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ABSTRACT

The well-known puzzle game Tetris, where arrangements of 4 squares (tetrominoes) fall onto
the field like meteors, has been found to increase the brain’s efficiency [1]. Many variations
came into existence ever since its invention. Sometimes, the leveling can become a double-edged
sword, so this game is essentially a Zen mode without a leveling system. This game is built for
people who want to play a 3D version of Tetris at a speed they themselves have set. This paper
designs a game to exercise spatial visualization. This study uses a Unity/C++-based game [2].
This game will be tested by kids on the autism spectrum, and we will conduct a qualitative
evaluation of the approach.

No results have been shown yet, and that is due to the fact that this study is still a work in
progress. | am trying to make the game comply with the latest Tetris design guidelines that | can
find online (that is, the 2009 guideline).
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1. INTRODUCTION

Tetris is a puzzle game created by the famous Soviet-American game developer Alexey Pajitnov
and released in 1984 [3]. Developed in the Soviet Academy of Sciences in Moscow, Tetris was
based on the famous pentomino puzzles Pajitnov liked to play with when he was a child [4]. He
adapted the game to Cold War-era hardware and tweaked the game by reducing pentominoes to
tetrominoes (hence the name, a portmanteau of “tennis”, one of Pajitnov’s favorite sports, and
“tetra”, meaning “four” in Latin) and creating a playing field where tetrominoes would fall like
meteorites [5]. Pajitnov and his team realized that the game would end too quickly without a key
feature: making rows disappear whenever players filled them up. People that Pajitnov had
worked with were attracted to the game, and the game is still popular today, even leading some to
make variants with special twists in them, including but not limited to “Not Tetris”, with a
physics engine and free-rotating tetrominoes; and a 3D version developed by T&E Soft for the
Virtual Boy. It has inspired competitions to see who can earn the highest score. People have
placed tetrominoes in specific arrangements at the beginning of their game to score more points.
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Research from Mind Research Lab in Albuquerque on the original game has led to research on
variations of the game, and its effects on autism [11]. This game incorporates features found in
numerous other games before it. The only feature setting it apart from other games is a “central
cube rotation system”.

There already exists the aforementioned Virtual Boy version, and another game called Blockout.
Though Blockout has an indication for the height of the playing field, it only provides a top view
of the playing field [10]. However, this Unity remake has a full 3D view of the playing field,
allowing people to strategize where their piece will land using the ghost piece.

The pre-existing Tetris research involves the original 2D game [6].

In this paper, we follow the same line of research by ... Our goal is for players of this game to
visualize arrangements of cubes spatially. Our method is inspired by Alexey Pajitnov’s Tetris and
some other 3D Tetris-based games. There are some good features of Unity and C++. First, Unity
is the second-most used game engine on Steam products. Second, we added more and more Unity
plugins to the game.

The differences between my method and the other Tetris research project are that this paper
focuses on Tetris as it relates to autism, and that this project uses an unofficial self-made 3D
version.

The rest of the paper is organized as follows: Section 2 gives the details on the challenges that we
met during the experiment and designing the sample; Section 3 focuses on the details of our
solutions corresponding to the challenges that we mentioned in Section 2; Section 4 presents the
relevant details about the experiment we did, following by presenting the related work in Section
5. Finally, Section 6 gives the conclusion remarks, as well as pointing out the future work of this
project.

2. CHALLENGES
In order to build the project, a few challenges have been identified as follows.

2.1. Implementing the Ghost Piece

The Ghost piece is a prediction of the landing position of a Tetromino if allowed to drop into the
playing field. It is intended to reduce misdrops, especially for beginners and high-speed players.

