
David C. Wyld et al. (Eds): ARIA, SIPR, SOFEA, CSEN, DSML, NLP, EDTECH, NCWC - 2022

pp. 25-36, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.121503

AN EMPIRICAL STUDY OF THE

PERFORMANCE OF CODE SIMILARITY IN

AUTOMATIC PROGRAM REPAIR TOOL

Xingyu Zheng, Zhiqiu Huang, Yongchao Wang and Yaoshen Yu

College of Computer Science and Technology,

Nanjing University of Aeronautics and Astronautics, Nanjing, China

ABSTRACT

Recently, code similarity has been used in several automated program repair (APR) tools. It

suggests that similarity has a great contribution to APR. However, code similarity is not fully
utilized in some APR tools. For example, SimFix only uses structure similarity (Deckard) and

name (variable and method) similarity to rank candidate code blocks that are used to extract

patches and do not use similarity in patch filtering. In this paper, we combine the tool with

longest common sequence (LCS) and term frequency-inverse document frequency (TFIDF) to

rank candidate code blocks and filter incorrect patches. Then we design and set up a series of

experiments based on the approach and collect the rank of the correct patch and time cost for

each selected buggy program. In the candidate ranking phase, LCS and TFIDF improve the

rank of the block, which contains the correct patch for several bugs. In the patch validation

phase, LCS filters out 68% of incorrect patches on average. It shows that code similarity can

greatly improve the performance of APR tools.

KEYWORDS

APR, empirical study, LCS, TFIDF.

1. INTRODUCTION

In recent years, automated program repair has become a hot research direction. APR consists of

automatically finding a solution to software bugs without human intervention [1] due to the fact

that debugging software failures is still a painful, time consuming, and expensive process [2].

Generally, the process of APR can be divided into three stages: fault localization, patch
generation and patch validation [3]. When given a buggy program, the buggy code block is first

determined in fault localization stage, and then the APR tool tries to create patches in the patch

generation stage, the program is finally executed to see whether the patch is correct in patch
validation stage.

Automated program repair can be simply divided into four categories: manual template (PAR [4],

SketchFix [5]), semantic constraint (Angelix [6], SOSRepair [7]), statistical analysis (GenPat [8],
SequenceR [9]), heuristic search (SimFix [10], CapGen [11]). Redundancy-based program repair

is fundamental to APR, and it is based on the hypothesis that code may evolve from existing code

that comes from somewhere else, for instance, from the program under repair [12]. When given
the fault localization result, APR tools based on redundancy search code blocks that are similar to

the buggy code block in the current program, the patches generated from these code blocks are

then validated to find the first correct patch that passes all test cases. Recently, there have been
several redundancy-based APR techniques (such as SimFix [10], CapGen [11], ssFix [13],

http://airccse.org/cscp.html
http://airccse.org/csit/V12N15.html
https://doi.org/10.5121/csit.2022.121503

26 Computer Science & Information Technology (CS & IT)

CRSearcher [14]). These techniques leverage different similar metrics like LCS, TFIDF, name
similarity, Deckard and so on to compute the similarity between the buggy code block and the

other blocks. The experimental results indicate that they all perform well in repair effectiveness.

However, the techniques do not take full advantage of code similarity. On the one hand, for

candidate code block ranking in patch generation stage, similar metrics used in different
techniques can be combined to see if the priority operation is improved in this way. On the other

hand, in patch validation stage, each of the techniques needs to validate a large number of patches

generated in the last stage. We can utilize similar metrics to dynamically reduce the search space
of patches before validation.

