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ABSTRACT 
 

Repair and maintenance of underwater structures as well as marine science rely heavily on the 

results of underwater object detection, which is a crucial part of the image processing 

workflow. Although many computer vision-based approaches have been presented, no one has 

yet developed a system that reliably and accurately detects and categorizes objects and animals 

found in the deep sea. This is largely due to obstacles that scatter and absorb light in an 

underwater setting. With the introduction of deep learning, scientists have been able to address 

a wide range of issues, including safeguarding the marine ecosystem, saving lives in an 
emergency, preventing underwater disasters, and detecting, spooring, and identifying 

underwater targets. However, the benefits and drawbacks of these deep learning systems remain 

unknown. Therefore, the purpose of this article is to provide an overview of the dataset that has 

been utilized in underwater object detection and to present a discussion of the advantages and 

disadvantages of the algorithms employed for this purpose. 
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1. INTRODUCTION 
 

Algorithms for accurately detecting and recognizing objects in images and real-world data are 

used for tasks such as tracking the location, motion, and orientation of objects. For an object to be 
detected and recognized, the algorithm must determine whether or not an object or objects are 

present. Object detection is "the process of accurately identifying an object, localizing that object 

inside an image, and performing semantic or instance segmentation [1]. The problem statement 

for object detection is to figure out where objects are in an image (called "object localization") 
and what class each point belongs to (object classification).Object classification, selection of an 

informative region, and feature extraction are the three main components that comprise the 

pipeline of traditional object detection models. 
 

1) Selecting Informative Regions – Since objects can appear anywhere in the frame and in 

various sizes, it makes sense to deploy a sliding window with many scales to search the 
full image. 

2) Extracting Features – Identifying a variety of objects requires the extraction of visual 

features that can provide a semantic and robust representation. Representative features 

include SIFT [2], HOG [3], and Haar-like [4]. As a result of their ability to produce 
representations associated with complex brain cells [2], these features are important.  

3) Classification – In addition to differentiating a target object from all other categories, a 

classifier is required to make representations more hierarchical, semantic, and 
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informative for visual identification. Among the many choices available, the Supported 
Vector Machine (SVM) [5], the AdaBoost [6], and the Deformable Part-based Model 

(DPM) [7] are commonly suggested. 

 

Object recognition of computer vision is a method to determine the identity of an object was seen 
in still images or moving videos. It involves distinguishing between two targets that are 

extremely similar as well as between one, two, or even more types of targets that are depicted in 

an image. Object recognition's ultimate objectives are to first recognize objects within an image 
in the same way that humans do and then to train a computer to acquire some level of image 

comprehension. The same object can be recognized when viewed from a variety of perspectives, 

including front, rear and side views. Additionally, the object can be identified whether it is a 
different size or when there is some obstruction between the viewer and the object [8]. In recent 

years, numerous object recognition tasks, such as handwriting [9, 10], license plate recognition 

[11], speech recognition [12], lane line recognition [13], face recognition [14], ship and military 

object recognition [15, 16], fish and underwater creature recognition [17, 18], etc., have been the 
subject of extensive research. Even though the oceans occupy approximately two-thirds of the 

globe, relatively few technologies related to marine research have been investigated to a 

sufficient degree [19, 20]. Feature extraction and classification are the two essential phases that 
comprise marine object recognition from a practical standpoint. Nevertheless, feature extraction 

is the more important of the two steps. The processes of pre-processing, feature extraction, 

feature selection, modeling, matching, and positioning are all included in object recognition [21]. 
 

Recently, deep learning, also known as deep machine learning or deep structured learning-based 

techniques, has seen significant success in digital image processing for object recognition and 

categorization. Consequently, they are rapidly becoming a focal point of interest among computer 
vision scientists. There has been a significant rise in the use of digital imaging for tracking 

marine environments like seagrass beds. As a result, automatic detection and classification based 

on deep neural networks have become more important tools. 
 

