
David C. Wyld et al. (Eds): ARIA, SIPR, SOFEA, CSEN, DSML, NLP, EDTECH, NCWC - 2022

pp. 115-129, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.121510

GENERATIVE APPROACH TO THE

AUTOMATION OF ARTIFICIAL
INTELLIGENCE APPLICATIONS

Calvin Huang1 and Yu Sun2

1University High School, 4771 Campus Dr, Irvine, CA 92612
2California State Polytechnic University,

Pomona, CA, 91768, Irvine, CA 92620

ABSTRACT

In order to use the full power of artificial intelligence, many are required to navigate through a

complex process that involves reading and understanding code. Understanding this process can

be especially intimidating to domain experts who wish to use A.I to develop a project, but have

no former experience with programming. This paper develops an application to allow for any
domain expert (or normal person) to gather data, assign labels, and train models automatically

without the use of software to do so. Our application, through a server, allows the user to send

HTTP API requests to train models, upload images to the database, add models/labels, and

access models/labels.

KEYWORDS

Tensorflow Lite, Flask, Flutter, Google Colab.

1. INTRODUCTION

With the rise of popularity of artificial intelligence throughout the last few decades, the world has

seen an interweaving between A.I and certain academic domains [1]. Artificial Intelligence and

its many applications have been used throughout a variety of critical and far-reaching projects.
From medical research in cancer detection to blind assistance systems, image-detection has been

used in so many impactful projects [2][3]. It soon became imperative for certain domain experts

who want to combine image detection to their projects to have a thorough understanding of
programming, training models, gathering data, navigating through Integrated Development

Environments, and concepts in Convolutional Neural Networks [4].

Image detection models are quickly becoming an extremely powerful tool for domain experts to
use [5]. By requiring them to understand a different subject entirely when they are focused on

another academic interest may be time-consuming and inefficient. For example, in order to

actually train a model on a system such as Google Colab, they would need to go through a
lengthy chunk of code, import files filled with their training data, and export the finished model

[6]. The process is too time consuming for non-experts and even general programmers to use.

Furthermore, they may need to coordinate and hire machine-learning engineers, which convolutes
the process and makes the overall project more complex. Additionally, many domain experts may

already be incredibly invested in their own field, which could deter them from taking the time to

learn the concepts of machine learning [7]. However, if there was a way to introduce an

http://airccse.org/cscp.html
http://airccse.org/csit/V12N15.html
https://doi.org/10.5121/csit.2022.121510

116 Computer Science & Information Technology (CS & IT)

abstraction that could allow them to train the models without any code, the process becomes
significantly less challenging.

Some of the existing tools that have been used to make machine-learning more friendly and

efficient for a non-experienced user are Google Colab Notebooks and an application called
CreateML [8]. Google Colab, a hosted Jupyter notebook service developed by Google, gives

anyone the ability to train a model simply by accessing a prewritten notebook on their site [9].

Without needing to install an IDE such as Jupyter, a user is theoretically able to add their own
data-set into the notebook, and run the code in the prewritten notebook such that eventually the

model is created. However, this method is not as efficient or user-friendly as our approach. Going

through each section of code, and storing each image into a file one by one makes the process
time-consuming and unappealing. In addition, some pieces of code may be confusing or

unrecognizable to some users who want to use image-detection, which requires more

programming knowledge.

Another tool that relates to this issue is CreateML, an application developed by Apple. CreateML

allows the user to train an image-detection model without having to write a single line of code.

However, this application is again quite limited as users do not have the ability to easily create
their own datasets. Instead, they are forced to take potentially thousands of their own images,

upload it all into its own folder, and then use their application to train the model. Thus, like

Google Colab, the process of training is again very inefficient and time-consuming for a non-
expert. Furthermore, CreateML, like many applications that attempt a Low-Code No-Code

approach to image-detection, has a difficult User Interface for non-experts and therefore makes

the process more difficult for them [10]. Although there are several existing approaches to

making image-detection efficient for a non-expert, many of them are tedious, frustrating, and
quite unfriendly for someone looking to utilize this tool but doesn’t have much experience with it.

In this paper, we propose a solution that allows a non-expert to train a model and utilize it in an
intuitive and straightforward way. The application gives the user both the ability to train a model

and use that exact same model. In the admin page, they can either select an existing model or

create a new model with any name they want. After, they can give the model different label

names, and for each label they can take pictures that correspond to that label. Using this method,
non-experts will be able to gather a data-set without having to upload pictures onto a file and then

utilize existing tools. After pictures are taken for each label, they can train the model.