Our study of how code similarity works on the performance of APR tool takes SimFix, a state-of-
the-art approach to design the experiment and analyze the results. First, we only select the buggy

programs that have been successfully repaired by the tool for the following experiments. We

exclude the buggy programs that the tool incorrectly repaired (the generated patch passes all test

cases but is not correct) and failed to repair (fail to generate a patch that can pass all test cases or
time out) for convenience. Second, we utilize two similarity metrics that capture syntactic

messages —LCS and TFIDF in both patch generation stage and patch validation stage of the tool,

then we design and perform a series of experiments. The main goal of the experiments is to study
how good the new similarity metrics are at improving the rank of the first correct patch in the

search space. For evaluating the experimental performance, we collect the rank of the first correct

patch and the time cost of each buggy program before and after applying new metrics and
compare the experimental data. Our experimental results are clear-cut. Firstly, LCS and TFIDF

effectively rank candidate similar code blocks, improving the mean reciprocal rank (MRR) by

26%. Secondly, utilizing LCS in patch filtering successfully excludes 68% incorrect patches on

average.

To sum up, the main contributions of our work are as follows:

• An empirical study of how code similarity performs in a concrete APR tool.

• When we add new code similarity metrics to improve the rank of the first correct patch for a

buggy program in APR tool, the results perform well. LCS and TFIDF rank the true

candidate code block higher in patch generation stage and patch validation stage, LCS filter
out a large number of incorrect patches, let the correct patch be validated earlier.

• We collect the rank distributions and time cost of the buggy programs after applying new

similar metrics. The results show what contributes to the huge distinction of the result of
ranking and time cost and why new metrics do not perform better in some cases.

The remainder of this paper is structured as follows: The related work is given in Section II.
Section III describes the research methodology. The numerical results and analysis are presented

in Section IV. Finally, conclusions are drawn in Section V.

2. RELATED WORK

In this section, we discuss the redundancy-based APR tools and several empirical studies.

2.1. Redundancy-based APR

In this subsection, we will present an overview of redundancy-based automated program repair.
As mentioned before, the repair process can be divided into three stages: fault localization, patch

generation and patch validation. In fault localization stage, given a buggy program, APR tool

identifies an ordered list of suspicious buggy blocks using approaches like Ochiai [15]. In patch

Computer Science & Information Technology (CS & IT) 27

generation stage, the tool first searches for donor code blocks that are similar to the buggy code
for each buggy location, then compares the buggy code and donor code to extract patches for

each donor code block and get the search space of patches. In patch validation stage, the patches

are tried one by one from the search space to find the first correct patch that can pass all test

cases.

In particular, SimFix [10] leverages Deckard [16] and name similarity to calculate the similarity

between the buggy code block and candidate code blocks in patch generation stage and exclude
patches that use less frequent modifications based on offline mining of the frequency of different

modifications. CapGen [11] prioritizes candidate code blocks that are contextually similar to

buggy code block and rank the generated patches by integrating the fault space (suspicious value
of buggy code), the modification space (replacement, insertion or deletion) and the ingredient

space (context similarity) together. ssFix [13] extracts tokens from buggy code block and

leverages TFIDF to search for candidate code blocks and rank them. CRSearcher [14] treats

similar code search as a clone detection problem and utilizes a variant of Running Karp Rabin
Greedy-String-Tiling Algorithm (RKR-GST), a token based approach to search for candidate

code blocks.

2.2. Empirical Studies on APR

In this subsection, we will present recent empirical studies on automatic program repair. Moumita
Asad et al. [17] analyze the impact of syntactic and semantic similarity on patch prioritization.

They rank patches by integrating genealogical, variable similarity (semantic similarity) and

LCS(syntactic similarity), and the results are better than using one similarity metric alone. Xiong
et al. [18] perform an empirical study that identify patch correctness in test-based APR. For each

test case, they leverage LCS to calculate the similarity of complete-path spectrum (the sequence

of executed statement IDs) between the two executions before and after applying a patch and
judge whether a patch is correct. The approach successfully filters out 56.3% of incorrect patches.