According to the Tetris Wiki, the Ghost piece, or ghost for short, also called shadow or (in Arika
games) Temporary Landing System (TLS), is a representation of where a tetromino or other piece
will land if allowed to drop into the playfield [7]. It is generally colored fainter than the falling
piece and the blocks in the playfield. As the player moves the falling piece, the ghost piece moves
below it; when the piece falls far enough that it overlaps the ghost piece, the falling piece is
always drawn in front. Older games did not have a ghost piece, but all games that conform to the
Tetris Guideline allow the player to use a ghost piece at all times, and Dr. Mario for Nintendo 64
has a ghost piece as well. The ghost piece reduces the number of misdrops, especially for
beginners or for high-speed players who use hard drop, but some players who are migrating from
games without a ghost piece have trouble adjusting to the ghost piece when they fail to
distinguish it from blocks in the playfield.
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2.2. The Free-Rotating Camera
Blockout’s camera is not free-rotating, and only gives a top view of the playing field. If
implemented, it may block players’ vision of the space below overhang. Instead, this Unity game

features a plugin called Cinemachine. The camera rotates around an orbit point (which in this
case refers to the center of the playing field)

3. SOLUTION
All scripts for this 3D Tetris game (working title) were coded in C++ [8].
The game is set on a black background with a white floor. Like in 3DT and Blockout, the goal is

to clear planes [9]. Since the tetracubes rotate around one singular mino, T-Spin singles and
doubles are possible, but not T-Spin triples and mini T-spins.

Figure 1. For the seven one-sided tetrominoes, | kept the colors for their tetracube counterparts. Top (left to
right): O, I, T, and L. Bottom (left to right): J, S, and Z. L and J are chiral pairs in 2D, but not in 3D. Same
appliesto Sand Z

Figure 2. Left to right: The tripod, and the 3D chiral pair [left arm and right arm]. Those are new to the
game because they do not exist in 2D

To create these arrangements, start with one cube, then clone it three times and move the clones
until the shape is made.

Shown below is the code of the current tetracube spawner.

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.Events;

using System;

using Random = UnityEngine.Random;
using UnityEngine.InputSystem;

public class RandomPieceSpawner : MonoBehaviour

{

[Header("Internal Info™)]
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[SerializeField] int current = 0;

[SerializeField] bool isRandomized = true;

public List<TetraminoGeneratorUpdater> piecesList = new();

[SerializeField] float waitTimer = 0.5f;

[SerializeField, Tooltip("The amount to divide speed by to make the timer not decrease as

fast.")]

float speedinverseMultiplier = 2;
[SerializeField] float minimumWaitTime = 0.5f;

[Header("Extrenal Info™)]
public GameObject piecesParent = null;
public TetraminoGenerator tetGen;

public TetraPieceScript currentPiece = null;

public GameObject hintPrefab;

// public PieceKeyboardControl defaultControl = new();
[SerializeField] InputActionAsset controls;
[Header("Events™)]

public UnityEvent OnGameOver = new ();

public UnityEvent OnPieceSpawn = new ();

/I Private Variables
private bool gameEnded = false;

void Start()

{
Random. InitState(Random.Range(Int32.MinValue, Int32.MaxValug));

if(piecesList.Count == Q)

Debug.LogError("Pieces List is Empty!);
return;

tetGen?.UpdateGenerator(piecesList[current]);

}

/I Update is called once per frame
void Update()

if (gameEnded) return;

if(currentPiece == null || currentPiece.ChecklfStopped)

{
SpawnPiece();
OnPieceSpawn?.Invoke();

¥
¥

public int RandomIndex()

{

return Random.Range(0,piecesList.Count);

}

public void SpawnPiece()
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}

{
¥

}

}

¥
¥

current = isRandomized ? RandomIndex(): current;
tetGen?.UpdateGenerator (piecesList[current]);

var piece = tetGen?.GenerateTetramino();
piece.transform.position = Tetra3DGrid.ForcelntoGridPosition(transform.position);
if('Tetra3DGrid.CheckMovementOK(piece.transform.position, Vector3.zero))
{
gameEnded = true;
currentPiece = null;
OnGameOver?.Invoke();
return;

}

piece.transform.parent = piecesParent != null ? piecesParent.transform : this.transform;

Rigidbody rb = piece. AddComponent<Rigidbody>();
rb.useGravity = false;
rb.isKinematic = true;