Deep learning's ability to process large amounts of data has the potential to provide solutions to a 

number of issues pertaining to the marine industry, including marine disaster prevention and 

mitigation, ecological environmental protection, emergency rescue, and underwater target 
detection, tracking, and recognition, to mention few of. There are a number of factors that could 

explain deep learning's comeback, including those listed below: 

 
- The introduction of large-scale annotated training data, such as those provided by ImageNet 

[22], to display fully its very vast learning capability; 

- Accelerated development of high-performance parallel computing systems, such as GPU 
clusters; and 

- Substantial progress made in the development of various network architectures and 

instructional methods. 
 

The primary contributions of this paper are as follows: 

 
1)  A detailed discussion of the most widely used methods and deep network architectures for 

the analysis of underwater targets 

2)  Large collections of underwater images and video recordings being compiled and studied 

extensively 
3)  A full review and comparison of experiments with different deep learning methods for the 

detection and recognition of marine objects 

4)  Deep learning techniques being used to discuss in depth future trends and possible 
challenges in recognizing marine objects. 
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The remainder of this paper is organized as follows: Section 2 presents a Review of Traditional 
Object Detection Methods that have been used. In Section 3, typical deep learning methods 

together with comprehensive comparisons are systematically presented. Popular datasets are 

revisited in Section 4. Previous research methods are discussed in Section 5 and the conclusions 

are drawn and presented in Section 6. 
 

2. REVIEW OF TRADITIONAL OBJECT DETECTION METHODS 
 

The Viola-Jones object detection framework was proposed in 2001 [23, 24]. This framework for 

face detection is based on the AdaBoost algorithm [25] and uses Haar-like wavelet characteristics 

and integral graph technology. The combination of Haar and AdaBoost had not hitherto been 

used in a detection approach. Moreover, it is the first detection framework to operate in -real

time. The Viola-Jones detector has been widely used as a foundation for face identification 

algorithms [26, 27] prior to the development of deep learning technology. 

 

The histogram is computed using the gradient instead of the color value in Histogram of Oriented 
Gradient (HOG) [3]. The feature is built by computing the local gradient direction histogram of 

the image. Image recognition applications have made extensive use of HOG features in 

conjunction with SVM classifiers, particularly for the purpose of pedestrian identification [3]. 
The invariant histograms of oriented gradients (Ri HOG) [37] use cells of an annular spatial 

binning type and the radial gradient transform (RGT) to produce gradient binning invariance for 

feature descriptors, and this is only one example of many related studies. The detection concepts 

of enhanced HOG, support vector machine classifier, and sliding window are all incorporated 

into the DPM [29] algorithm, which uses a multicomponent approach to solve the target’s 

multiview problem. In order to address the issue of target deformation, it uses a component 
model technique with a graphical representation of the target. DPM is a detection method that 

relies on individual components and has high robustness against target deformation. DPM is the 

backbone of several deep learning-based algorithms for tasks such as classification, 

segmentation, posture estimation, etc. [30, 31]. 

 

Machine learning-based object detection techniques still have advantages in certain use cases. 

Data from images were chunked and encoded as vectors in [32]. Sub-features are taken from the 

color and texture of the images and are then added together to form a feature vector. The use of 

the Random Forest technique resulted in a classification accuracy of 99.62 percent. By using a 1 
master + 4 workers clustering design in Apache Spark, the execution time of each method was 

accelerated on average by a factor of 3.40. 

 

3. DEEP LEARNING-BASED OBJECT DETECTION 
 
We will now investigate various popular state-of-the-art CNN architectures. The convolution 

layer, the sub-sampling layer, the dense layers, and the soft-max layer form the backbone of the 

majority of deep convolutional neural networks. The architectures typically consist of stacks of 
multiple convolutional layers and max-pooling layers followed by fully linked and SoftMax 

layers at the end. LeNet [33], AlexNet [34], VGG Net [35], NiN [36], and all convolutional (also 

Conv) [37] are all instances of such models. Other potentially more effective advanced 

architectures have also been proposed. These include GoogLeNet with Inception units [38, 39], 