Liu et al. [19] systematically investigates the repair effectiveness and efficiency of 16 APR tools

in recent years. They find that fault localization plays an extremely important role in a repair

process, and accurate localization can greatly reduce the number of generated patches. Chen et al.
[12] define and set up a large-scale experiment based on four code similarity metrics that capture

different similarities—LCS, TFIDF, Decksrd and Doc2vec. The paper considers two cases—

context-less and context-aware (i.e., one-line buggy code and multi-line buggy code) and
performs the experiments. According to their rank statistic, all of the 4 similar metrics reduce

over 90% of the search space in both cases; at the same time, LCS and TFIDF can rank the

correct patch higher than Deckard and Doc2vec in context-less cases, and the performance of the

4 metrics is close in context-aware case. Furthermore, the paper studies the feasibility of
combining different metrics and points out that LCS and TFIDF can be used together in context-

aware cases. Consider the great performance of LCS and TFIDF and the fact that most bugs

selected in our experiment have multiple lines. We decide to utilize them in SimFix to investigate
how code similarity can improve the performance of APR tool.

3. RESEARCH METHODOLOGY

In this section, we will describe our research methodology.

The overall workflow of our work is illustrated in Fig. 1. For each buggy program, the fault

localization stage returns a list of buggy code block list based on their suspicious score, then the
APR tool searches similar code blocks in the program for the buggy blocks, the similarity

between the candidate code block and the buggy block is requested to be more than a threshold

28 Computer Science & Information Technology (CS & IT)

(dynamically changed based on the number of lines of the buggy block). The searched similar
code blocks will be ranked based on the similarity metrics of the APR tool. Here we apply LCS

and TFIDF, and this step returns the list of ranked candidate code blocks. Patches generated from

the candidates compose the search space. Different from the original process that directly

validated the patches one by one, when a patch is to be validated, we first calculate whether it is
highly similar to the patches that have been validated to be incorrect. If so, we exclude this patch

and verify the next one; otherwise, we validate this patch and add it to the set of incorrect patches

if it can not repair the bug. Finally, a correct patch is returned.

3.1. Overview of the Research Methodology

Our research methodology is as follows. In the patch generation stage, when given the list of

candidate code blocks, The original tool will rank them based on structure similarity and name

similarity. We first directly add LCS and TFIDF, respectively, to the original metric and collect
the experiment data. Next, we combine LCS and TFIDF, execute the tool with and without name

similarly and collect the data. We investigate the statistical data of the rank of the first correct

patch and the time cost for each bug based on different settings and compare which condition the
tool performs best.

In the patch validation phase, the tool ranks the generated patches based on three rules and

excludes delete operation, and the tool includes 16 most frequent modifications (like inserting an
If statement in the buggy point) to reduce the search space of patches. However, there still exists

a great number of incorrect patches. Moumita Asad et al. [17] confirms that similar metrics based

on syntactic message like LCS can greatly prioritize patches. We leverage LCS to filter out those
incorrect patches. Since unvalidated incorrect patches are similar to validated incorrect patches

and are not similar to the correct unvalidated patch, we calculate the similarity scores between the

next patch to be validated and the patches which have been validated and filter out those patches
that are very similar to the incorrect patch (for example, the similarity score > 0.9). We

investigate the statistical data of the rank of the first correct patch and time cost and then analyze

the performance of the filtering metric.

Figure 1. Illustration of our work in APR tool.

3.2. Similarity Metrics

Our core idea is to analyze how code similarity contributes to APR. The metrics used by the
original tool and the metrics we use are:

1) Structure similarity between AST (Deckard)

2) Variable similarity and method similarity (Name similarity)
3) Longest common sequence (LCS)

Computer Science & Information Technology (CS & IT) 29

4) Term frequency–inverse document frequency (TFIDF)

The four metrics are explained in detail in the following:

1) Deckard: Deckard is a metric that calculates similarity at AST level. It first generates
feature vectors from the buggy code and candidate code blocks. Each dimension of the

feature vector captures different information of the code block, such as the number of

operations. Deckard then calculates cosine similarity of the feature vectors of buggy block
and candidate block. SimFix uses Deckard for measuring AST similarity and selects the

top 1000 at most candidates to further measure name similarity.