TetraPieceScript pieceScript = piece. AddComponent<TetraPieceScript>();
/I pieceScript.OverrideControls(defaultControl);

currentPiece = pieceScript;

pieceScript.SetControls(controls);
pieceScript.OverrideTimings(newDropTimer: waitTimer);

pieceScript.OnUnableToRegister. AddListener(this.GameOver);
TetraPieceHints pieceHint = piece. AddComponent<TetraPieceHints>();

pieceHint.pieceRef = pieceScript;
pieceHint.hintPrefab = hintPrefab;

public void GameOver()

OnGameOver?.Invoke();

/I Increase speed by decreasing waitTime
public void IncreaseSpeed(float increaseAmount){

waitTimer -= increaseAmount/speedinverseMultiplier;
waitTimer = Mathf.Max(waitTimer, minimumWaitTime);

/I Set wait timer by level
public void SetSpeedByLevel(int level){

waitTimer = Mathf.Pow((0.8f - ( (level - 1) * 0.007f) ), level - 1);

public void SetWaitTimer(float timerAmount){

waitTimer = Mathf.Max(timerAmount, minimumWaitTime);

This segment of code always returns a random integer from 0 to the length of the piece

Problem is, this algorithm generates piece droughts.

list.
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A

Figure 4. The Shader Graph for the Tetracubes
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S

Figure 5. The S-tetracube, otherwise known as the N or the Z, with the shader as mentioned in Figure 4.
Below the actual S-tetracube (in green) is a ghost piece (in black). The gray shadows are from the light
source

Unlike in BlockOut, however, the camera is free-rotating, allowing players to view a full 3D
view.

The code for the camera is as follows, and consists of two scripts: CameraFixedRotator.cs, which
handles the rotation of the camera around a singular point; and CameraOrbitControls.cs, which
handles the controls required to rotate the camera.
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(CameraFixedRotator.cs)

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.InputSystem;

public class CameraFixedRotater : MonoBehaviour
{
public Key cwRotationKey = Key.Comma;
public Key acwRotationKey = Key.Period;

[SerializeField]
private int xRemain = 1;
[SerializeField]
private int zRemain = -1;

/I Update is called once per frame
void Update()
{

if(Keyboard.current[cwRotationKey].wasPressed ThisFrame)
{
transform.rotation = Quaternion.Euler(transform.eulerAngles + Vector3.up*90);
transform.position = new Vector3(transform.position.x * xRemain, transform.position.y,
transform.position.z * zRemain);
xRemain *= -1,
zRemain *=-1;

else if(Keyboard.currentfacwRotationKey].wasPressed ThisFrame)
{
transform.rotation = Quaternion.Euler(transform.eulerAngles + Vector3.down*90);
transform.position = new Vector3(transform.position.x * zRemain, transform.position.y,
transform.position.z * xRemain);
xRemain *= -1,
zRemain *= -1;
}
}
}
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(CameraOrbitControls.cs)

using System.Collections;

using System.Collections.Generic;
using UnityEngine;

using UnityEngine.InputSystem;
using Cinemachine;

public class CameraOrbitControls : MonoBehaviour

{

[SerializeField] CinemachineFreeLook orbitCamera;
[SerializeField] float orbitSpeed = 1f;
[SerializeField] bool invertYValue = false;

private void Awake()

{
if(orbitCamera == null){
orbitCamera = GetComponent<CinemachineFreeLook>();
}
}
public void OnOrbitMove(InputAction.CallbackContext context)
{

Vector2 rotation = context.ReadValue<Vector2>().normalized;

rotation.y = invertYValue ? -rotation.y : rotation.y;
rotation.x = rotation.x * 180;

orbitCamera.m_XAxis.Value = rotation.x * orbitSpeed * Time.deltaTime;
orbitCamera.m_YAxis.Value = rotation.y * orbitSpeed * Time.deltaTime;

The ghost piece is integrated into the game as a script called TetraPieceHints.cs.
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using System.Collections;
using System.Collections.Generic;
using UnityEngine;

public class TetraPieceHints : MonoBehaviour

{
public float transparency = 0.25f;

public TetraPieceScript pieceRef;
public GameObject hintPrefab;

private List<GameObject> hintHolder = new List<GameObject>();
private bool isStopped = false;
void Start()