Residual Networks [40], DenseNet [41] and FractalNet [42]. Most of the fundamental building 

blocks (convolution and pooling) are shared by these many designs. However, newer deep 

learning architectures have been found to have some topological ‘quirks’ of their own. In terms 
of state-of-the-art performance on various benchmarks for object identification tasks, the DCNN 
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designs, namely AlexNet [34], VGG [35], GoogLeNet [38, 39], Dense CNN [41], and 

FractalNet [42], are widely considered to be the most popular architectures. Some of these 

architectures (such as GoogLeNet and ResNet) are tailored specifically for processing massive 
amounts of data, while others (such as the VGG network) are more general in nature. DenseNet 

[41] is one of the architectures that have a high density of connections. Alternatively, for ResNet, 

one might try the more flexible Fractal Network. 
 

4. DATASETS 
 

Due to the fact that underwater image processing is a relatively new field of study, only a small 

number of datasets are available for use in underwater computer vision [43]. The following are 

some of the most important reasons for the small number: 

 
1)  Due to a late start in the field, sufficient attention has not been devoted to the relevant 

underwater image datasets. 

2)  Although academic researchers have recently begun to recognize the value of an underwater 

image collection, creating such a dataset is laborious and time-consuming due to the unique 
challenges presented by the ocean environment. 

3)  The underwater world is incredibly diverse, making manual collection and classification of 

ground truths for a wide range of underwater images difficult. 
 

Table 1. Review of some existing databases that can be made available to the  

general public for underwater object detection. 

 

Database Name Introduction 

Underwater Image Enhancement 

Benchmark (UIEB) [44] 

There are 950 genuine underwater images in the UIEB, of which 

890 have associated references and 60 do not. 

The academic goal is to improve underwater images for academic 

purposes. 

 

Marine Underwater Environment 

Database (MUED) [43] 

430 various classes of interesting objects are represented in 

MUED’s 8,600 underwater images, which vary in stance, position, 

illumination, turbidity of the water, and more. 

The academic goal is saliency detection and object recognition in 

underwater images 

Real-time Underwater Image 

Enhancement (RUIE) 

Dataset [ 54 ] 

Over 4,000 underwater real images are included in RUIE’s 

Underwater Image Quality Sub-aggregate, Underwater Color Cast 

Sub-aggregate, and Underwater higher-level task-driven Sub-

aggregate. 
The academic goal has focused on improving underwater images 

and finding objects in them. 

The TrashCan dataset [46] This dataset includes observations of trash, remotely operated 

vehicles (ROVs), and a diverse range of marine life, all cataloged 

in a database of annotated images (7,212 images as of this 

publishing). Instance segmentation annotations are used to label 

which pixels in the image correspond to which objects in this 

dataset. collected from a variety of sources. 

UOT32 (Underwater Object 

Tracking) Dataset [47] 

The benchmark dataset for underwater tracking has 32 videos with 

a total of 24,241 annotated frames and an average duration of 

29.15 seconds and frame count of 757.53. sequences for objects of 

interest. 
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SUIM Dataset [48] This is the first comprehensive dataset for underwater image 

semantic segmentation (SUIM). Fish (vertebrates), reefs 

(invertebrates), aquatic plants, wrecks/ruins, human divers, robots, 

and the seafloor are only a few of the eight object categories 

covered by more than 1,500 images with pixel annotations. 

Participants in oceanographic expeditions and human-robot 
cooperation studies capture and meticulously annotate the images. 

SeabedObjects-KLSG [49] A real side-scan sonar image dataset called SeabedObjects-KLSG 

can be used to identify wrecks, drowning victims, airplanes, mines, 

and the seafloor. This was done in an effort expeditiously to 

promote underwater object classification in side-scan sonar 

images, especially civilian object classification. 

Fish4K [50] The resource is referred to as a resource since it comprises sample 

images of 23 different species. These images are mainly free of 

noise; however, most are out of focus. 

Kyutech-10K [51] This is the first dataset of deep-sea marine organisms provided by 
the Japan Agency for Marine-Earth Science and Technology 

(JAMES). 

 

Figure 1 shows a subset of the 890 identical pairs of original underwater images and reference 
images that comprise the Underwater Image Enhancement Benchmark (UIEB), and these 

underwater images are collected from Google, YouTube, related papers and paper researcher 

self-captured videos [44]. 