2) Name similarity: Name similarity consists of variable similarity and method similarity.
Variable similarity calculates how similar the variables in two code blocks are. The tool

first obtains two sets of variables from two code blocks and then calculates the similarity

of the two sets using Dice’s coefficient. Like variable similarity, method similarity

calculates how similar the names of methods in two code blocks are, and method similarity
is calculated in the same way as the variable similarity.

3) LCS: LCS treats the source code as a sequence of characters to calculate the longest

common sequence of the code blocks. So LCS is the most syntactic metric. In the current
scene, similar blocks or patches are highly consistent in the sequence of words and are, of

course, highly consistent in the sequence of characters. So in our methodology, LCS is

used to calculate the similarity between candidate code blocks and the buggy code block
and the similarity between the next verified patch and the validated patches.

4) TFIDF: TFIDF, i.e., term frequency-inverse document frequency, is used to evaluate the

importance of a word to a document set or one of the documents in a corpus. This means

the importance of a word increases in proportion to the number of times it appears in the
document but decreases in inverse proportion to the frequency of its appearance in the

corpus. The similarity calculation of TFIDF is based on a token level, so TFIDF is less

syntactic than LCS. TFIDF can more effectively utilize unique tokens. If we have a
candidate code block that contains the same variable that only occurred once in the buggy

block, it is likely that the code block is a good candidate. In our methodology, TFIDF is

used to calculate the similarity between candidate code blocks and the buggy code block.

We do not use TFIDF to filter incorrect patches because the set of validated patches is
dynamically changing. Every time the next patch is to be validated, IDF needs to be

calculated again for all the patches in the set.

4. EVALUATION

To evaluate how code similarity can improve the performance of APR tool, we design a series of

experiments. Our experiment was conducted on a 64-bit Linux system with Intel(R) Core(TM)
i5-6300HQ CPU and 12GB RAM, which is close to the environment of the original experiment

of the tool that we study.

4.1. Research Questions

RQ1: How do LCS and TFIDF perform in candidate ranking? When given the buggy code block
after fault localization, the original tool searches the current subject and gets a set of candidate

code blocks based on a similarity threshold. Then the tool uses Deckard and name similarity to

rank the candidates. The rank of candidate code blocks directly affects the rank of generated

patches in the following validation step. The higher the true candidate ranking, the earlier the
correct patch will be validated. Therefore the main purpose of RQ1 is to see how LCS and TFIDF

can rank the true candidate code block which contains the correct patch over the other.

30 Computer Science & Information Technology (CS & IT)

RQ2: How does LCS perform in incorrect patch filtering? After the candidate code blocks are
ranked, the original tool matches the candidate code block with the buggy code block at AST

level and extracts patches for validation. Due to a large amount of ranked candidate code blocks,

the corresponding patch search space is enormous. For those bugs whose true candidate ranks

low, a great number of incorrect patches will be validated, which has a bad effect on the tool’s
performance. We use LCS to filter out patches that are similar to validated incorrect ones and see

to what extent the approach will improve the rank of correct patch.

RQ3: What affect the performance of LCS and TFIDF? We repeat the original experiment of the

tool in our machine and collect the result of repair time and rank of the first correct patch. Then

we integrate LCS and TFIDF with the tool and get the experimental data. The result of the
original experiment shows that in different bugs from different subjects, the rank of the first

correct patch and the time cost is greatly distinct. the rank of the first correct patch varies from 1

to 1500, and the time cost ranges from 1 to 54 minutes. The purpose of RQ3 is to analyze the

factors that influence the performance of code similarity metrics.

4.2. Data set

To evaluate the effectiveness of LCS and TFIDF, we select the 26 bugs from 4 subjects in

Defects4j [20] benchmark that has been fixed by the tool and perform our experiment. We

exclude 4 bugs from JFreechart (Chart) because they can not be successfully fixed on our
machine. Table 1 shows statistics about the projects.

Table 1. Subjects For Evaluation

Subjects Bugs

Closure compiler (Closure) 4

Apache commons-math (Math) 13

Apache commons-lang (Lang) 8

Joda-Time (Time) 1

Total 26

4.3. Experimental Results

We now present the result of our experiments on the performance of code similarity in APR tool.