The application also allows the user to use the image-detection model. They are given the option

to load models, and by choosing an existing model that has already been trained, they can take a

screenshot of what they want to compute. This directs them to a page that gives them the
probability of the image being a certain label within the model that they choose. Therefore, we

believe that our application is not only more friendly for a non-user, but also less time-consuming

and more efficient for any tasks that need to implement an image-detection model.

In order to prove that our mobile application would be less tedious, more efficient, and include

similar functionality as the standard approach, we conducted three experiments to compare the

functionalities, compare the end-to-end processes, and evaluate the accuracy and confidence of
the image-detection model used in our mobile application. First, by comparing the functionality

of both approaches, we create a checklist to determine if our application succeeds in carrying out

certain tasks that are instrumental to the process of machine learning. However, we also analyzed
the benefits of using our application as well, and show that not only do we carry out such tasks,

but we do it in a more intuitive manner. Furthermore, we compared the end-to-end processes,

which allowed us to illustrate the strength of our application: our efficiency. Our results showed

that while most of the methods in the typical approach required lines of code and the organization

Computer Science & Information Technology (CS & IT) 117

of images, our approach was able to simplify the process by only requiring users to make several
clicks, type several words, and take shots with their phone camera. Finally, by evaluating our

accuracy and confidence, we were able to show that the accuracy of our application would not

differ from the accuracy of the typical approach. The goal of using these experiments in tandem

is to demonstrate that our approach is not only the most efficient method for training and
evaluating models, but it is also the most intuitive and user-friendly system for non-experts to use

if they wish to create and organize a list of image-detection models.

The rest of the paper is organized as follows: Section 2 gives the details on the challenges that we

met during the experiment and designing the sample; Section 3 focuses on the details of our

solutions corresponding to the challenges that we mentioned in Section 2; Section 4 presents the
relevant details about the experiment we did, following by presenting the related work in Section

5. Finally, Section 6 gives the conclusion remarks, as well as pointing out the future work of this

project.

2. CHALLENGES

In order to build the project, a few challenges have been identified as follows.

2.1. How do we allow the user to create their own datasets in an efficient way

Perhaps the most tedious part of training an image-detection model is gathering the data. There
are a couple of options. For instance, if a user prefers to create a model using existing datasets,

then online platforms such as Kaggle can provide the user with thousands of images already

organized in its specific labels [11]. There are certainly many websites that give users the ability
to gather lots of data. However, if a user needed to customize their own data-set and execute a

model based on their own images, they would need to take individual pictures for each label,

export the images to a computer, store each image in its corresponding label file, and then export

the file to be used to train the model on a notebook. This process is clearly very time-consuming
and thus stops non-experts or other people without any experience in code to use image-detection

in their projects or other initiatives.

2.2. How do we design a user-interface that is easy to navigate for a non-expert

Because the purpose of the application is to target those who do not have experience with
machine learning, the user-interface must also be friendly and intuitive for them. However,

because there are so many terms and concepts in Machine Learning, it is quite difficult to

introduce a user-interface that doesn’t require the user to have at least a basic understanding of
the training process in machine learning. For example, in order to understand the process of

training a model, the user must be able to understand terms such as labels, training set, and test

set. This issue is accelerated even further by the fact that understanding machine learning

requires an understanding of coding concepts. If a domain-expert who wants to utilize image-
detection does not even know how to code, they would be forced to either work with another

engineer or learn by themselves, which is more time-consuming and less efficient.

2.3. How do we introduce an approach on a mobile application that trains the

dataset

In order to allow users to use an application on their phones to build models, the app must include

an approach to not just organize the dataset, but also train the model. The difficulty lies in the fact
that training the model on a phone is too computationally expensive to train. The process would

118 Computer Science & Information Technology (CS & IT)

take more than one standard smartphone, which is unreliable and serves as poor user experience.
Furthermore, the smartphone must also hold in potentially thousands of pictures to train the

model. This is clearly not doable and thus the application must have some method in which a

server is called in order to train the model.

3. SOLUTION

Our application provides an approach to train image-detection models, gather training data, and

compute accuracy of testing data on a mobile device. In order to customize the model, we used

the Tensorflow Lite Model Maker, a library that reduces the training time and amount of training
data, as a means of customizing each image detection model [12]. Our application has three main

components - a front-end consisting of an admin and consumer page, a back-end, and a database.