{
pieceRef = GetComponent<TetraPieceScript>();
foreach(Transform child in transform)

hintHolder. Add(Instantiate(hintPrefab, child));

¥
¥

void Update()
{
if(isStopped) return;

isStopped = pieceRef.CheckIfStopped;
if(lisStopped && pieceRef I= null && hintHolder.Count > 0)

UpdateAllPieces();
i}f(isStopped)
{ foreach(GameObject child in hintHolder)
Destroy(child);

}
hintHolder.Clear();

¥
¥

public void UpdateAllPieces()
{

for(int moveAmount = Tetra3DGrid.gridHeight+1; moveAmount > 0; moveAmount--)

bool allWorks = true;
foreach (Transform child in this.transform)

if(1Tetra3DGrid.CheckMovementOK(child.position, Vector3.down*moveAmount))

allWorks = false;
break;

}
}
if(allWorks)

foreach(GameObject hint in hintHolder)
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{
hint.transform.position = (Vector3.down * moveAmount)
+ hint.transform.parent.position;
}

break;
}
}
}

public Vector3 FindCollisionPoint(Transform child)
{

Vector3 direction = Vector3.down;

Vector3 highestHit = Vector3.negativelnfinity;

foreach(var collision in Physics.RaycastAll(child.position, direction,
Tetra3DGrid.gridHeight*2))

if(collision.collider.GetComponentInParent<TetraPieceScript>() != pieceRef
|| collision.collider.CompareTag("'Finish™) )

if(Mathf.Ceil(collision.point.y) > highestHit.y)
highestHit = collision.point;
}
}
}
return highestHit;

¥
¥

4, EXPERIMENT
4.1. Experiment 1

To test whether our games are really useful in helping children with autism focus, we found 9
children with autism of various ages from California. Divide them into 3 different groups. We
separately calculated the playtime of children of different ages when playing this game, It was
found that after a period of practice, children's attention time was significantly longer when
playing the game. The results show that the game is most effective for 7-10-year-olds, 7-10-
year-olds can only play the game continuously for 15.1 seconds at first, After a period of time, it
can reach more than 30 seconds.
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Figure 6. The first day focus time graph
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Figure 7. The second day focus time graph
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Figure 10. Result of experiment 2

5. RELATED WORK

The idea of a 3D version of Tetris wasn’t new. There exists a Microsoft DOS game called
Blockout, which implements polycubes of various orders, a ghost piece, and a top-view camera
[12]. This project is similar to Blockout in the way that there is no next queue and that it also has
the ghost piece implemented. The size of the playing field, and also the set of polycubes used,
can be chosen by the player.

However, this project restricts the pieces available to the 8 one-sided tetracubes, and the camera
is free-rotating. Also, the pieces are not colored based on stack height in this incarnation. They
are rather colored based on what shape they are and what orientation they spawn in.
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On to 3D Tetris, the Virtual Boy port by T&E Soft. The polycubes are only red due to the Virtual
Boy only being able to display in black and red [13]. It, like Blockout, involves polycubes of
orders 1-5, but also includes arrangements of pseudo-polyominoes extruded by 1 unit, and even
arrangements where the cubes themselves are not connected at all. Whenever players max out,
the bottom-most row gets cut and the playing field gets shorter. There is a layer-by-layer view of
the playing field in 3D Tetris.

This project, however, has an 8x12x8 playing field in contrast to 3D Tetris’ 5x5x5 playing field,
and stays true to its title by restricting the pieces to the 8 one-sided tetracubes.

6. CONCLUSIONS

This paper talks about a 3D remake of Tetris (and by extension, BlockOut) while trying to adhere
to the design guidelines as much as possible. It also involved elements from the already-existing
Virtual Boy game. The game teaches people how to deal with piece droughts.

Interestingly, there exists a maxout TAS of NES Tetris without any | pieces [14].

The game was made by the Tetris design guidelines of 2009. There is no next queue. There is no
visible grid. There is no soft dropping. