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ABSTRACT 
 

In order to use the full power of artificial intelligence, many are required to navigate through a 

complex process that involves reading and understanding code. Understanding this process can 

be especially intimidating to domain experts who wish to use A.I to develop a project, but have 

no former experience with programming. This paper develops an application to allow for any 
domain expert (or normal person) to gather data, assign labels, and train models automatically 

without the use of software to do so. Our application, through a server, allows the user to send 

HTTP API requests to train models, upload images to the database, add models/labels, and 

access models/labels. 
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1. INTRODUCTION 
 
With the rise of popularity of artificial intelligence throughout the last few decades, the world has 

seen an interweaving between A.I and certain academic domains [1]. Artificial Intelligence and 

its many applications have been used throughout a variety of critical and far-reaching projects. 
From medical research in cancer detection to blind assistance systems, image-detection has been 

used in so many impactful projects [2][3]. It soon became imperative for certain domain experts 

who want to combine image detection to their projects to have a thorough understanding of 
programming, training models, gathering data, navigating through Integrated Development 

Environments, and concepts in Convolutional Neural Networks [4]. 

 

Image detection models are quickly becoming an extremely powerful tool for domain experts to 
use [5]. By requiring them to understand a different subject entirely when they are focused on 

another academic interest may be time-consuming and inefficient. For example, in order to 

actually train a model on a system such as Google Colab, they would need to go through a 
lengthy chunk of code, import files filled with their training data, and export the finished model 

[6]. The process is too time consuming for non-experts and even general programmers to use. 

Furthermore, they may need to coordinate and hire machine-learning engineers, which convolutes 
the process and makes the overall project more complex. Additionally, many domain experts may 

already be incredibly invested in their own field, which could deter them from taking the time to 

learn the concepts of machine learning [7]. However, if there was a way to introduce an 

http://airccse.org/cscp.html
http://airccse.org/csit/V12N15.html
https://doi.org/10.5121/csit.2022.121510


116         Computer Science & Information Technology (CS & IT) 

abstraction that could allow them to train the models without any code, the process becomes 
significantly less challenging. 

 

Some of the existing tools that have been used to make machine-learning more friendly and 

efficient for a non-experienced user are Google Colab Notebooks and an application called 
CreateML [8]. Google Colab, a hosted Jupyter notebook service developed by Google, gives 

anyone the ability to train a model simply by accessing a prewritten notebook on their site [9]. 

Without needing to install an IDE such as Jupyter, a user is theoretically able to add their own 
data-set into the notebook, and run the code in the prewritten notebook such that eventually the 

model is created. However, this method is not as efficient or user-friendly as our approach. Going 

through each section of code, and storing each image into a file one by one makes the process 
time-consuming and unappealing. In addition, some pieces of code may be confusing or 

unrecognizable to some users who want to use image-detection, which requires more 

programming knowledge.  

 
Another tool that relates to this issue is CreateML, an application developed by Apple. CreateML 

allows the user to train an image-detection model without having to write a single line of code. 

However, this application is again quite limited as users do not have the ability to easily create 
their own datasets. Instead, they are forced to take potentially thousands of their own images, 

upload it all into its own folder, and then use their application to train the model. Thus, like 

Google Colab, the process of training is again very inefficient and time-consuming for a non-
expert. Furthermore, CreateML, like many applications that attempt a Low-Code No-Code 

approach to image-detection, has a difficult User Interface for non-experts and therefore makes 

the process more difficult for them [10]. Although there are several existing approaches to 

making image-detection efficient for a non-expert, many of them are tedious, frustrating, and 
quite unfriendly for someone looking to utilize this tool but doesn’t have much experience with it.  

 

In this paper, we propose a solution that allows a non-expert to train a model and utilize it in an 
intuitive and straightforward way. The application gives the user both the ability to train a model 

and use that exact same model. In the admin page, they can either select an existing model or 

create a new model with any name they want. After, they can give the model different label 

names, and for each label they can take pictures that correspond to that label. Using this method, 
non-experts will be able to gather a data-set without having to upload pictures onto a file and then 

utilize existing tools. After pictures are taken for each label, they can train the model.  