 

 
 

(a) 

 

 
 

(b) 

 
Figure 1.  Examples from UIEB with subclasses: (a) original underwater images, (b) corresponding 

reference images. 

 

Some examples of underwater images from MUED [43] with high turbidity, uneven illumination, 

monotonous hues, and intricate underwater-background are shown in Figure 2. These issues have 

a significant impact on the reliability and availability of underwater images in real-world 

applications. 
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(a) (b) (c) (d) (e) 

 
 

 
Figure 2.  Some examples of detrimental elements present in the marine environment that can affect the use 

of underwater vision. (a) Water with high turbidity, (b) Uneven illumination, (c) Low contrast, (d) 

Complicated underwater-background, and (e) Monotonous color 

  
Images captured using an underwater optical imaging and capturing device as part of the Real-

time Underwater Image Enhancement (RUIE) Dataset are shown in Figure 3. The Underwater 

Image Quality Subclass, Underwater Color Cast Subclass, and Underwater higher-level task-

driven Subclass are the three subclasses of underwater images that comprise RUIE. In order to 
gather image examples for the RUIE benchmark, they put up a multi-view underwater image 

capture system with twenty-two water-proof video cameras. 

. 

   

(a) (b) (c) 

 

 
 

Figure 3. Some images from the RUIE dataset with a triple of subclasses of underwater images: (a) 

Underwater Image Quality Sub-aggregate, (b) Underwater Color Cast Sub-aggregate, (c) Underwater 

higher-level task-driven Sub-aggregate. 

 

Figure 4 illustrates a sampling of the results of object detection and instance segmentation models 

trained on both versions of the datasets [46]. The outcomes encompass an extensive range of 

object sizes and situations. 
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Figure 4. Sampled results for object detection and image segmentation  

for both versions of the TrashCan dataset. 

 

The first large-scale, diverse, underwater benchmarking dataset (UOT100) was created with over 

74,000 annotated frames spread across 104 video sequences. Both synthetic and natural 
underwater imagery have similarly distributed aberrations in the dataset as a whole, many 

different YouTube channels and other internet video platforms contributed to the dataset, as did 

preposted and manually annotated ground truth bounding box. Figure 5 shows a visual summary 

of the distortions as categories that represent the color of the water, such as blue, green, and 
yellow. 

 

 
 

Figure 5. Sample tracking data from our UOT100 dataset showing various types of distortions. The red 

bounding boxes denote the object of interest and the text below each column indicates the category of the 

visual data 
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In total there are 1,525 RGB images in the SUIM dataset that may be used for either training or 
validation, and an additional 110 test images can be used as a benchmark for assessing the 

performance of semantic segmentation models. There is a wide range of spatial resolutions 

present in the photos, including 256 × 256, 640 × 480, 1280 × 720 and 1906 × 1080. Seven 

human volunteers labeled every pixel of the SUIM dataset. An example or two can be seen in 
Figure 4.6. 

 
Figure 6. A few sample images and corresponding pixel-annotations are shown on the top and bottom 

rows, respectively 

 

There are currently 385 wreck images, 36 drowning victim images, 62 aircraft images, 129 mine 

images, and 578 seafloor images in the dataset known as SeabedObjects-KLSG. All of the 
images were taken directly from the raw data of the large sides can sonar images. Figure 7 shows 

some data from the SeabedObjects-KLSG dataset. 

 
Figure 7. Samples from the SeabedObjects KLSG dataset. 

 

Research on marine ecosystems is aided by the Fish4Knowledge dataset, which was released by 

the Taiwan Ocean Research Institute and numerous other partner institutes. Figure 8 depicts a 

handful of images from the dataset consisting of 27,370 tagged underwater images of 23 distinct 
fish species acquired over the course of two years by 10 underwater cameras in Taiwanese inland 

lakes. 
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Figure 8. Examples of underwater images on a Taiwan reef with different background variability. 