4.3.1. Research Question 1: How do LCS and TFIDF Perform in Candidate Ranking?

We investigate the research question on the 26 bugs, and the rank of the first correct patch and

time cost (in minutes) for the bugs are shown in TABLE II. In the table, column ”Origin” denotes
the ranking result of the original tool, column ”L+T” denotes the ranking result of the

combination of LCS, TFIDF and the tool, column ”L+T−NS” denotes the ranking result of LCS,

TFIDF and Deckard. It is nice that integrating LCS and TFIDF with the original tool in the

candidate ranking phase does not change the time cost a lot whether the rank of the first correct
patch is changed. So we do not need to analyze the time cost performance (in minutes) in this

research question.

From TABLE II, we can see that both LCS and TFIDF successfully improve the rank of the first

correct patch in many cases, and for those bugs whose correct patch has been ranked first in the

tool, LCS and TFIDF do not make the result worse. We calculate the mean reciprocal rank for

each setting and see that the performance of LCS and TFIDF is very close. They both improve
the MRR by 10%. When combining the two metrics and integrating with the tool, the

Computer Science & Information Technology (CS & IT) 31

performance is almost unchanged from the results of using the two tools alone. This may be
because LCS and TFIDF both calculate similarity scores based on the syntactic message of code

blocks. As shown in the L+T−NS column, we replace the name similarity metric with the

combination of LCS and TFIDF and execute the program. The results show that in this setting,

MRR has an improvement of 26%, which is higher than integrating all the metrics. This means
LCS and TFIDF rank candidate code blocks better than name similarity. It is because name

similarity only collects the variable name and method name in a code block, but TFIDF collects

all tokens, i.e., all words in the block. LCS similarly calculates the scores according to all the
characters in the block.

Table 2. Rank and Time Statistic in Different Settings

Bugs Origin LCS TFIDF L+T L+T-NS Time

Math5 1 1 1 1 1 2

Math50 8 10 9 9 4 4

Math53 2 2 2 2 2 1

Math63 16 16 14 16 9 5

Math70 1 1 1 1 1 1

Math71 14 9 9 9 9 5

Math75 8 4 8 4 4 1

Lang27 7 6 4 4 1 2

Lang41 2 1 1 1 1 10

Lang58 1 1 1 1 1 1

Closure73 1 1 1 1 1 7

Math33 55 62 62 62 61 4

Math35 5 5 5 5 5 6

Math57 112 119 113 110 111 5

Math59 9 9 9 9 9 10

Math79 562 559 559 559 559 18

Math98 212 211 212 211 212 10

Lang16 1491 1497 1494 1489 1436 51

Lang33 42 36 39 35 32 1

Lang39 1296 1316 1314 1310 1302 54

Lang43 6 6 6 6 6 7

Lang60 130 117 116 118 115 10

Time7 431 428 438 430 440 23

Closure14 344 344 344 344 347 53

Closure57 21 25 21 24 22 17

Closure115 3 3 3 3 3 6

MRR 0.248 0.274 0.273 0.277 0.313

4.3.2. Research Question 2: How does LCS Perform in Incor Rect Patch Filtering?

We investigate the research question on the 26 bugs, and the rank of the first correct patch and
time cost (in minutes) are shown in TABLE III. In the table, column ”Rank(o)” denotes the

ranking result of the original tool, column ”Rank(f)” denotes the ranking result with incorrect

patch filtering, column ”Time(o)” denotes the time cost of the tool, column ” Rank(f)” denotes
the ranking result with incorrect patch filtering. As analyzed in Section III and RQ1, The ranking

performance of LCS and TFIDF are highly similar, and calculating TFIDF in a dynamically

changing set of patches is time-consuming. So we only focus on LCS. In this research question,

we can see that LCS makes significant progress in filtering incorrect patches and reducing time
cost.