 
The application also allows the user to use the image-detection model. They are given the option 

to load models, and by choosing an existing model that has already been trained, they can take a 

screenshot of what they want to compute. This directs them to a page that gives them the 
probability of the image being a certain label within the model that they choose. Therefore, we 

believe that our application is not only more friendly for a non-user, but also less time-consuming 

and more efficient for any tasks that need to implement an image-detection model. 

 
In order to prove that our mobile application would be less tedious, more efficient, and include 

similar functionality as the standard approach, we conducted three experiments to compare the 

functionalities, compare the end-to-end processes, and evaluate the accuracy and confidence of 
the image-detection model used in our mobile application. First, by comparing the functionality 

of both approaches, we create a checklist to determine if our application succeeds in carrying out 

certain tasks that are instrumental to the process of machine learning. However, we also analyzed 
the benefits of using our application as well, and show that not only do we carry out such tasks, 

but we do it in a more intuitive  manner. Furthermore, we compared the end-to-end processes, 

which allowed us to illustrate the strength of our application: our efficiency. Our results showed 

that while most of the methods in the typical approach required lines of code and the organization 
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of images, our approach was able to simplify the process by only requiring users to make several 
clicks, type several words, and take shots with their phone camera. Finally, by evaluating our 

accuracy and confidence, we were able to show that the accuracy of our application would not 

differ from the accuracy of the typical approach. The goal of using these experiments in tandem 

is to demonstrate that our approach is not only the most efficient method for training and 
evaluating models, but it is also the most intuitive and user-friendly system for non-experts to use 

if they wish to create and organize a list of image-detection models. 

 
The rest of the paper is organized as follows: Section 2 gives the details on the challenges that we 

met during the experiment and designing the sample; Section 3 focuses on the details of our 

solutions corresponding to the challenges that we mentioned in Section 2; Section 4 presents the 
relevant details about the experiment we did, following by presenting the related work in Section 

5. Finally, Section 6 gives the conclusion remarks, as well as pointing out the future work of this 

project. 

 

2. CHALLENGES 
 

In order to build the project, a few challenges have been identified as follows. 

 

2.1. How do we allow the user to create their own datasets in an efficient way 
 

Perhaps the most tedious part of training an image-detection model is gathering the data. There 
are a couple of options. For instance, if a user prefers to create a model using existing datasets, 

then online platforms such as Kaggle can provide the user with thousands of images already 

organized in its specific labels [11]. There are certainly many websites that give users the ability 
to gather lots of data. However, if a user needed to customize their own data-set and execute a 

model based on their own images, they would need to take individual pictures for each label, 

export the images to a computer, store each image in its corresponding label file, and then export 

the file to be used to train the model on a notebook. This process is clearly very time-consuming 
and thus stops non-experts or other people without any experience in code to use image-detection 

in their projects or other initiatives.  

 

2.2. How do we design a user-interface that is easy to navigate for a non-expert 
 

Because the purpose of the application is to target those who do not have experience with 
machine learning, the user-interface must also be friendly and intuitive for them. However, 

because there are so many terms and concepts in Machine Learning, it is quite difficult to 

introduce a user-interface that doesn’t require the user to have at least a basic understanding of 
the training process in machine learning. For example, in order to understand the process of 

training a model, the user must be able to understand terms such as labels, training set, and test 

set.  This issue is accelerated even further by the fact that understanding machine learning 

requires an understanding of coding concepts. If a domain-expert who wants to utilize image-
detection does not even know how to code, they would be forced to either work with another 

engineer or learn by themselves, which is more time-consuming and less efficient. 

 

2.3. How do we introduce an approach on a mobile application that trains the 

dataset 
 

In order to allow users to use an application on their phones to build models, the app must include 

an approach to not just organize the dataset, but also train the model. The difficulty lies in the fact 
that training the model on a phone is too computationally expensive to train. The process would 
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take more than one standard smartphone, which is unreliable and serves as poor user experience. 
Furthermore, the smartphone must also hold in potentially thousands of pictures to train the 

model. This is clearly not doable and thus the application must have some method in which a 

server is called in order to train the model. 

