AN ONLINE GRAPHICAL USER INTERFACE
APPLICATION TO REMOVE BARRIERS
IN THE PROCESS OF LEARNING NEURAL
NETWORKS AND DEEP LEARNING
CONCEPTS USING TENSORFLOW

Justin Li! and Yu Sun?

Troy High School, 2200 East Dorothy Ln, Fullerton, CA 92831
2California State Polytechnic University,
Pomona, CA, 91768, Irvine, CA 92620

ABSTRACT

Over the years, neural networks have become increasingly important and complex due to the
rising popularity of artificial intelligence technologies. It allows for complex decision prediction
making, and is an essential part in the modern Al industry. However, due to the complex nature
of neural networks, a lot of complex math and logic has to be well understood along with a
proficiency in programming in order for one to make anything practical with this technology.
This is unfortunate, however, that many do not have the required high level math skill, or the
proficiency in coding, blocking a lot of people from reaching and experimenting with this
technology. My method attempts to eliminate the complexity that developing neural networks
bring, and bring a clearer picture of what the user may be creating and working with. With the
help of modern web technologies such as JavaScript and tensorflow.js, 1 was able to create a
GUI program that can create, train, and test a neural network right on a browser, and without
writing any code with a comparable result [13].

KEYWORDS

Neural network, deep learning, CNN.

1. INTRODUCTION

From self-driving vehicles to advances in healthcare applications, Deep Learning has been
revolutionizing today’s society [2]. For its ability to learn from large amounts of unstructured and
unlabeled data, Deep Learning possesses the capability to perform complicated tasks such as
driving, translating, and even performing image recognition [4]. And as the goal of Deep
Learning is to simulate the process of a learning human brain, a multi-layered Neural Network is
used at its core [5]. It functions as universal function approximators, which allows it to be trained
for any circumstances given an appropriate set of input and output data-set. This is also the main
reason for the popularity and potential of Deep Learning, as its flexibility allows for it to adapt to
real world situations [8]. Such flexibility enables Deep Learning to automate jobs never thought
was possible before, such as self-driving and image-colorization [3]. Fields such as Healthcare
even started adopting this technology to create diagnosis for Breast Cancer based on related data

[1].

David C. Wyld et al. (Eds): ICAIT, CBloT, WiMo, CRYPIS, ICDIPV, CAIML, NLCA - 2022
pp. 193-200, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.121215

http://airccse.org/cscp.html
http://airccse.org/csit/V12N12.html
https://doi.org/10.5121/csit.2022.121215

194 Computer Science & Information Technology (CS & IT)

However, all these benefits come with a catch, and that is that Deep Learning involves complex
math knowledge such as Multivariate Calculus, Linear Algebra, and Statistics. Knowledge such
as Algorithms and Programming are also required in order to implement Deep Learning [7].
However, as the data shows in an article, in 2019, there are only 23.9 million out of 7.71 billion
who are programmers and software developers worldwide, which is less than 1% of the
population. Because technologies such as weather predictions depend on this sort of technology,
the result of the incompetence in this field will result in less innovation in this field, thus
technologies such as smart stock trading will cease to improve [11].

Some preexisting softwares and applications have allowed users to create and view their neural
networks visually <evidence needed>, but most have confusing layouts, complicated user
interfaces, or lack the ability to create complex neural networks with custom data entries. Tools
such as the Tensorflow Playground <source needed>, only allows the user to choose from a
defined set of training data. This prevents the user from testing the architecture’s efficiency on
real world data that the architecture may be used on. These types of implementation pose a limit
for the user on their data variability, neural network complexity, and usefulness in general. A
second problem with these software is that they generally have very complex and hard to
understand user interfaces, making it very hard for beginners to experiment with and use. Static
user interfaces, such as the one from Tensorflow, limits the user to the type and complexity of
neural networks they can create, and thus making it impossible for more advanced users to create
more sophisticated architectures [14].

Taking the pros and cons of previous methods into consideration, our goal is to create a simple,
easy to use, modular, and highly expandable software for creating neural networks visually. With
that in mind, our implementation features a minimalism design, a highly expandable and easy to
use layout, as well as the ability to run directly on a web browser. Compared to existing methods,
our method is a lot cleaner and organized, while being highly functional and expandable.

In two application scenarios, we demonstrate how the above combination of features increases
the experiences and speed for users to use this app. First we show the ease of use and
functionality of our method through a comprehensive application test. Second, we compared the
speed at which a user can create a functional and well performing neural network with our
method, previous methods, and traditional method.

The rest of the paper is organized as follows: Section 2 provides the details on challenges that |
encountered during design and development; Section 3 focuses on the details of my solution and
well as the solution to the problems described in Section 2; Section 4 presents the relevant details
about the experiments regarding the solution, comparing it to older methods and alternate
methods; Section 5 gives more details on the alternate methods that was used to compare to my
method. Finally, Section 6 gives the conclusion as well as planned future works on this project.

2. CHALLENGES

In order to build the project, a few challenges have been identified as follows.

2.1. Parsing custom data

Letting the user choose their own data to train the neural network on is a very useful feature, as it

allows for a wider and more expansive training environment [9]. However, it is not always clear
if the user’s data structure will match the neural network’s input structure, or is even a valid

Computer Science & Information Technology (CS & IT) 195

dataset. Therefore checks will have to be performed on both the network and the neural network
to ensure no failure occurs during training.

2.2. Creating a usable, minimalistic user interface

User interface is a crucial part of our method, as it is aimed towards beginners. And while
minimalistic user interfaces are great at being easy to use and simple to understand, they often
lack functionality, or take up too much space. The way of expression is also important, as we
need to represent an abstract idea of a neural network, a system of matrix dot products and
vectors, into a graphical visual that is accurate, easy to understand and customizable. Other
aspects such as tutorials and controls have to all be as intuitive as possible.

2.3. Making a custom architecture that is trainable

Training a neural network well can sometimes be the hardest part of Al development. Things
such as training hyper-parameters and activation have to be chosen wisely for a good performing
network, and those are dependent on the data. These hyper-parameters can be chosen through
calculations and parameters, but are often left to the user to decide, which can be quite daunting
to beginners. Other things like training optimizer and loss also influences the network’s
performance, and using the wrong ones can have devastating effects on the training’s outcome.

3. SOLUTION

Through the interaction with the graphical neural network representation, the different aspects
and features of the network are read in and interpreted to create a tensorflow neural network that
depicts exactly what is shown on screen. During the network creation, the user interacts with the
user interface, manipulating their network architectures and uploads their training input and
outputs. The graphical network is then interpreted, and a tensorflow neural network of
equivalence is created automatically. During training, the program checks the validity of the input
and output shapes of both the neural network and the training data. After the check is complete,
training begins, and the program reports the training progress to the user graphically. After
training, the final loss for the neural network is shown.

‘ Browser Storage

Frontend GUI

Frontend JS — TF.JS API

I |

! frontend processing

Figure 1. Overview of the system

196 Computer Science & Information Technology (CS & IT)

rySelector('#te) .addEventListener('click', ()
11 || tra r == 0) return

() * (length-1))

[index]])

pred

r(let 1 = 8; i < pred[0].1
pred[8][i] = Math.round(
}

changeStatus("Input Data: " + tXarr[index] + " " + pred + "")

Figure 2. A segment of the code

AIVIS

Figure 3. Screenshot and Ul

In order to create the graphical interface to be scalable and user friendly, I used HTML CSS to
style the interface, as well as JavaScript to provide its functionality. The user interacts with the
HTML + CSS site, and uploads their input and label datasets. When the datasets are uploaded,
they are stored in the browser’s local storage for the ease of access and modification. When the
train button is clicked, the application attempts to create and compile the neural network in TFJS
based on what the user defined on the front-end. It then automatically partitions the data-set into
training set, validation set, as well as testing sets. The program then uses the TFJS library to train
the neural network, and sends analytic info to the front-end after every epoch, things like training
and validation losses. After training is complete, the user can then choose to test the network by
pressing test, which then the program will select a random data-point from the testing data-set,
and run it through the neural network, and send back the output.

Computer Science & Information Technology (CS & IT) 197
4. EXPERIMENT

4.1. Experiment 1
Time to create a 5 layer DL MLP network (min)

35

30

25

20

Learners Amatuer Developers

W Traditional AIVIS

Figure 4. AIVIS is better for speed prototyping for both amateurs and beginners

My solution proves that the output resulting from this method is comparable, and even sometimes
better than traditionally made neural networks.

Epoch 56/50
18/18 [] - 0s 447us/step - loss: 0.4759 - accuracy: 0.5596

26/26 [] - Bs 370us/step - loss: 0.4580 - accuracy: 0.5854
Accuracy: 58.54

Figure 5. Final loss of traditional network after 200 epochs and 25 batch size

Total params: 98
Trainable params: 98
Non-trainable params:

Figure 6. Neural network structure of traditional network

198 Computer Science & Information Technology (CS & IT)

AIVIS

ATAT A

Vos u A\ ‘v
x&d‘kwy‘\ 0“" /

% v.eg e (&’.‘()
'o“\'/’ £R S

'/A \v/ \\'"

Network Loss
0.2394119

Figure 7. Final loss of the model trained with AIVIS, with the same hyper parameters

After about 50 training cycles with the same training parameters, data, and architecture, the
average loss of the model trained with our method was about 30% lower than traditional. The
optimizer, loss, and activation in each model is the same, but somehow the training results show
that the visual made neural network performs better overall than the traditional one. Testing the
same neural network out, it seems that AIVIS was better at avoiding overfitting, as the output of
the neural network trained in AIVIS had more variety than that trained traditionally.

4.2. Experiment 2

Our solution not only dramatically decreases the amount of time to create neural networks, it also
simplifies the steps needed to get a network working.

experiment settings: indicate that experiment design is scientific.

1. 1 participant
2. Has knowledge in neural networks and coding

The average amount of steps required to create and train a neural network in our solution is
around 20-30 steps, depending on how complex the neural network is. However, when coding in
python with Tensorflow, the user needs around at least 70 lines of code, and also needs to prepare
the data, including partitioning and prepossessing it. Overall, the much simpler design and nature
of our solution results in a faster development speed, as well as less room for technical errors.

Computer Science & Information Technology (CS & IT) 199
4.3. Experiment 3

Even though our solution can offer a wide variety of neural networks, AIVIS can only create
fully connected layers as of the moment, with many limitations on it due to graphical inadequacy.

Our solutions can solve simple problems such as predicting the best color of text to go above a
colored background, XOR classifications, and other simpler problems. However, when more
neurons are needed for a specific problem such as MNIST, our solution is currently incapable of
doing so, as our graphical user interface does not allow for such a big network.

The experiments showed that AIVIS is a viable way to create neural networks graphically, with a
much faster prototyping time and a better result than traditional neural networks. This is due to
the minimalist nature of the program, where the user can easily and quickly change hyper
parameters and train over and over again.

The result was surprising, as | was not expecting the graphical method to outperform the
traditional method with the same architectures and training parameters. A possible source to this
difference may be in how the code was run, and also how the weights are initialized. But
currently with my code analysis, there is no difference between the two methods’ way of weight
initialization.

5. RELATED WORK

Neutron is a program that allows users to visually see their neural network in a node based
fashion. It has a simple user interface and works with a variety of neural network types. It’s way
of representation is modular and dynamic, which is something our method needs to improve on.
However, Neuron lacks the ability to modify or create neural networks.

Tensorflow Playground is an online application that allows users to tinker with neural networks
of different sizes without hassle.

Neuron is a program which aims to solve regression, time series, binomial and multi-nominal
classification problems for businesses and professional needs. It has a way to visualize data that
the user is working with, and is suited towards companies which need rapid prototyping.
However, Neuron is not an open source software, and is more aimed towards big businesses and
professional work, and therefore does not suit an average user or student very well. Even though
AIVIS may not perform as well in either functionality, efficiency, or scalability as Neuron, it is
more education oriented and meant for small scale development. And while the free version of
Neuron lacks the ability to export trained neural networks, AIVIS is planned to add that feature in
a later version.

6. CONCLUSIONS

The goal is to create a simple, light weight, and easy to use GUI application for creating neural
networks in order to mitigate the flaws of traditional neural network development. And when
comparing the result of our method and traditional methods, our method has shown to be over
three times faster in creating and training neural networks, while retaining network performance
and accuracy. Our method shows that neural networks can be created and trained faster with
comparable, and sometimes better, performance than traditional methods. As the use of a
graphical interface provides a more intuitive and simple usage experience.

200 Computer Science & Information Technology (CS & IT)

The current limitation of our method is that neural network training is not optimal due to the lack
of customizability in hyper-parameters [15]. Users don’t have much choice and selections over
how the networks get trained, when to stop training (early stopping), what gradients to use, etc...
Our method also lacks scalability due to its limiting Ul design, making it more suitable as a
demonstration tool than a real developer tool. The training speed and network complexity is also
extremely lacking, as the neural network is trained on the client’s side instead of on a dedicated
server. This compromises the amount of complexity the neural network can be, as well as
limiting the training speed by a wide magnitude.

As the user interface is not very well designed in this solution, our future work will feature a
better, more modular, and more scalable interface; allowing for more complex neural networks to
be made. Training will also be moved to a back-end dedicated server, which can potentially
increase training and compiling speed by 300 to 700% depending on the network’s complexity.
Features such as exporting an integrate neural network file, such as TensorFlow’s h5 files, will
also be included for a more integrated and streamline workflow [6].

REFERENCES

[1] Steiner, David F et al. “Impact of Deep Learning Assistance on the Histopathologic Review of
Lymph Nodes for Metastatic Breast Cancer.” The American journal of surgical pathology vol. 42,12
(2018): 1636-1646. doi:10.1097/PAS.0000000000001151

[2] Daniels, Norman. "Justice, health, and healthcare." American Journal of Bioethics 1.2 (2001): 2-16.

[3] Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Colorful image colorization." European
conference on computer vision. Springer, Cham, 2016.

[4] Honneth, Axel, and Avishai Margalit. "Recognition.” Proceedings of the Aristotelian society,
supplementary volumes 75 (2001): 111-139.

[5] Piramuthu, Selwyn, Michael J. Shaw, and James A. Gentry. "A classification approach using multi-
layered neural networks." Decision Support Systems 11.5 (1994): 509-525.

[6] van Der Aalst, Wil MP, et al. "Workflow patterns." Distributed and parallel databases 14.1 (2003): 5-
51.

[71 Goodfellow, lan, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[8] LeCun, Yann, Yoshua Bengio, and Geoffrey Hinton. "Deep learning." nature 521.7553 (2015): 436-
444,

[91 Hu, Yu Hen, and Jeng-Neng Hwang, eds. "Handbook of neural network signal processing." (2002):
2525-2526.

[10] A. G. Salman, B. Kanigoro and Y. Heryadi, "Weather forecasting using deep learning techniques,"
2015 International Conference on Advanced Computer Science and Information Systems (ICACSIS),
2015, pp. 281-285, doi: 10.1109/ICACSIS.2015.7415154.

[11] Molina, Gabriel. "Stock trading with recurrent reinforcement learning (RRL)." CS229, nd Web 15
(2016).

[12] Feindt, M., and U. Kerzel. "The NeuroBayes neural network package." Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated
Equipment 559.1 (2006): 190-194.

[13] Smilkov, Daniel, et al. "Tensorflow. js: Machine learning for the web and beyond." arXiv preprint
arXiv:1901.05350 (2019).

[14] Abadi, Martin. "TensorFlow: learning functions at scale.”" Proceedings of the 21st ACM SIGPLAN
International Conference on Functional Programming. 2016.

[15] MacKay, David JC. "Hyperparameters: optimize, or integrate out?." Maximum entropy and bayesian
methods. Springer, Dordrecht, 1996. 43-59.

“© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons
Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Over the years, neural networks have become increasingly important and complex due to the rising popularity of artificial intelligence technologies. It allows for complex decision prediction making, and is an essential part in the modern AI industry. ...
	Keywords