The user is first greeted with a splash screen, and then interacts with the UI on the main menu.
The frontend consists of text, buttons, and a list which holds in the different routing pages. From

here, the user can choose to either customize their model by selecting “Model Admin”, or test

their model by selecting “Model Test”. By selecting “Model Test”, the UI will consist of a text
field allowing the user to add a new model, and a list of past models that they can customize and

train. Selecting a model will redirect the user to a new page where they can add labels to the

model, or edit an existing label. By selecting a label, the user will need to capture images using

their camera. The more images they take for each label, the more accurate the overall model.
Once they take enough pictures for each label, they can select the “Training!” button to train the

model.

If the admin chooses to go to the consumer page, the user will be greeted by a list of trained

models. By selecting one, they will need to take a picture of whatever object they want. Once the

picture is taken, the user will be shown a screen detailing the label that the image taken
corresponds with and the likelihood of the model being correct.

Figure 1. Overview of the solution

Computer Science & Information Technology (CS & IT) 119

Figure 2. Screenshot of App process

The front-end of the application was developed using Flutter], a UI software development kit

created by Google that supports both iOS and Android versions of the application [13]. The Main

Menu page was built utilizing the ListView Class, which holds the Page Routers to either the
Admin Page or the Consumer Page. Within the Admin portion, we used both the TextField Class

to gather the names of any new Model IDs or labels inputted by the user, and the ListView Class

to load any new Model IDs or labels. Within the Consumer portion, we also used the ListView
Class to load any trained models for testing, and a button class that allowed the user to clear the

cache. Once the user takes a picture on the Consumer side, a page is shown with an image of the

label it computes to be most accurate, and a text displaying the accuracy.

Figure 3. Screenshot of code 1

There are two elements in the ListView: a page router to the admin section and a page router to

the consumer section. Clicking on either element in the list will direct the user to that specific

section.

The backend was made using a Python Flask server which holds 6 main HTTP APIs [14]. Flask

is a web framework that allows for the routing of HTTP requests to the specified controller. The

backend is connected to a Firebase database that stores the model names, model labels, and a url
which consists of the labels text file and the tflite file of the trained model [15]. In addition, the

database stores each image taken by the user for each label they select. By taking advantage of

the HTTP APIs from the Flask server, we were able to access and edit the items within the
Firebase database. Consequently, we were able to create changes on the front-end UI as well.

120 Computer Science & Information Technology (CS & IT)

Figure 4. Firestore Database

This image shows the Firestore Database, which holds a variety of models, with its branches

having properties such as label names, model ids, and a url containing the tflite file and the label

file. This structure allows us to utilize the HTTP APIs to access and edit the properties.

Figure 5. The storage for all the images contained for each label

This image shows the storage for all the images contained for each label. For the example above,

the label Orange Ball is selected for the model Basketball. The storage will contain a list of all the

pictures that will be taken by the user in the model admin.

Our application uses an HTTP API named addmodel, which when given the name as a parameter,

will add a new model branch in our Firebase. This allows users to create as many models with
different names as they want. Similarly, we used another HTTP API named addlabel, which has

two parameters: the name of an existing model and a new name for the label. By providing the

name of the existing model, the user is able to attach this new label to the branch of that model as
a new property.

Computer Science & Information Technology (CS & IT) 121

Figure 6. Screenshot of code 2

The Python Flask representation of the APIs for add_model and add_label. Both will access the

Firestore Database and add specific values based on the user input.

Figure 7. Screenshot of code 3

Figure 8. Screenshot of code 4

The app also uses two different HTTP APIs to gain access to all the model branches and labels

for each particular model branch - get_all_models and get_model_info respectively.
get_all_models, when executed by an HTTP request, returns a list of the name properties of all

122 Computer Science & Information Technology (CS & IT)

the models. This allows us to utilize the ListView class to linearly display each model with a text
that holds the name property. get_model_info returns a Python dictionary that stores key-value

pairs of objects. In order to gain access to the list of all labels, we set the key property to “labels”,

allowing us again to display all the names of the labels as a ListView class.

Figure 9. Screenshot of code 5

Figure 10. Screenshot of code 6

Figure 11. Screenshot of code 7

Computer Science & Information Technology (CS & IT) 123

Figure 12. Screenshot of code 8

Figure 13. Screenshot of code 9

The fifth HTTP API we used was called train_model, which trains the model based on the labels

and then uploads the model file into the Firebase. This allows us to call the get_model_info

HTTP API on the consumer side, where we can set the key value of the dictionary to “url” to gain
access to the model file for testing. The final HTTP API, upload_image, saves the picture taken

by the user and stores the file to the Firebase as a property of each label. This in turn will allow

the train_model API to gain access to these images and train the model.