 

3. SOLUTION 
 
Our application provides an approach to train image-detection models, gather training data, and 

compute accuracy of testing data on a mobile device. In order to customize the model, we used 

the Tensorflow Lite Model Maker, a library that reduces the training time and amount of training 
data, as a means of customizing each image detection model [12]. Our application has three main 

components - a front-end consisting of an admin and consumer page, a back-end, and a database.  

 

The user is first greeted with a splash screen, and then interacts with the UI on the main menu. 
The frontend consists of text, buttons, and a list which holds in the different routing pages. From 

here, the user can choose to either customize their model by selecting “Model Admin”, or test 

their model by selecting “Model Test”. By selecting “Model Test”, the UI will consist of a text 
field allowing the user to add a new model, and a list of past models that they can customize and 

train. Selecting a model will redirect the user to a new page where they can add labels to the 

model, or edit an existing label. By selecting a label, the user will need to capture images using 

their camera. The more images they take for each label, the more accurate the overall model. 
Once they take enough pictures for each label, they can select the “Training!” button to train the 

model. 

 
If the admin chooses to go to the consumer page, the user will be greeted by a list of trained 

models. By selecting one, they will need to take a picture of whatever object they want. Once the 

picture is taken, the user will be shown a screen detailing the label that the image taken 
corresponds with and the likelihood of the model being correct. 

 

 
 

Figure 1. Overview of the solution 

 



Computer Science & Information Technology (CS & IT)                                        119 

 
 

Figure 2. Screenshot of App process 

 

The front-end of the application was developed using Flutter], a UI software development kit 

created by Google that supports both iOS and Android versions of the application [13]. The Main 

Menu page was built utilizing the ListView Class, which holds the Page Routers to either the 
Admin Page or the Consumer Page. Within the Admin portion, we used both the TextField Class 

to gather the names of any new Model IDs or labels inputted by the user, and the ListView Class 

to load any new Model IDs or labels. Within the Consumer portion, we also used the ListView 
Class to load any trained models for testing, and a button class that allowed the user to clear the 

cache. Once the user takes a picture on the Consumer side, a page is shown with an image of the 

label it computes to be most accurate, and a text displaying the accuracy. 

 

 
 

Figure 3. Screenshot of code 1 

 
There are two elements in the ListView: a page router to the admin section and a page router to 

the consumer section. Clicking on either element in the list will direct the user to that specific 

section. 
 

The backend was made using a Python Flask server which holds 6 main HTTP APIs [14]. Flask 

is a web framework that allows for the routing of HTTP requests to the specified controller. The 

backend is connected to a Firebase database that stores the model names, model labels, and a url 
which consists of the labels text file and the tflite file of the trained model [15]. In addition, the 

database stores each image taken by the user for each label they select. By taking advantage of 

the HTTP APIs from the Flask server, we were able to access and edit the items within the 
Firebase database. Consequently, we were able to create changes on the front-end UI as well. 
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Figure 4. Firestore Database 

 
This image shows the Firestore Database, which holds a variety of models, with its branches 

having properties such as label names, model ids, and a url containing the tflite file and the label 

file. This structure allows us to utilize the HTTP APIs to access and edit the properties. 

 

 
 

Figure 5. The storage for all the images contained for each label 

 
This image shows the storage for all the images contained for each label. For the example above, 

the label Orange Ball is selected for the model Basketball. The storage will contain a list of all the 

pictures that will be taken by the user in the model admin.  

 
Our application uses an HTTP API named addmodel, which when given the name as a parameter, 

will add a new model branch in our Firebase. This allows users to create as many models with 
different names as they want. Similarly, we used another HTTP API named addlabel, which has 

two parameters: the name of an existing model and a new name for the label. By providing the 

name of the existing model, the user is able to attach this new label to the branch of that model as 
a new property. 

