LiDAR stream, we only preserve points belonging to the image view via calibration 

parameters. We subsample 16,384 points from each frame as inputs. For those frames with the 

number of points fewer than 16,384, we randomly choose points until retrieving 16,384 points. 

For the RGB stream, we resize the image to the size of 1242 × 376. The number of points inside 

3D proposals for fusion is set 512. We do not apply data augmentation in our experiments 

because mismatch problems usually occur between point clouds and images. 

 

We implement our network on single GPU GTX 1080 Ti with Pytorch [26]. Two stages of RF3D 

are trained separately. First stage network, which is utilized to generate proposals, is trained with 

batch size 8, and second stage network, which is exploited to refine 3D boxes, is trained with 

batch size 3. Adam [27] is used for optimization with weight decay of 0.001. The learning rate is 

initialized as 0.001 and decay with a factor of 0.5 at 100, 150, 180 and 200 epochs, respectively. 

 

5.4. Experiment Result of 3D Detection Benchmark 
 

The 3D detection results of the class car on KITTI testing dataset is shown in Table 1. The task of 

3D detection is more challenging than that of BEV detection, because 3D detection requires the 

involvement of height information. Our RF3D outperforms other published state-of-the-art 

methods with respect to AP under all difficulty regimes in 3D detection except for MMF [19], 

which is the state-of-the-art fusion-based method in easy and moderate difficulties. In our 

experimental results, we observe that our network surpasses other methods by a large margin 

under the hard case. This situation represents that directly utilizing raw point clouds as inputs can 

preserve the 3D geometric information of those highly occluded or truncated objects. In addition, 

observing the additional information from RGB stream and the proposed regional fusion layer, 

the network is able to predict high-quality 3D bounding boxes. 
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Table 1. Comparison of results on KITTI 3D detection benchmark  

testing split (car), where PC denotes point clouds. 

 

Method Types of Input 
3D AP of car (in %) 

Easy Moderate Hard 

Disp R-CNN [6] Image 59.58 39.34 31.99 

VoxelNet [12] PC 81.97 65.46 62.85 

PointPillars [9] PC 79.05 74.99 68.30 

TANet [14] PC 83.81 75.38 68.32 

F-PointNet [16] PC+Image 81.20 70.39 62.19 

ContFuse [20] PC+Image 82.54 66.22 64.04 

AVOD-FPN [15] PC+Image 81.94 71.88 66.38 

CrossFusion [21] PC+Image 83.20 74.50 67.01 

PointPainting [17] PC+Image 82.11 71.70 67.08 

PI-RCNN [18] PC+Image 84.37 74.82 70.03 

MMF [19] PC+Image 86.81 76.75 68.41 

ours PC+Image 85.18 75.76 70.99 

 

5.5. Ablation Study on Components 
 

Since KITTI official testing server has limited submissions per month, we use the validation set 

to conduct our ablation studies and several experiments. We follow the rule proposed in [28] to 

split the training data into training set and validation set. As a consequence, there are total 3,712 

training frames and 3,769 validation frames, respectively. 

 

There are two components presented to reason the fusion between two input sources, including 

the multi-scale feature aggregation module and the regional fusion layer. The multi-scale feature 

aggregation module enriches the feature maps of RGB stream by combining feature maps from 

different receptive fields with upsampling and downsampling layers. The regional fusion layer 

utilizes the proposals from one stream and their projected proposals from the other to perform the 

RoI-level fusion so as to fertilize the LiDAR features with additional RGB information. Other 

than the proposed two modules, we also exploit the proposals generated from both streams to 

make two sensors compensate with each other. In order to validate the effectiveness of these 

methods, we conduct several ablation studies on the validation set of class car as well. The 

experimental results are shown in Table 2. 

 

In the beginning, we simply utilize the LiDAR data to perform 3D object detection without any 

RGB images as listed in the first row. There is no fusion between two input sources. Secondly, 

we utilize two input sources simultaneously without the multi-scale feature aggregation module 

as presented in the second row. Meanwhile, we only leverage the 3D proposals generated from 

the LiDAR stream and their corresponding projected ones from the RGB stream to perform 

fusion. As a consequence, there is no 2D region proposal generated from the RGB stream. 

Besides, we exploit the multi-scale feature aggregation module alone to validate its effectiveness 

for improving the fusion as illustrated in the third row. After that, we enable the network to 

generate 2D and 3D proposals simultaneously and project proposals from one stream onto the 

other stream as shown in the fourth row. In this way, we demonstrate the importance of 2D 

estimations generated from the RGB images. Finally, we combine all the properties together to 

use as the last derived model. It is obvious that the performance is more profitable than the others. 

Therefore, we choose the last one as our final model and comparison with other methods. 
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Table 2. Ablation studies of each component on KITTI validation split of 3D detection (car), where the RF 

layer stands for regional fusion layer and the MSFA module indicates multi-scale feature aggregation 

module. 

 

2D proposals RF layer MSFA module 
3D AP of car (in %) 

Easy Moderate Hard 

✗ ✗ ✗ 83.78 74.34 73.67 

✗ ✓ ✗ 86.12 76.89 75.54 

✗ ✓ ✓ 88.21 78.42 76.82 

✓ ✓ ✗ 87.84 78.36 77.10 

✓ ✓ ✓ 89.54 79.22 78.37 

 

5.6. Qualitative Results 
 

We visualize several predicted results from KITTI dataset as illustrated in Figure 8. It is observed 

that some objects are very difficult to be captured through only RGB images due to serious 

occlusion and truncation. However, with the help of 3D proposals generated from LiDAR point 

clouds, these highly occluded and truncated objects can be easily detected since raw point clouds 

do not suffer from these issues. We also find that several objects have limited points collected in 

point clouds, resulting in poor performance of 3D proposals generation. Since we simultaneously 

utilize RGB images to generate 2D proposals, it is verified that the RGB images can compensate 

the weaknesses of LiDAR point clouds. 

 

 
  

Figure 8. Visualization of the prediction results of RF3D on KITTI dataset 

 

6. CONCLUSIONS 
 

In this paper, we propose Regional Fusion Network for 3D on-road object detection. Our network 

directly consumes raw point clouds as inputs to perform data fusion. To the best of our 

knowledge, we are the first to integrate raw point clouds and RGB images to conduct 3D object 

detection. We are able to compensate the weaknesses of two sensors through projecting the 

proposals from one stream to the other. Additionally, our proposed multi-scale feature 

aggregation module can combine features from different receptive fields to enrich the RGB 

features and improve overall detection results. Moreover, the presented regional fusion layer is 

able to fuse two inputs based on their corresponding RoIs and provide additional RGB 

information for LiDAR features. The experimental results on KITTI Vision Benchmark show that 
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our model outperforms other methods in 3D detection especially under challenge setting. 

However, in order to obtain satisfying detection results, our proposed RF3D has longer inference 

time. The future research emphasizes on designing an efficient and lightweight proposed RF3D 

to reduce inference time. Besides, data augmentation techniques for both point clouds and images 

can be developed to improve the performance of the presented Regional Fusion Network. 
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