124 Computer Science & Information Technology (CS & IT)

Figure 14. Screenshot of code 10

Figure 15. Screenshot of code 11

Computer Science & Information Technology (CS & IT) 125

Figure 16. Screenshot of code 12

4. EXPERIMENT

4.1. Experiment 1

Figure 17. A qualitative test on common functionality

Figure 17 depicts a qualitative test on common functionality that is found in the typical script
approach to generating image-detection models. We list such functionality and compare the

differences between the typical approach and our mobile approach. While the approach can

slightly differ, the purpose of the test is to ensure that we check the boxes in the standard
functionality, including training, making a prediction, and utilizing data.

In order to be effective for domain experts to use, the application must include features and

certain functionality that must be present in the typical approach . These include the abilities to
train a model and predict the results based on the labels. However, our application also includes

126 Computer Science & Information Technology (CS & IT)

abilities that are generally not found in the standard text-based programming approach to
machine learning, such as the ability to create custom datasets directly on the application. In this

experiment, we attempt to compare our application’s functionality with that found in a typical

text-based script approach to image-detection. Here we can see that we have listed which

functionalities are within both approaches and why our approach can be more beneficial for
domain-experts with no experience in code. In every case, from training the model, making a

prediction, uploading a dataset, and creating multiple models, our mobile application has a simple

visual interface that makes the process significantly easier to navigate through.

4.2. Experiment 2

Figure 18 depicts a quantitative test comparing the lists of steps between the typical approach and

the approach it takes to handle specific tasks within image-detection. In this experiment, we

attempt to demonstrate that our approach is significantly less time-consuming, less tedious, and
more intuitive. We will also remove any boilerplate code for the typical approach as implemented

in the program is trivial.

Computer Science & Information Technology (CS & IT) 127

Figure 18. A quantitative test comparing the lists of steps

The results show that traditional text-based programming to accomplish any standard

functionality is likely to be far more tedious, and requires a more technical understanding of both
machine learning and programming. While in the typical approach we would need to use another

piece of technology to gather images and then upload, we offer the approach of taking pictures on

the mobile phone they are using to train and evaluate the model, making for a significantly less
time-consuming process. Furthermore, important functionality such as evaluation and training

requires utilizing code in the typical approach; we include the ability to do so with only a couple

of clicks, typing, and taking pictures on the phone. This clearly reduces the knowledge threshold
required to create image-detection models.

Figure 19 shows a quantitative test depicting the accuracy of the image-detection model used in

our mobile application. We attempt to show that the difference between using the model in the
text-based approach and our approach is negligible.

Figure 19. A quantitative test depicting the accuracy

128 Computer Science & Information Technology (CS & IT)

The results show that overall, each prediction made by the model has been correct for models that
have 3 labels, 6 labels and 10 labels. For 3 labels, we had an overall confidence of 86.53%. For 6

labels, we had an overall confidence of 90.58%. And for 10 labels, we had an overall confidence

of 90.19%. The overall median of our results was above 90%, and increasing the number of

labels did not decrease our model’s accuracy. Our data can prove that the model works the same,
and will display the correct result for an overwhelming majority of the time.

5. RELATED WORK

kTrain is a low-code Python library that attempts to make the process of machine learning easier

to program [16]. Using kTrain, tasks within the training that would normally require more lines

of confusing code would be shortened using their libraries. Furthermore, the library makes each

line of code more intuitive and allows the user to have an easier process when writing commands.
kTrain, while simplifying the training, does not support users that don’t know how to code. Our

approach, on the other hand, gives the user the ability to train the model without having to write a

single line of code. This gives an abstraction that opens up machine learning to everybody, not
just those with a basic understanding of code.

Lobe AI is an application that allows users to gather testing data, train a model, and compute its
results without having to write any code [17]. In addition, similar to our application, Lobe allows

users to create their own dataset without having to export images. However, since Lobe AI is

only supported on the computer, gathering such images using a webcam is not only inconvenient,

but also limiting as some computers may not have a webcam that works. However, because our
application is supported on smartphones, users can easily take pictures of the data using their

phones and thus will have a better user experience.

Levity AI is a software that allows for the automation of images, text, and other documents [18].

By importing images or other pieces of training data, Levity is able to train a model based on

such images. However, Levity is not only expensive, but it also does not give users the ability to
create their own data-sets. This requires users to go through the time-consuming process of

gathering images and exporting them. In contrast, our approach allows users to train models for

free, increasing its usability and scope, and also allows users to create their own models based on

the images they collect by their own phone camera.

