
Towards Adversarial Genetic Text Generation

Deniz Kavi

Text generation is the task of generating natural language, and pro-
ducing outputs similar to or better than human texts. Due to deep learn-
ing’s recent success in the field of natural language processing, computer
generated text has come closer to becoming indistinguishable to human
writing. Genetic Algorithms have not been as popular in the field of text
generation. We propose a genetic algorithm combined with text classifica-
tion and clustering models which automatically grade the texts generated
by the genetic algorithm. The genetic algorithm is given poorly gener-
ated texts from a Markov chain, these texts are then graded by a text
classifier and a text clustering model. We then apply crossover to pairs of
texts, with emphasis on those that received higher grades. The approach
described in this paper was designed to be as modular as possible and
as such, changes to the grading system and further improvements to the
genetic algorithm are to be the focus of future research.

1 Introduction

Text generation can be described as a “next word prediction” problem. This
method of approaching text generating can be explained as, given a string of
words, predict what the next word will be. Originally, text generation algo-
rithms used a small part of the input text. For example, an algorithm might
attempt to predict a word using just the previous two words of the sentence.
However, since the information the algorithm has access to is limited, its ability
to generate a coherent text is also limited.

Models that use “attention” to determine what parts of the text are relevant
to what will follow. When trained on a large corpus of natural language, these
models are currently the state of the art in natural language processing and text
generation [8][1][12]. Attention allows neural network models to ”pay attention”
to only the relevant parts of the previous information. Whereas a Markov
chain or a frequency based model would only have knowledge of some part
of a sentence, neural networks using attention are able to pick required and
relevant information from previous sentences. That being the case, models
using attention can ”remember” much more information than their predecessors
as relevant words are more important than randomly picked words.

David C. Wyld et al. (Eds): CoSIT, AIAPP, SIGL, CRIS, NLPML - 2021
pp. 87-95, 2021. CS & IT - CSCP 2021 DOI: 10.5121/csit.2021.110407

http://airccse.org/cscp.html
http://airccse.org/csit/V11N04.html
https://doi.org/10.5121/csit.2021.110407

Although researchers have used genetic algorithms for text generation [6][5],
genetic algorithms have received little attention relative to deep learning ap-
proaches. In this paper, we propose an adversarial approach to the problem of
text generation with genetic algorithms.

2 Related Works

In this section, we will evaluate previous approaches to the two components
of our approach: text grading and generation. More specifically, we will be
examining how effective they are at the target task and whether they could be
applied to our own research.

2.1 Markov Chain for Text Generation

Markov chains can be represented as a sequence of states, where certain states
come after each other. The order of the respective states is determined by the
probability of of how these states are ordered in the input text dataset. And
although any type of data, ranging from financial data to weather data can be
represented in the form of states, we’ve represented text as a series of states,
each word being a state. After the input text, in our case the ASAP dataset, is
processed via the Markov chain, the model will be able to predict and generate
the most probable word that will follow the it was given. We used Markov chains
for our initial population, we used Markov chains because they performed less
well compared to their deep learning counterparts. The reason we wanted it to
perform worse was so that most of the task of text generation could be left to
the genetic algorithm without causing problems in the grading system. As the
grading algorithms hadn’t seen samples of entirely randomly generated texts
their ability to grade them would be low, so we used Markov chains that the
grader could understand without lowering the genetic algorithm’s contribution.

2.2 Transformer Language Models

Transformers are unsupervised machine learning models trained on a large cor-
pus of the target language to predict the word or token which will follow the
input text. Unlike Markov chains, transformers aren’t constrained by the num-
ber of states they can have in memory, thanks to a parameter called attention.
With emphasis on attention, a transformer model is able to remember relevant
details of the previous text, which would be part of the text data that it pays
attention to, allowing for it to recall relevant details without the need to analyze
massive amounts of information.

2.3 Adversarially Learned Neural Outlines

In Subramanian et al. [11] the authors propose the usage of a generator, first ad-
versarially producing a sentence outline and then generating words sequentially

Computer Science & Information Technology (CS & IT)88

conditioned by both the outline and previous outputs. This is inspired by GANs
[4] and Autoencoder [10] models in that there are generator and discriminator
neural networks. They fit “a non-parametric kernel density estimator(KDE)
on the samples produced by a GAN and then evaluating the likelihood of real
examples under this KDE.”

2.4 Previous Genetic Algorithm Approaches to Text Gen-
eration

In Manzoni et al. [6], the authors describe a process by which they use word
embeddings instead of the words themselves as input to the genetic algorithm.
They first mapped every word of sample sentences of k length to a wor2vec vec-
tor, applying mathematical operations to the vectors and decoding the modified
vectors, finally interpreting them as words. The mutation and crossover parts
of a genetic algorithm would be done through linear algebra operations as the
words are encoded as vectors.

2.5 Automated Essay Grading

An earlier system, the Intelligent Essay Assesor(IEA) [3], uses Latent Seman-
tic Analysis [2] to grade essays. It measures and takes the sum of individual
words’ “meanings” to evaluate the whole passage’s meaning. IAE compares the
input essay to other essays in terms of the quality of its content and its form.
The drawbacks with this approach is that the grader will be entirely unable to
compare and thus, grade essays that it hasn’t seen examples of.

A more artificial intelligence oriented system called IntelliMetric [9] uses
manually determined syntactic and semantic features to feed into machine learn-
ing algorithms. This approach is very similar to ours in that the problem is es-
sentially framed as a text classification task, but likely with a different dataset.

3 Methods

The primary difference of our approach to the problem of text generation is the
use of a “grader”, which is a supervised machine learning model trained on a
dataset 1 of essays and their human graded scores. We used the training set
with 12977 sample essay with labels(grades). The grades above 50(which there
were 2 of) were changed to 50 to fit the way the classifier processed data.

We used an XLnet [12] based classifier, though any text classification or
regression method would be usable for the dataset and the task of essay grading.
XLnet is originally a language model trained on a large English corpus, we
replaced the last layer of its architecture to a softmax layer to fit the task of
text classification, so that it returns a grade when given a text as input.

1https://www.kaggle.com/c/asap-aes/data

Computer Science & Information Technology (CS & IT) 89

To determine if the essays had topical consistency, we implemented a text
clustering algorithm, which, without seeing the texts’ labels would seperate sam-
ples into “clusters” based on similarities to other texts. The algorithm used was
Scikit-learn’s [7] ”MiniBatchKMeans” model for clustering. The inputs to the
clustering model were TF-IDF vectors for The Automated Student Assessment
Prize(ASAP) dataset, with the stopwords removed. Instead of predicting what
topic(cluster) each text belongs to, we only need to make sure that it belongs
to any topic, as the model having a high confidence in the text belonging to a
topic means that the text has a consistent topic, an attribute which should be
rewarded. To calculate how closely a model follows its topic we take the recipro-
cal of the distance between the model’s prediction and the cluster center, where
predictions closer to the cluster center means that the model is more confident
that the text belongs to a particular topic. The sum of the grade given to the
essay by the text classifier and the text clustering model was used as the fitness
function of the genetic algorithm, where those with higher fitness values will
have a higher probability of passing their genes on to future populations.

Figure 1: Clusters generated by the KMeans model, visualized in 2D

The Genetic algorithm first starts with a population of essays generated
using Markov chains, which is a simpler and less successful approach simply
working with the last word and picking the most probable word that would follow
from its vocabulary. We used the open source markovify 2 library to implement
this technique. We picked a weaker algorithm because our approach to grading
these texts would not give reliable results on entirely random sequences of words
or strings. Markov chains also increase the speed of the process as the children of
the population are more likely to be readable if they are formed from reasonably
readable parents.

This first population is then moved to the mating pool in relation to the
scores they receive, for example a text that scored an 8 would be copied to the
mating pool 8 times and one with a score of 1 would be copied only a single time.

2github.com/jsvine/markovify, accessed in August 2020

Computer Science & Information Technology (CS & IT)90

Doing so allows for a higher probability of texts with higher scores “breeding”
and exchanging attributes or genes with other texts. Crossover is then applied
to the population in the mating pool breed better future essays. Sentences of
the two partners going through crossover are passed down to the child where
the child would become a mix of the two parents. See Figure 2 as an example.
In Figure 2, there is a 50 percent chance of a sentence from the first text and
a 50 percent chance that the sentence is selected from the second text, in this
specific example, by pure luck, sentences from the first text were selected more
frequently. There also is a small probability(1/10) that individuals words in the
sentences might be changed to those of the text’s partner. Crossover is further
explained in Algorithm 1. The actual program code was written in python.

Algorithm 1: Crossover

Data: array T1 of sentences; array T2 of sentences; float m, mutation
rate

Result: array child, a combination of the two input texts

1 empty array child;
2 prob ← random(0,1);
3 if prob < 0.5 then
4 add sentence from T1 to child;
5 end
6 else
7 add sentence from T2 to child;
8 end
9 if m > random(0, 1) then

10 replace a word in n sentence of child with corresponding word from
T1 or T2

11 end

Computer Science & Information Technology (CS & IT) 91

Algorithm 2: Text Generation with Genetic Algorithm

Data: integer f , minimum fitness required for the algorithm to stop;
integer maxGen, maximum number of generation for the
algorithm to stop

Result: Population of computer generated texts

1 generation ← 0;
2 create initial population of texts generated by Markov chains;
3 get fitness for each individual text in population;
4 while Fitness < f and generation < maxGen do
5 add text as many times as its score to the mating pool;
6 perform crossover; . as described in algorithm 1

7 empty population;
8 add children to population;
9 increase generation by 1;

10 end

Inputs: Text 1, T1;
Text 2, T2

Perform Crossover
between T1 and T2

Switch a random
word of T1 and T2
with corresponding

indices

If
mutation

Create an array from
children.

