
David C. Wyld et al. (Eds): MLDS, NECO, SEMIT, IBCOM, SPPR, SCAI, CSIA, ICCSEA - 2021

pp. 227-236, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.111819

IMPROVING THE REQUIREMENTS

ENGINEERING PROCESS
THROUGH AUTOMATED SUPPORT: AN

INDUSTRIAL CASE STUDY

Fabio Alexandre M.H. Silva, Bruno A. Bonifacio, Fabio Oliveira Ferreira,

Fabio Coelho Ramos, Marcos Aurelio Dias and Andre Ferreira Neto

Sidia Institute of Science & Technology, Manaus, Amazonas, Brazil

ABSTRACT

Although Distributed Software Development (DSD) has been a growing trend in the software

industry, performing requirements management in such conditions implies overcoming new

limitations resulting from geographic separation. SIDIA is a Research and Development (R&D)

Institute, located in Brazil, responsible for producing improvements on the Android Platform for

Samsung Products in all Latin America. As we work in collaboration stakeholders provided by

Mobile Network Operators (MNO) from Latin countries, it is common that software

requirements be provided by external stakeholders. As such, it is difficult to manage these

requirements due to the coordination of many different stakeholders in a distributed setting. In

order to minimize the risks, we developed a tool to assist our requirements management and

development process. This experience paper explores the experience in designing and deploying

a software approach that facilitates (I) Distributed Software Development, (II) minimizes
requirements error rate, (III) teams and task allocations and (IV) requirements managements.

We also report three lessons learned from adopting automated support in the DDS environment.

KEYWORDS

Industrial case study, requirement management, DSD, distributed software development, RM,

automation, industrial experience.

1. INTRODUCTION

Distributed Software Development (DSD) has been a growing trend as the software industry is

experiencing increasing commercial globalization [1]. In this scenario, many companies have

been adopting DSD in their software products to accelerate the time to market for new products,

better customer satisfaction, and higher product quality [2].

On the other hand, working with distributed teams also face new challenges, particularly in

requirements management: communication, software documentation and project coordination [3].
As a means to overcome these challenges, the software industry has sought to automate their

process and tasks. In the context of SIDIA, there was the need for tools that are essential for

collaboration among team members, enabling the facilitation, automation, and control of the
entire requirements management process [4]. However, the existing tools are rarely tailored to the

needs of a collaborating group of engineers [5]. Therefore, SIDIA had to develop its own tools

that meet the company’s needs.

http://airccse.org/cscp.html
http://airccse.org/csit/V11N18.html
https://doi.org/10.5121/csit.2021.111819

228 Computer Science & Information Technology (CS & IT)

SIDIA is a R&D Institute and a Samsung Company strategic partner, located in Manaus-Brazil,
that develops innovative software solutions in various areas, such as machine learning, games,

data mining and others related to mobile products. SIDIA is responsible for the development of

embedded software and improvements on that Android Platform for Samsung Products in all

Latin America. The institute collaborates with Samsung Mobile division, located in Korea, and
external stakeholders provided by Mobile Network Operators (MNOs) from other Latin

American countries (e.g., Brazil, Mexico, Chile, Peru). For this reason, to meet the demands of

MNOs, SIDIA works on a DSD environment. MNOs are the main Samsung clients as relates to
the acquisition of Samsung’s mobile products. Thus, these stakeholders act as middlemen

between MNOs and Samsung, who constantly provide software requirements that need to be

implemented into Samsung’s mobile products. There are several external stakeholders that
present a given MNO in a particular country. For instance, there is a stakeholder in Ecuador who

represents all of Claro’s requirements in that country. Given that there are many countries in

Latin America and each country with several MNOs, the management of all the requirements

becomes a difficult process and this could lead to error-prone software products.

In this context, the requirements management process becomes difficult due to the coordination

of many different stakeholders in a distributed setting, due to geographic dispersion, language
and time zone differences. This has led to a challenge of implementing and validating

requirements (e.g., requirement consistency, requirement integration problems and wrongly

implemented requirements), which leads to long delays and risks during the software
development process.