32 Computer Science & Information Technology (CS & IT)

From TABLE III, we can see that the rank of the first correct patch for some bugs is extremely
low, especially for lang16 and lang39. The rank of the correct patch is over 1000. This means the

vast majority of patches in the search space are incorrect. We utilize LCS to calculate the

similarity scores between the next patch to be validated and the set of validated incorrect patches

and exclude the related patch if one of the similarity scores exceeds a threshold. Here we set the
threshold as 0.9 in common.

Table 3. Rank and Time Statistic After Filtering.

Bugs Rank(o) Rank(f) Time(o) Time(f)

Math5 1 1 2 2

Math50 8 6 4 2

Math53 2 2 1 1

Math63 16 13 5 2

Math70 1 1 1 1

Math71 14 12 5 5

Math75 8 5 1 1

Lang27 7 6 2 2

Lang41 2 1 10 4

Lang58 1 1 1 1

Closure73 1 1 7 7

Math33 55 26 4 4

Math35 5 5 6 6

Math57 112 39 5 3

Math59 9 9 10 10

Math79 562 110 18 5

Math98 212 58 10 4

Lang16 1491 354 51 15

Lang33 42 15 1 2

Lang39 1296 173 54 9

Lang43 6 6 7 7

Lang60 130 59 10 3

Time7 431 244 23 15

Closure14 344 42 53 12

Closure57 21 21 17 17

Closure115 3 2 5 5

AVERAGE 189 47 12 5.4

We can see that the ranks of the first correct patch of the bugs in TABLE III are extremely

improved, and the time cost is greatly reduced. 75% improves the average rank of the first correct
patch and the average time cost is improved by 55%, and the average reduction of search space is

68% for the bugs whose ranking results have changed. This means in the patch validation stage,

filtering unvalidated incorrect patches greatly improves the rank of the first correct patch. For

math33 and lang33, the time cost does not reduce and even increases a little. It is because the
number of exclusions is in the dozens, which is inadequate to offset the time consumption of

calculating similarity scores. For other bugs, the time cost reduces greatly because the time

consumed in executing the tests is significantly cut down, achieving an average reduction of
56%.

4.3.3. Research Question 3: What Affect the Performance of LCS and TFIDF?

Due to the distinct experimental result of the 26 bugs from 4 subjects, we further analyze what

contributes to the difference in this research question. To do this, we print out the buggy code

Computer Science & Information Technology (CS & IT) 33

block list (the rank of the true buggy block of each bug is shown in TABLE IV), the ordered list
of candidate code blocks and the list of generated patches in relative repair stages and investigate

the collected message together with the log message of each bug printed by the original tool.

Table 4. Rank of the Buggy Code.

Bugs Rank Bugs Rank

Math33 6 Math5 1

Math35 3 Math50 1

Math57 12 Math53 1

Math59 2 Math63 1

Math79 18 Math70 1

Math98 3 Math71 1

Lang16 20 Math75 1

Lang33 3 Lang27 1

Lang39 19 Lang41 1

Lang43 4 Lang58 1

Lang60 7 Closure73 1

Time7 11

Closure14 2

Closure57 2

Closure115 5

As shown in TABLE IV, the 26 bugs can be divided into two groups according to the rank of the

true buggy block. On the one hand, for those bugs that the true buggy block is ranked first, the
rank of the first correct patch improved when combining LCS and TFIDF with the original tool,

but filtering incorrect patches did not contribute to a higher ranking. This is because these bugs’

search space is too small and does not contain many similar incorrect patches. On the other hand,

for those bugs where the true buggy block is not ranked first, the search space was extremely
reduced by leveraging LCS to filter out incorrect patches, but leveraging LCS and TFIDF in

ranking candidate blocks did not work on these bugs. This is because ranking candidate blocks

for the current true buggy block can not exclude the patches generated before for the false buggy
blocks. All in all, the result of fault localization and the size of search space greatly influence the

performance of LCS and TFIDF.