 



Computer Science & Information Technology (CS & IT)                                        121 

 
 

Figure 6. Screenshot of code 2 

 

The Python Flask representation of the APIs for add_model and add_label. Both will access the 

Firestore Database and add specific values based on the user input. 

 

 
 

Figure 7. Screenshot of code 3 

 

 
 

Figure 8. Screenshot of code 4 

 

The app also uses two different HTTP APIs to gain access to all the model branches and labels 

for each particular model branch - get_all_models and get_model_info respectively. 
get_all_models, when executed by an HTTP request, returns a list of the name properties of all 
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the models. This allows us to utilize the ListView class to linearly display each model with a text 
that holds the name property. get_model_info returns a Python dictionary that stores key-value 

pairs of objects. In order to gain access to the list of all labels, we set the key property to “labels”, 

allowing us again to display all the names of the labels as a ListView class. 

 

 
 

Figure 9. Screenshot of code 5 

 

 
 

Figure 10. Screenshot of code 6 

 

 
 

Figure 11. Screenshot of code 7 
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Figure 12. Screenshot of code 8 

 

 
 

Figure 13. Screenshot of code 9 

 

The fifth HTTP API we used was called train_model, which trains the model based on the labels 

and then uploads the model file into the Firebase. This allows us to call the get_model_info 

HTTP API on the consumer side, where we can set the key value of the dictionary to “url” to gain 
access to the model file for testing. The final HTTP API, upload_image, saves the picture taken 

by the user and stores the file to the Firebase as a property of each label. This in turn will allow 

the train_model API to gain access to these images and train the model. 
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Figure 14. Screenshot of code 10 

 

 
 

Figure 15. Screenshot of code 11 
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Figure 16. Screenshot of code 12 

 

4. EXPERIMENT 
 

4.1. Experiment 1 
 

 

 
 

Figure 17. A qualitative test on common functionality 

 

Figure 17 depicts a qualitative test on common functionality that is found in the typical script 
approach to generating image-detection models. We list such functionality and compare the 

differences between the typical approach and our mobile approach. While the approach can 

slightly differ, the purpose of the test is to ensure that we check the boxes in the standard 
functionality, including training, making a prediction, and utilizing data. 

 

In order to be effective for domain experts to use, the application must include features and 

certain functionality that must be present in the typical approach . These include the abilities to 
train a model and predict the results based on the labels. However, our application also includes 
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abilities that are generally not found in the standard text-based programming approach to 
machine learning, such as the ability to create custom datasets directly on the application. In this 

experiment, we attempt to compare our application’s functionality with that found in a typical 

text-based script approach to image-detection. Here we can see that we have listed which 

functionalities are within both approaches and why our approach can be more beneficial for 
domain-experts with no experience in code. In every case, from training the model, making a 

prediction, uploading a dataset, and creating multiple models, our mobile application has a simple 

visual interface that makes the process significantly easier to navigate through. 
 

4.2. Experiment 2 
 
Figure 18 depicts a quantitative test comparing the lists of steps between the typical approach and 

the approach it takes to handle specific tasks within image-detection. In this experiment, we 

attempt to demonstrate that our approach is significantly less time-consuming, less tedious, and 
more intuitive. We will also remove any boilerplate code for the typical approach as implemented 

in the program is trivial. 
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Figure 18. A quantitative test comparing the lists of steps 

 

The results show that traditional text-based programming to accomplish any standard 

functionality is likely to be far more tedious, and requires a more technical understanding of both 
machine learning and programming. While in the typical approach we would need to use another 

piece of technology to gather images and then upload, we offer the approach of taking pictures on 

the mobile phone they are using to train and evaluate the model, making for a significantly less 
time-consuming process. Furthermore, important functionality such as evaluation and training 

requires utilizing code in the typical approach; we include the ability to do so with only a couple 

of clicks, typing, and taking pictures on the phone. This clearly reduces the knowledge threshold 
required to create image-detection models. 

 

Figure 19 shows a quantitative test depicting the accuracy of the image-detection model used in 

our mobile application. We attempt to show that the difference between using the model in the 
text-based approach and our approach is negligible. 

 

 
 

Figure 19. A quantitative test depicting the accuracy 
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The results show that overall, each prediction made by the model has been correct for models that 
have 3 labels, 6 labels and 10 labels. For 3 labels, we had an overall confidence of 86.53%. For 6 

labels, we had an overall confidence of 90.58%. And for 10 labels, we had an overall confidence 

of 90.19%. The overall median of our results was above 90%, and increasing the number of 

labels did not decrease our model’s accuracy. Our data can prove that the model works the same, 
and will display the correct result for an overwhelming majority of the time. 

 

5. RELATED WORK 
 
kTrain is a low-code Python library that attempts to make the process of machine learning easier 

to program [16]. Using kTrain, tasks within the training that would normally require more lines 

of confusing code would be shortened using their libraries. Furthermore, the library makes each 

line of code more intuitive and allows the user to have an easier process when writing commands. 
kTrain, while simplifying the training, does not support users that don’t know how to code. Our 

approach, on the other hand, gives the user the ability to train the model without having to write a 

single line of code. This gives an abstraction that opens up machine learning to everybody, not 
just those with a basic understanding of code. 

 

Lobe AI is an application that allows users to gather testing data, train a model, and compute its 
results without having to write any code [17]. In addition, similar to our application, Lobe allows 

users to create their own dataset without having to export images. However, since Lobe AI is 

only supported on the computer, gathering such images using a webcam is not only inconvenient, 

but also limiting as some computers may not have a webcam that works. However, because our 
application is supported on smartphones, users can easily take pictures of the data using their 

phones and thus will have a better user experience. 

 
Levity AI is a software that allows for the automation of images, text, and other documents [18]. 

By importing images or other pieces of training data, Levity is able to train a model based on 

such images. However, Levity is not only expensive, but it also does not give users the ability to 
create their own data-sets. This requires users to go through the time-consuming process of 

gathering images and exporting them. In contrast, our approach allows users to train models for 

free, increasing its usability and scope, and also allows users to create their own models based on 

the images they collect by their own phone camera. 
 

6. CONCLUSIONS 
 

In conclusion, my application allows the user to organize a list of models, train the models, create 
labels, and create datasets with a mobile phone. Using the images collected by the user, the 

application uses a server-side approach to train the model, allowing anyone to run tests using the 

models without having to train the model within the mobile app. Furthermore, we utilized HTTP 

APIs to add images to the database, get models/labels to load in our User Interface, and add 
models/labels to our database. We also designed a simple, easy-to-use UI that follows a simple 

procedure and isn’t as convoluted as other similar applications. We conducted three experiments: 

one to evaluate the completeness of our approach, one to find the efficiency of our approach, and 
one to determine the accuracy of our approach. The results have shown that our application 

maintains the same accuracy and confidence as the typical text-based approach to train image-

detection models. However, we have also concluded that we have a similar set of functionality 

with an easy-to-navigate UI and a dynamic structure that allows for easy modification of models. 
Similarly, we provide a simple approach to modify or add datasets so that the user can easily 

increase the amount of data used to train the model. 
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One limitation of our application is the time it would take to gather one image at a time. While 
taking photos on a phone and storing it to the dataset is already quite efficient, it will still be a 

tedious process to take pictures one at a time. Because an image-detection model generally 

requires hundreds of photos for it to be accurate, taking pictures would still be a time-consuming 

process. Furthermore, our approach only supports image-detection. As machine-learning 
encompasses other architectures such as data classification and object detection, our app can only 

be used to service a specific machine learning task. 

 
We plan on creating a system that allows users to upload their own images to our app. 

Furthermore, we plan on introducing a video system that would allow the user to take pictures in 

batches at one time at high quantities. Both of these additions would allow the process of 
gathering data to be even more efficient and less tedious. 
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