In order to minimize these challenges, we developed a tool to assist in our requirements

management process. In this paper we report the experience in designing and deploying this tool,
referred to as Checklist Tool, whose main objective is to facilitate the requirements management

process. The Checklist Tool improves requirements testing and validation through integration

between systems in the context of DSD. Our results show important improvements in team
productivity (e.g., minimizing the time to execute tasks), minimizing error rates (with a reduction

in 30% error rates) and task allocation (e.g., one developer can simultaneously do more than one

task). We also report the lessons learned from adopting automated support in a DSD

environment.

This paper is structured as follows: Section II provides some related works. Section III describes

the SIDIA process and the support tool added. In Section IV we present the results achieved by
using the proposed tool. In Section V we present the conclusion and propose some future

directions.

2. RELATED WORKS

In relation to software engineering, one of the areas mostly affected by a DSD environment is

Requirements Engineering (RE). To overcome this difficulty software industry moves to

automate the requirements management process [7]. According to [6] DSD requires software
tools (management tools, development tools, etc.) to minimize problems such as: geographic

dispersion, control and coordination breakdown, communication, team engagement and socio-

cultural differences. Moreover, It is important to propose and analyze tools in real scenarios
[4][12]. We describe some existing requirements management tools in the following paragraphs.

Sinha et al. [8] proposed a distributed requirement management tool called EGRET (eclipse-

based global requirements tool), after interacting for more than one year with approximately 30
IBM employees, involved in distributed development. The EGRET prototype was tested in three

Computer Science & Information Technology (CS & IT) 229

projects at the requirements definition stage. Users reported a good experience: “found the tool
very useful for capturing requirements, having discussions, and tracking requirement changes”.

Goda Software presents a solution for requirements management in the form of Analyst Pro [9].

It facilitates requirements specification, tracking and visual traceability analysis. It is a scalable

solution, which can provide a collaborative environment that allows sharing of common pool of
project information among stakeholders. The requirements can be tracked through design and

testing.

Vitech Corporation developed a tool for requirements management, CORE 5.1 [10]. Main

features of CORE 5.1 are: reducing schedule risk, improving communication, enabling

collaboration, defining and verifying requirements. It also ensures completeness and consistency
as well as provides facility to plan tests at an early stage. It also ensures up-to-date documentation

and improves planning, visibility and control.

Projectricity developed a requirements management tool called Projectricity [11]. It is a web-
based project management platform that enables project team members to efficiently

communicate and work collaboratively no matter where they are located. It manages the

requirements at all levels of project. It has ability to manage project and task information. Also it
is able to manage requirements, test plans, change requests, traceability, and problems in

requirements, risks and documentation.

As we can observe, the most common feature in the above-mentioned requirement tools is the

issue tracker, some of them include attachment of requirement documents. It is no surprise that

issue traceability is very important for requirements management since it is an important

component for functionality testing and software validation. In the context of our proposed tool,
we combine some features from the related works, including: requirements tracking,

requirements specification, risk reduction, communication improvement, collaboration and

requirements validation. We describe this in more details in the next section.

3. THE SIDIA MOBILE PRODUCT REQUIREMENT PROCESS

SIDIA develops and updates embedded software for Samsung products commercialized in Latin

America. The process of developing and updating this software is divided into three main
categories: new models, Operating System (O.S.) upgrade, or maintenance release or MR (for

products already in the market). During the software development process, the main objective is

the generation of releases. Releases are software versions containing bug fixes, security updates
and requirements provided by MNOs. Therefore, once a software version is released, be it a new

model, O.S. upgrade or MR, this version goes through a series of tests including validation of

MNOs. Once the release is approved, it is then propagated to the respective mobile devices and

the end user can download and install. Figure 1 below presents the release process with respect to
the requirements management process.

The Android Platform development process starts with requirements definition, by external
stakeholders representing MNOs (represented by step (1) in Figure 1 above). The MNOs define,

refine and add the requirements on the external system containing information such as O.S.

version, device information, mobile applications (apps), wallpapers, and other features
(represented as System Requirements in Figure 1).

230 Computer Science & Information Technology (CS & IT)

Figure 1. The Release Process from the Requirements Management Perspective.

After that, SIDIA’s development team collects requirements and implement according requested

by each MNO to each model. This goes through a series of verifications, comparing the
requirements from MNOs with that stored in a local data base (steps (2) and (3) of Figure 1). This

verification goes on until there are no more differences between the requirements in the database

and requirements from MNOs. Upon completion of this phase, the new requirement changes are

embedded to the software (step (4) of Figure 1) and stored in a repository. In parallel, the tool is
integrated with an SVN (subversion) server and a model compile feature.

system, that uses continuous integration to control file versions and built binaries and tests. Once
embedded, a binary is generated (step (5) of Figure 1) and this goes through a series of UI tests.

Once the tests are successful, the binary is released.

The main verification step of this process (steps (2) and (3)) has been manually done in the past
and this has led to human errors, missing or wrong requirements, applications with wrong

versions, which led to long release delays, and rework. Some of these errors have led to serious

consequences like delays in market delivery and consequently monetary loss. This led to the need
for an automated tool which verifies and applies the requirements with very little human

intervention.

For this reason, the Checklist Tool was developed. This solution aimed to automate the

requirements validation and testing, minimizing errors occurrence and rework related to missing

or wrong requirements. This tool is described in more details in the next section.

4. CHECKLIST TOOL

The tool is divide into three modules: (1) Requirements, (2) Business Intelligence, and (3)

Requirement Manager. Initially we developed the Business Intelligence Module to capture
activity logs from developers. This feature was important to collect the team’s data and create a

dataset containing information for each developer. Such information includes: time taken to

execute tasks, previously executed or applied MNO requirements, devices to which MNO

requirements were applied and average errors committed while executing or applying the
requirements. Based on this information, this module is able to recommend tasks to developers.

It is worth noting that even though the tool can recommend tasks to developers, the developers
can also manually choose the tasks or tasks can be assigned to them. To use this module, the

developers must first authenticate with their ID. Once authenticated, the Checklist Tool can then

assign the developer with tasks to apply a software requirement. This is shown in below.

Computer Science & Information Technology (CS & IT) 231

Figure 2. Checklist Tool Dashboard and Requirements Verification and Execution.

As shown in Figure 2.1, the task generated by the Checklist Tool is composed of: developer to

whom task is assigned, the device under test (shown as example was the Samsung Galaxy A01
Core (identified by code name SM-A013M)), the MNO, in this case Movistar (we identify the

MNO by ID, in this example we used SAM as code for Movistar for Peru), the operating system

used (GO - Android GO) and its version (11.0), the model category, in this case, O.S Upgrade. In

addition, the Checklist Tool shows the requirements that have to be applied using tags for each
requirements comprised of the model specification and feature specification. On the left hand

corner of the dashboard, there are certain actions that the developer can choose, such as Match,

Compare model specification, Diff on User Interface (UI), Validations, Extra Validations,
Attaches and Form Review. When the developer clicks on the Match button, this takes him/her to

a new screen where he/she can check if there are new requirements, and in case there are, he/she

can apply them (Figure 2.2). On the right hand side of this screen is the Match Config, which

compares the expected value with newly loaded value. This is shown when the Check button is
clicked. Green text implies expected and loaded values are the same; red means the loaded value

is different from the expected value. In this case, the apply button can be clicked to apply the new

requirements. After application, the Check button can then be clicked again to do another
verification.

In addition, the developer can verify the Device model specifications. This verifies features like
power on image, power off image, lock screen image, wallpapers, ring tone, message tone, alarm

tone, power on sound and power off sound for both Samsung’s and the customer’s (MNO’s)

specifications. This is shown in Figure 3.1 below.

Figure 3. Requirements Validation and Device Model Specification Verification.

As shown in Figure 3.2, the left column shows the Model Spec while the right column shows the
customer spec. Once each feature is verified, the color is changed to green; the features still to be

232 Computer Science & Information Technology (CS & IT)

verified are left in grey. In addition to the model spec verification, features are also verified.
These features can include application permissions, device permissions, network features and

application features. This verification is usually done in an external system and the tool just

compares the results with the information in the repository, in this case, Perforce (P4). The tool

just compares the differences and this is done using the tool’s Diff UI.

Another important feature of the tool is validation. The Validations feature will validate the

newly applied requirements. Upon clicking the Load button, all the tests for that particular model
and MNO are loaded. The tests are run when the developer clicks the Install Tests button. In

addition to displaying the tests, the tool also displays the step by step so that the developer can

understand exactly what test is being executed and how it is executed. The tool then displays the
test status, which can be: PASSED: all tests were passed; NOT APPLICABLE: when test was not

applicable; FAILED – when a requirements was wrongly applied; BLOCKED: when an external

situation blocked the test from being executed, for instance, samples or binary available; and

ALREADY EXECUTED: when test was performed and approved by previous version. One of
the tests involves taking screenshots as evidence. The screenshots are stored under “Attaches” in

the tool. After applying all requirements, the tool then stores all modifications and test results in a

repository for future use and this cycle continues.

Before this tool was developed, the entire process was done manually. Today, most of the tasks

have been automated. There are many other features that have been added to the tool, but have
been left out of this work, and many more features are being implemented. We hope to publish

this in future works. In the next section, we present some important results obtained by using this

automated tool. Furthermore, we also present the results of a survey done with developers about

their experience using the tool, as well as some lessons learned.

5. CASE STUDY

After the team started using the tool, two main metrics were evaluated: average time to execute
tasks and average errors. The time to execute tasks was calculated based on different task phases

which are: time to collect and validate requirement, time to apply requirement, time taken for

versioning (embedding software and build generation), time to execute tests and total time taken

to execute all these steps. This is summarized in Table 1 below. 3

Table 1. Time taken to Execute Tasks Results.

Type

Requirement

Collection and

Validation

Requirement

application

Versioning
(embedding software +

build generation)
Test execution

Total Time

Taken

Manual ~30 min ~30 min ~2 hours ~5 hours ~8 hours

Automated ~3 min ~1 min ~1 hour ~2:30 hours ~3:30 hours

As can be observed from Table 1, without the tool, developers used approximately 30 minutes to

collect and validate requirements; with the tool, it took just approximately 3 minutes. This

implies a 90% time gain by using the tool. In terms of application requirement, it took
approximately 30 minutes to do this manually, while the tool performed this activity in about 1

minute, implying a 96% time gain. As relates to versioning, it took about 2 hours to perform this

activity when manually done as opposed to just about 1 hour when executed using the tool,
implying about a 50% time gain. Finally, when the tests were manually executed, it took

approximately 5 hours to perform this activity while the tool reduced this time to almost half the

time (two and a half hours). It is worth noting that by the time this version of the tool was
developed, just over 80% of the tests were automated. The team is currently working to automate

Computer Science & Information Technology (CS & IT) 233

all tests. In total, it took almost a day’s work to apply a requirement when done manually, as
opposed to just about three and a half hours when performed using the tool. Therefore, by using

the tool to execute tasks, we gained about 37.5% of time.

In terms of average errors, we collected data (logs) from 4,500 tasks half of which were manually
executed and half were executed using the tool. The task selection and division was random in

order to avoid any bias in our results. With respect to manual execution, it was observed that 12%

of the tasks presented an issue. On the other hand, with automated tests, about 2% of the tasks
presented some issue. This presents about 83% error reduction. These results are very good even

though there are several improvements being done on the tool with the aim of achieving near

100% error reduction, especially if all tests can be automated.

In terms of experience of use, we conducted a survey with developers in order to understand their

experience using the tool. In total, 36 developers participated (denoted P1 – P36). The survey was

a questionnaire composed of just two questions: (i) In relation to the automated tool, how do you
classify your experience using the tool, given that 1 is “very bad”, 2 is “bad”, 3 is “neither good

nor bad”, 4 is “good” and 5 is “very good”? (ii) Could you describe your experience with the tool

in a few words and if possible, suggestions for improvements? Both questions were mandatory
even though some participants responded to question (ii) with “I have nothing to say.” The

results are summarized in Figure 4 below. As can be observed, 15 participants (42%) had a very

good experience with the tool, 15 (42%) had a good experience, 4 participants (about 11%)
neither had a good nor bad experience, while 2 participants (5%) had a bad experience. Those

two participants (P3 and P9) who had a bad experience with the tool respectively explained their

reasons and provided suggestions for improvement as follows: “The tool’s buttons and processes

are confusing. I will suggest that the UX and usability be improved.”, “The tool is complete and
helps a lot in performing our activities. However, the tool suffers from constant updates which

implies the constant execution of a local server by the developer.”.

Figure 4. Experience of use results.

Participants (P11, P18, P22 and P34) who neither had a good nor bad experience shared their

experiences with focus on UX, transparency and issues faced while working from home during
the pandemic: “The tool has led to a lot of improvements in the process and everything can now

be done on a single tool. However, process automation has led to less transparency which is a

disadvantage for newly integrated developers.”, “executing certain tasks when working from

home has been an issue, and this has led to some tasks taking longer to execute.”, “The UX needs
to be improved. Certain buttons must have their positions changed as it can be confusing at

times.” “Improve the execution time for those working at home due to delays caused by the VPN.”

(NB: As relates to VPN, during the pandemic, all teams were forced to work from Home Office

234 Computer Science & Information Technology (CS & IT)

and as such, in order to guarantee protection on Samsung’s network, it was necessary for every
employee to install Samsung’s VPN. As such, employees reported delays in connectivity with

several Samsung applications. This also affected the automated tool which had to access several

of these third-party applications and hence a delay in executing certain tasks.).

As for participants who had a good or very good experience, some of them reported certain issues

with the tool, the main which are: UX, VPN, bug reports. For instance, participant P5 reported

that “I have a very good experience using the tool. However, the tool has presented several bugs.
I have the impression that new features are tested in production. If this is the case, I would

suggest that a test environment be created in order to avoid bad user experience.”.

In terms of positive aspects about the tool, we classified participants’ experiences into categories:

execution time, error rate, robustness, standardization and continuous improvement. This is

summarized in Table 2 below.

Table 2. Positive aspects of the tool.

Feature Description Participants Example

Execution time
Time taken to

execute tasks

P8, P10, P17,

P18, P20, P21

P17: “The tools had greatly reduced

the execution time of certain tasks.”

Error rate

Rate at which errors

occur while

executing tasks

P24, P27, P29

P24: “The tools has facilitated the

whole process and also greatly

reduced the error margin.”

Robustness Reliability of results P2, P10, P27

P2: “The tool has ensured reliability in

the analysis and application of

requirements.”

Standardization

Task execution

follows the same
standard

P10, P33

P10: “…I can easily say the process

has become more standardized, with
quality and rapidity.”

Continuous

improvement
Constant tool updates P28, P37

P27: “The tool is always undergoing

continuous improvements, this is

excellent. Congrats to all involved!”

Based on these results, there were some lessons learned

2.3. Lessons Learned

Lesson Learned #1: The release process can be considered an “external body of knowledge”

built by a set of external stakeholders. In this context, the tool helped to specify everything that is
known considering MNO and Samsung requirements.

With the tool, it was possible to provide greater quality in the specification and application of

requirements, leading to lower error rates and quicker time-to-market.

Lesson Learned #2: The tool must consider device model characteristics and specific features

from MNOs. This information has to be linked aiming to maintain requirement consistency. The

historical data can be used to guarantee that requirements do not contain internal contradictions.

The tool has been able to provide standardization between requirements and device model

characteristics. This has led to an alignment between the team, MNO and Samsung.

Lesson Learned #3: The tool has become an infrastructure that supports verification, validation,
and testing of releases on the device set. It can be supported by using device farms. We started a

Computer Science & Information Technology (CS & IT) 235

simple infrastructure that needs to be refined to consider: more devices connected at the same
time and access (with levels of control) by external stakeholders to help validate the application

of requirements.

Continuous improvement is important to correct problems related to bugs, time to execute tasks
and results reliability. In addition, the tool should be able to simultaneously execute several

activities which will lead to even more time gain and even faster time-to-market.

In the next section, we present our conclusion and future works.

6. CONCLUSIONS

As stated by Portillo-Rodriguez [4] and Anwer [12] there is a need for tools that support software
engineering processes in the context of DSD and more specially requirements management. Most

of the existing tools considers issue tracker as the main feature. Other strategies to manage

requirements in DSD scenario have yet to be explored [1]. Our proposed tool, named Checklist

Tool, considers three modules: (1) Requirement; (2) Business Intelligence, and; (3) Requirement
Management.

Checklist Tool is part of a software tool-based approach that facilitates: (I) Distributed Software
Development, (II) minimizing the requirements errors rate, and (III) teams and task allocations.

The Checklist Tool integrates external requirement system, and processing to apply requirements

and versioning changes, maintain changes history to help developer’s team on management
applied requirements.

We have important contribution to productivity team. The automated support assists to minimize

time to execution tasks, wrong requirements and overload team. However, we realize there is a
need to build a supporting infrastructure that allows validation of applied requirements and

release testing in a device family. It is important to remember that releases consider features of

the Mobile Network Operators (some even cultural), the manufacturer (in this case, Samsung)
and the operating system (Android). Another interesting aspect to be investigated is how to

minimize the impact of developer misunderstanding of the requirement. In our case we applied

the business intelligence module to recommend a set of requirements for certain developer

profiles. However, it is an aspect that still needs further investigation.

ACKNOWLEDGEMENTS

The authors would like to thank everyone, just everyone!

REFERENCES

[1] M. El Bajta et al. “Software Project Management Approaches for Global Software Development: A

Systematic Mapping Study” Tsinghua Science and Technology, 2018, 3(6):690–714

[2] M. Lormans, H. Van Dik, A. Van Dersen, E. Nocker, A. de Zeeuw, “Managing Evolving

Requirements in an Outsourcing Context: An Industrial Experience Report” In: Proceedings. 7th

International Workshop on Principles of Software Evolution, 2004, pp. 148 – 158.

[3] G. Kanakis, Fischer, S., Khelladi, D.E. and Egyed, A., 2019, May. Supporting a flexible grouping

mechanism for collaborating engineering teams. In Proceedings of the 14th International Conference

on Global Software Engineering (pp. 119-128). IEEE Press.
[4] J. Portillo-Rodriguez, A. Vizcaino, M. Piattini, S. Beecham, Tools used in global software

engineering: a systematic mapping review, Information and Software Technology (2012).

236 Computer Science & Information Technology (CS & IT)

[5] Akbar, M. A., Sang, J., Khan, A. A., Mahmood, S., Qadri, S. F., Hu, H., & Xiang, H. (2019). Success

factors influencing requirements change management process in global software development.

Journal of Computer Languages, 51, 112-130.

[6] Akbar, M. A., Shafiq, M., Kamal, T., & Hamza, M. (2019). Towards the Successful Requirements

Change Management in the Domain of Offshore Software Development Outsourcing: Preliminary
Results. International Journal of Computing and Digital Systems, 8(03), 205-215.

[7] M. Mukhtar, Z. H. Chuhan, Z. Ahmad, Tools for Requirements Management in GSD: A Survey,

International Journal of Scientific & Engineering Research, Volume 6, Issue 4, 2010.

[8] V. Sinha, B. Sengupta and S. Chandra “EGRET: A Collaborative Tool for distributed requirements

management”, TR, report RI06001, IBM Research 2005.

[9] Goda Software - http://www.analysttool.com - Accessed in: 2020.01.06

[10] Vitech Corporation - http://www.vitechcorp.com/solutions - Accessed in: 2020.01.06

[11] Projectricity Project - http://www.projectricity.com/ - Accessed in: 2020.01.06

[12] S. Anwer, L. Wen, Z. Wang, S. Mahmood, Comparative Analysis of Requirement Change

Management Challenges Between In-House and Global Software Development: Findings of

Literature and Industry Survey. In: IEEE Access (Volume: 7), pp. 116585 – 116611, 2019 Lee,

S.hyun. & Kim Mi Na, (2008) “This is my paper”, ABC Transactions on ECE, Vol. 10, No. 5,
pp120-122.

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	Industrial case study, requirement management, DSD, distributed software development, RM, automation, industrial experience.