4.3.4. Case Analysis

We now present case analyses of great rankings. We investigate the buggy code block list, the

ordered list of candidate code blocks, the list of generated patches and the log message of the
bugs to explain the excellent performance in these cases.

34 Computer Science & Information Technology (CS & IT)

Listing 1. Lang27 from Apache commons-lang

Listing 2. Math57 from Apache commons-math

1) Case analyse 1: For the bug Lang27, the correct patch is a replacement of an if statement.
Combining LCS and TFIDF and excluding name similarity (setting 5, i.e., column 6 in table 2)

improve the rank of the correct patch from 7 to 1 for lang27. If we do not exclude name similarity

(setting 4), the rank is 4. According to the buggy block list, the true buggy code is ranked first.

Computer Science & Information Technology (CS & IT) 35

This means all patches in search space are generated for this block. The original approach ranks
the candidate block that contains the correct patch at 6th, but the best setting ranks it at 2nd. The

tool does not extract any patch from the most similar block because it is equal to the buggy code.

So the best setting successfully ranks the correct patch generated from the true candidate block

first. As shown in Listing 1, the false candidate is ranked first in setting 4, and the true candidate
is ranked first in setting 5. This is because the false candidate block shares more variable and

method names with the buggy code block than the true candidate. This leads to a low rank of the

correct block. However, the correct patch is most similar to the buggy code when treating code
block as a sequence of characters or tokens, which LCS and TFIDF do. So in this case, including

all similarity metrics contributes to a worse result.

2) Case analyse 2: For the bug math57, the correct patch is to replace ”int” with ”double”. This

modification is too small. Utilize LCS successfully improve the rank of the correct patch from

112 to 39, and the time cost is reduced from 5 to 3 minutes. We present the buggy code block and

two incorrect patches in Listing 2. The two incorrect patches are extremely similar in character
level. The approach generates a large amount number of patches like this. Filtering out these

patches can greatly reduce the search space and accelerate the repairing process. And as

mentioned before, we initially set the filtering threshold to 0.9. However, the APR tool failed to
repair this bug because the correct patch was identified as incorrect and filtered out before

validating. This is because the patches in search space are highly similar to each other due to the

small size of the repair. We finally fixed the buggy when the threshold was adjusted to 0.97. The
good news is that although the threshold is really high, LCS still filters out 65% incorrect

patches.

5. CONCLUSION

In this paper, we design and set up a series of experiments to investigate how code similarity can

improve the performance of APR tool. We study a state-of-the-art approach called SimFix to see

where we can utilize code similarity and a recent empirical study to select suitable similar
metrics. To rank the first correct patch higher in the search space and reduce time cost, we apply

two similarity metrics—LCS and TFIDF in candidate code block ranking and incorrect patch

filtering. We analyze the experimental result and get the following conclusion: First, in candidate

code block ranking phase, combining LCS and TFIDF and excluding name similarity used in
SimFix perform best and improve the MRR by 26%. Second, in patch filtering stage, applying

LCS to calculate the similarity between the next verified patch and the set of validated patches

can greatly prevent incorrect patches from being verified. The method reduces search space of
patches by an average of 68% and time cost by 56%.

REFERENCES

[1] M. Monperrus, “Automatic software repair: a bibliography,” ACM Computing Surveys (CSUR), vol.

51, no. 1, pp. 1–24, 2018.

[2] L. Gazzola, D. Micucci, and L. Mariani, “Automatic software repair: A survey,” IEEE Transactions

on Software Engineering, vol. 45, no. 1, pp. 34–67, 2017.

[3] K. Liu, L. Li, A. Koyuncu, D. Kim, Z. Liu, J. Klein, and T. F. Bissyande, “A critical review on the

evaluation of automated program ´ repair systems,” Journal of Systems and Software, vol. 171, p.

110817, 2021.

[4] D. Kim, J. Nam, J. Song, and S. Kim, “Automatic patch generation learned from human-written
patches,” in 2013 35th International Conference on Software Engineering (ICSE). IEEE, 2013, pp.