6. CONCLUSIONS

In conclusion, my application allows the user to organize a list of models, train the models, create
labels, and create datasets with a mobile phone. Using the images collected by the user, the

application uses a server-side approach to train the model, allowing anyone to run tests using the

models without having to train the model within the mobile app. Furthermore, we utilized HTTP

APIs to add images to the database, get models/labels to load in our User Interface, and add
models/labels to our database. We also designed a simple, easy-to-use UI that follows a simple

procedure and isn’t as convoluted as other similar applications. We conducted three experiments:

one to evaluate the completeness of our approach, one to find the efficiency of our approach, and
one to determine the accuracy of our approach. The results have shown that our application

maintains the same accuracy and confidence as the typical text-based approach to train image-

detection models. However, we have also concluded that we have a similar set of functionality

with an easy-to-navigate UI and a dynamic structure that allows for easy modification of models.
Similarly, we provide a simple approach to modify or add datasets so that the user can easily

increase the amount of data used to train the model.

Computer Science & Information Technology (CS & IT) 129

One limitation of our application is the time it would take to gather one image at a time. While
taking photos on a phone and storing it to the dataset is already quite efficient, it will still be a

tedious process to take pictures one at a time. Because an image-detection model generally

requires hundreds of photos for it to be accurate, taking pictures would still be a time-consuming

process. Furthermore, our approach only supports image-detection. As machine-learning
encompasses other architectures such as data classification and object detection, our app can only

be used to service a specific machine learning task.

We plan on creating a system that allows users to upload their own images to our app.

Furthermore, we plan on introducing a video system that would allow the user to take pictures in

batches at one time at high quantities. Both of these additions would allow the process of
gathering data to be even more efficient and less tedious.

REFERENCES

[1] Flasiński, Mariusz. Introduction to artificial intelligence. Switzerland: Springer International

Publishing, 2016.

[2] Bi, Wenya Linda, et al. "Artificial intelligence in cancer imaging: clinical challenges and

applications." CA: a cancer journal for clinicians 69.2 (2019): 127-157.

[3] Kumar, Ashwani, and Ankush Chourasia. "Blind navigation system using artificial intelligence."

International research journal of engineering and technology (IRJET) 5.3 (2018): 601-605.

[4] Albawi, Saad, Tareq Abed Mohammed, and Saad Al-Zawi. "Understanding of a convolutional neural

network." 2017 international conference on engineering and technology (ICET). Ieee, 2017.

[5] Srivastava, Shrey, et al. "Comparative analysis of deep learning image detection algorithms." Journal
of Big Data 8.1 (2021): 1-27.

[6] Carneiro, Tiago, et al. "Performance analysis of google colaboratory as a tool for accelerating deep

learning applications." IEEE Access 6 (2018): 61677-61685.

[7] Jordan, Michael I., and Tom M. Mitchell. "Machine learning: Trends, perspectives, and prospects."

Science 349.6245 (2015): 255-260.

[8] Thakkar, Mohit. "Custom core ML models using create ML." Beginning Machine Learning in iOS.

Apress, Berkeley, CA, 2019. 95-138.

[9] Kluyver, Thomas, et al. Jupyter Notebooks-a publishing format for reproducible computational

workflows. Vol. 2016. 2016.

[10] Sahay, Apurvanand, et al. "Supporting the understanding and comparison of low-code development

platforms." 2020 46th Euromicro Conference on Software Engineering and Advanced Applications

(SEAA). IEEE, 2020.
[11] Bojer, Casper Solheim, and Jens Peder Meldgaard. "Kaggle forecasting competitions: An overlooked

learning opportunity." International Journal of Forecasting 37.2 (2021): 587-603.

[12] Louis, Marcia Sahaya, et al. "Towards deep learning using tensorflow lite on risc-v." Third Workshop

on Computer Architecture Research with RISC-V (CARRV). Vol. 1. 2019.

[13] Windmill, Eric. Flutter in action. Simon and Schuster, 2020.

[14] Grinberg, Miguel. Flask web development: developing web applications with python. " O'Reilly

Media, Inc.", 2018.

[15] Moroney, Laurence, Anglin Moroney, and Anglin. Definitive Guide to Firebase. California: Apress,

2017.

[16] Maiya, Arun S. "ktrain: A low-code library for augmented machine learning." (2020).

[17] García-Ortiz, Joselin, and Santiago Sánchez-Viteri. "Identification of the Factors That Influence
University Learning with Low-Code/No-Code Artificial Intelligence Techniques." Electronics 10.10

(2021): 1192.

[18] Hughes, Larry W., and James B. Avey. "Transforming with levity: Humor, leadership, and follower

attitudes." Leadership & Organization Development Journal (2009).

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	In order to use the full power of artificial intelligence, many are required to navigate through a complex process that involves reading and understanding code. Understanding this process can be especially intimidating to domain experts who wish to us...
	Keywords