Select new T1 and T2
from children array

Repeat until the
score reaches
target score

Evaluate Fitness

Figure 2: Flowchart of the Text Generation Process

Computer Science & Information Technology (CS & IT)92

Figure 3: Simplified Crossover Example

4 Discussion and Future Work

If the basic structure of our approach is kept, then there would be an initial
text population, scored with an automated system and crossed-over with the
other individuals within the population. The first attribute of the algorithm,
the initial population, could be changed from Markov chains to entirely random
sequences of words if the grader is able to work with random texts. Or any
other population of texts that could be combined to generate more meaningful
texts. The grading system could also be replaced with any system that would
be able to grade medium length texts automatically at a reasonable speed. The
implementation of crossover could also be changed, possibly with taking into
account the fact that words can be represented as vectors with word embeddings.
When words represented as vectors, arithmetic operations can also be applied to
words to change their meanings or as a way to perform the steps of the genetic
algorithm. More types of mutations could also be added to improve variety
in word choice and order. In summary, the algorithm can be largely modified
while most of its core properties can be kept. This should allow for further
experimentation for text generation with genetic algorithms.

Computer Science & Information Technology (CS & IT) 93

5 Conclusion

We demonstrate a proof-of-concept for a genetic algorithm for text generation
using automated essay grading as the fitness function. The algorithm uses
sample texts generated by Markov chains trained on the ASAP dataset and
merges those samples with each other to produce texts with higher grades.
Our system for grading is a combination of a text classifier and text clustering
algorithm trained on the aforementioned dataset. The highest score achieved
by the text generated by the genetic algorithm was 54/58.

Most of the components of the approach described may be changed based
on differing needs. The process used to generate the initial text population
may be changed from Markov chains to any process that outputs text. Future
work may even create an entirely random initial population. We chose to use
Markov Chains as they provided somewhat but not completely meaningful text.
Experimentation with mutation rates should also provide an increase in the
quality of the texts generated. The method used for evaluating the quality of
the text is also replaceable as any process that gives a quantitative assessment
of texts could be used as a fitness function. Other approaches to text evaluation
could be added to the algorithms described in this paper, which likely would
increase performance.

6 Acknowledgments

We thank Dr. David Perkins(Hamilton College) for his guidance and help
throughout the development of this project.

References

[1] Tom B. Brown et al. Language Models are Few-Shot Learners. 2020. arXiv:
2005.14165 [cs.CL].

[2] Peter Foltz. “Latent Semantic Analysis for Text-Based Research”. In: Be-
havior Research Methods 28 (Feb. 1996), pp. 197–202. doi: 10.3758/

BF03204765.

[3] Peter Foltz, Darrell Laham, and T. Landauer. “The intelligent essay asses-
sor: Applications to educational technology”. In: Interactive Multimedia
Electronic Journal of Computer-Enhanced Learning (Apr. 1999).

[4] Ian J. Goodfellow et al. Generative Adversarial Networks. 2014. arXiv:
1406.2661 [stat.ML].

[5] Ruli Manurung, Graeme Ritchie, and Henry Thompson. “Using genetic
algorithms to create meaningful poetic text”. In: J. Exp. Theor. Artif.
Intell. 24 (Mar. 2012), pp. 43–64. doi: 10.1080/0952813X.2010.539029.

[6] Luca Manzoni et al. Towards an evolutionary-based approach for natural
language processing. 2020. arXiv: 2004.13832 [cs.CL].

Computer Science & Information Technology (CS & IT)94

[7] Fabian Pedregosa et al. “Scikit-learn: Machine learning in Python”. In:
Journal of machine learning research 12.Oct (2011), pp. 2825–2830.

[8] A. Radford et al. “Language Models are Unsupervised Multitask Learn-
ers”. In: 2019.

[9] Lawrence Rudner, Veronica Garcia, and Catherine Welch. “An Evalua-
tion of IntelliMetricTM Essay Scoring System”. In: Journal of Technology,
Learning, and Assessment 4 (Jan. 2006).

[10] Juergen Schmidhuber. Deep Learning in Neural Networks: An Overview.
2014. arXiv: 1404.7828 [cs.NE].

[11] Sandeep Subramanian et al. “Towards Text Generation with Adversarially
Learned Neural Outlines”. In: NeurIPS 2018. Dec. 2018. url: https:

//www.microsoft.com/en-us/research/publication/towards-text-

generation-with-adversarially-learned-neural-outlines/.

[12] Zhilin Yang et al. XLNet: Generalized Autoregressive Pretraining for Lan-
guage Understanding. 2019. arXiv: 1906.08237 [cs.CL].

Computer Science & Information Technology (CS & IT) 95

© 2021 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org