 
Kyutech10K has 10,728 images and 1,489 videos over seven different categories (shrimp, squid, 

crab, shark, sea urchin, manganese and sand). Every still image and video clip will always be 

displayed at a maximum resolution of 480 × 640 pixels. In Figure 9, we provide a sample of 
images for each group. 
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Figure 9. The Kyutech10K dataset. 

 

5. PREVIOUS RESEARCH METHODS 
 

It has been shown that a deep Convolutional Neural Network, such as the one proposed by Nicole 

Seese et al. [52], performs admirably in a dynamic setting, hence these researchers proposed an 

Adaptive Foreground Extraction Method using a deep Convolution Neural Network for 

classification. Because of its emphasis on lighting uncertainty, background motion and non-static 

imaging platforms, it performs well in practical settings. A Gaussian Mixture Model is employed 
in dynamic settings, while a Kalman filter is reserved for less complex circumstances. Therefore, 

the method’s efficiency and speed are likely to deteriorate. 

 

The paper by Xiu Li1 Min Shang et al. [53] uses a fast R CNN approach designed specifically for 

the detection of fish. The approach returns values with higher mean average precision and is 

faster than R CNN (map). In total, the study contributed to the creation of a brand-new, massive 
dataset consisting of 242,722 images over 12 distinct classes. Time-consuming selective search is 
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used to collect the input of 2,000 regions of interest (ROI) for the network. Despite its rapidity, 
this operation is not real-time. 

 

With regard to hybrid features, the deep learning method utilizing VGGNet presented by A. 

Mahmood et al. [54] proposes an extraction strategy based on the Spatial Pyramid Pooling (SPP) 

approach, in which a pre-trained VGGNet is used to improve categorization by combining deep 

features from the VGGNet with texton and color-based characteristics. The CNN is then trained 
using the MLC dataset. 

 

More accurate detection of zooplankton with the Convolutional Neural Network-based 

ZooplanktonNet model is presented by Jialun Dai et al. [55]. In order to reduce overfitting, it 

leverages augmentation of existing data to make the classification process more accurate. CNN is 

a more efficient image classification system since it does not rely on training data or previous 
samples. Despite there being an insufficient number of zooplankton images to train deep neural 

networks, this study appeared to work well with less knowledge. 

 

In order to achieve fine-grained classification using a CNN, Hansang Lee et al. [56] combine 

transfer learning with a pre-trained CNN. A combination of data augmentation methods, 

including transfer learning, was employed to correct the issue of class imbalance. It is applicable 
and efficient to produce a satisfying outcome, and it is particularly useful for large-scale class 

imbalance datasets. 

 

Sebastien Villon et al. [57] proposed a combination of Convolutional and Deep Learning 

techniques, a Neural Network, and HOG+SVM to detect submerged objects. This combination is 

able to identify coral reef fish from video stills taken underwater. The study titled “A 
Comparative Study of Robust Underwater Object Detection with Autonomous Underwater 

Vehicle” ICCA 2020, Dhaka, Bangladesh found that deep learning yields better detection 

accuracy than conventional approaches. With the use of image contours, HOG can uncover 

intricate situations that are otherwise obscured, such as those hiding in coral reefs. 
 

Convolutional neural networks (CNNs) with a global average pooling (GAP) layer before each 

fully connected layer to generate a class activation map were proposed by Gebhardt et al. in [58]. 

To locate MLOs in sidescan sonar images, the researchers in [58] used a DNN. The authors 

examined how several factors, including DNN depth, memory, calculation, and training data 
distribution, affected detection performance. Furthermore, they used visualization methods to 

make the model’s behavior more understandable to end users. Complex DNN models produce 

higher accuracy (98%) than simple DNN models (93%) and perform better (78%) than SVM 
models. The most complex DNN models improved performance by 1 percent but required 17 

times as many trainable parameters to do so. The described method uses less computing power 

than DNNs designed for multi-class classification workloads. For this reason, it can be used by 

unmanned marine vehicles. 
 

In order to perform semantic segmentation, the SegNet [59] uses a fully convolutional encoder-

decoder architecture. All thirteen convolutional layers used by the VGG16 image classifier are 
replicated topologically in its encoder network. The SegNet’s decoder network architecture 

allows for far less memory to be used, which is its primary advantage over alternative 

segmentation systems. Since the SegNet is a traditional CNN-based image segmentation 
architecture, we deemed it to be a good candidate for evaluation. 
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Table 2. Review of existing databases for underwater object detection that  

can be made accessible to the public. 

 
Method Advantages Disadvantages 

Adaptive Foreground 

Extraction Method [52] 

CNN for classification works well 

in dynamic environments, focuses 

on uncertain illumination factors 

and non-static environments, and 

works well in dynamic 

environments. 

Use of the Gaussian Mixture 

Model and the Kalman Filter, 

both of which diminish speed and 

efficiency, should be relegated to 

more complicated and dynamic 

circumstances. 

R-CNN [60] Utilizes a filtered search in order 

to generate regions. 

Approximately two thousand 

regions are retrieved from each 

image. 

Because each region is handed 

over to the CNN model on an 

individual basis, a significant 

amount of processing time is 

consumed. In addition, it uses 

three distinct networks to make 

predictions. 

Fast R-CNN [53] Faster than R-CNN, the dataset 

for recreation of fish. The CNN 

model only has to be trained once 
with each image before extracting 

feature maps. Predictions are 

generated via a selective search 

on these feature maps. It utilizes 

all three models used by R-CNN. 

The use of 2,000 regions of 

interest as input necessitates a 

significant amount of startup time 
and is therefore inapplicable to 

real-life scenarios 

Faster RCNN [60] Selective search has been 

replaced in this model by the use 

of a technique called Region 

Proposal Network (RPN). In 

comparison to the other versions 

listed above, RPN increases the 

speed of the model significantly. 

-To successfully extract all items 

from a single image, the method 

requires multiple iterations. 

-Due to the sequential nature of 

these algorithms, the success of 

subsequent stages of the network 

is contingent on the results of 

previous systems. 

VGGNet [54] Features are hybrid and deep 

features are used for pre-training. 

Utilization of the MLC Dataset, 

which is inappropriate for use in 

image classification. 

ZooplanktonNet [55] A high accuracy rate, the use of 

data augmentation to reduce the 

amount of data overfitting, and 

reduced preprocessing are all 

features of this model. 

The absence of images of 

plankton, which is necessary for a 

deep neural network, which 

requires massive datasets. 

CNN+Transfer 

Learning [56] 

Pre-trained CNN, overcoming the 

class imbalance problem, use of 

numerous data augmentation 
approaches. 

Optimal for massive data-

intensive tasks, not at all for more 

modest endeavors. 
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HOG+SVM [57] Used for locating submerged 

items that may otherwise go 

undetected. 

More time-consuming and less 

effective than deep learning 

approaches in terms of both 

detection and efficiency. 

Different structures of 
convolutional neural 

networks (CNNs) [58] 

- High accuracy (93%) 
- Can be used with self-driving 

underwater vehicles 

When compared to DNNs 
designed for multi-class 

classification applications, the 

computational requirements of the 

proposed method are lower. 

SegNet [59] Decoder network’s capacity 

severely reduces RAM 

consumption. 

The precision of feature extraction 

is linearly proportional to the 

complexity of the model. 

 

6. CONCLUSIONS 
 

Because of its promise, deep learning has already altered many facets of public life. Generic 
object detection has been quite successful thanks to the availability of large amounts of data and 

powerful computers. The field of marine engineering has focused much attention in recent years 

to methods of detecting objects submerged in the ocean using deep learning. This can be used for 
a variety of marine pursuits. Based on the current state of the art in underwater object 

identification research, this study provides a thorough categorization and analysis of relevant 

publications. Well-known reference datasets have been covered. A comparison is made between 
various deep learning methods and more traditional methods. The ideal approach for underwater 

item detection seems to be the Convolutional Neural Networks (CNN), which are generally 

regarded for computer vision models and classification in complicated situations. The goal of this 

article is to provide readers with a thorough understanding of the current state of underwater 
object detection in the hope that it will help them in their own research endeavors. 
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