802–811

[5] J. Hua, M. Zhang, K. Wang, and S. Khurshid, “Towards practical program repair with on-demand

candidate generation,” in Proceedings of the 40th international conference on software engineering,

2018, pp. 12–23.

36 Computer Science & Information Technology (CS & IT)

[6] S. Mechtaev, J. Yi, and A. Roychoudhury, “Angelix: Scalable multiline program patch synthesis via

symbolic analysis,” in Proceedings of the 38th international conference on software engineering,

2016, pp. 691– 701.

[7] A. Afzal, M. Motwani, K. T. Stolee, Y. Brun, and C. Le Goues, “Sosrepair: Expressive semantic

search for real-world program repair,” IEEE Transactions on Software Engineering, vol. 47, no. 10,
pp. 2162– 2181, 2019.

[8] J. Jiang, L. Ren, Y. Xiong, and L. Zhang, “Inferring program transformations from singular examples

via big code,” in 2019 34th IEEE/ACM International Conference on Automated Software

Engineering (ASE). IEEE, 2019, pp. 255–266.

[9] Z. Chen, S. Kommrusch, M. Tufano, L.-N. Pouchet, D. Poshyvanyk, and M. Monperrus, “Sequencer:

Sequence-to-sequence learning for end-to-end program repair,” IEEE Transactions on Software

Engineering, vol. 47, no. 9, pp. 1943–1959, 2019.

[10] J. Jiang, Y. Xiong, H. Zhang, Q. Gao, and X. Chen, “Shaping program repair space with existing

patches and similar code,” in Proceedings of the 27th ACM SIGSOFT international symposium on

software testing and analysis, 2018, pp. 298–309.

[11] M. Wen, J. Chen, R. Wu, D. Hao, and S.-C. Cheung, “Contextaware patch generation for better

automated program repair,” in 2018 IEEE/ACM 40th International Conference on Software
Engineering (ICSE). IEEE, 2018, pp. 1–11.

[12] Z. Chen and M. Monperrus, “The remarkable role of similarity in redundancy-based program repair,”

arXiv preprint arXiv:1811.05703, 2018.

[13] Q. Xin and S. P. Reiss, “Leveraging syntax-related code for automated program repair,” in 2017 32nd

IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 2017, pp.

660–670.

[14] Y. Wang, Y. Chen, B. Shen, and H. Zhong, “Crsearcher: Searching code database for repairing

bugs,” in Proceedings of the 9th Asia-Pacific Symposium on Internetware, 2017, pp. 1–6.

[15] X. Xie and B. Xu, Essential Spectrum-based Fault Localization. Springer, 2021.

[16] L. Jiang, G. Misherghi, Z. Su, and S. Glondu, “Deckard: Scalable and accurate tree-based detection of

code clones,” in 29th International Conference on Software Engineering (ICSE’07). IEEE, 2007, pp.
96– 105.

[17] M. Asad, K. K. Ganguly, and K. Sakib, “Impact analysis of syntactic and semantic similarities on

patch prioritization in automated program repair,” in 2019 IEEE International Conference on

Software Maintenance and Evolution (ICSME). IEEE, 2019, pp. 328–332.

[18] Y. Xiong, X. Liu, M. Zeng, L. Zhang, and G. Huang, “Identifying patch correctness in test-based

program repair,” in Proceedings of the 40th international conference on software engineering, 2018,

pp. 789–799.

[19] K. Liu, S. Wang, A. Koyuncu, K. Kim, T. F. Bissyande, D. Kim, P. Wu, ´ J. Klein, X. Mao, and Y. L.

Traon, “On the efficiency of test suite based program repair: A systematic assessment of 16

automated repair systems for java programs,” in Proceedings of the ACM/IEEE 42nd International

Conference on Software Engineering, 2020, pp. 615–627.

[20] R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing faults to enable controlled
testing studies for java programs,” in Proceedings of the 2014 International Symposium on Software

Testing and Analysis, 2014, pp. 437–440.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	APR, empirical study, LCS, TFIDF.

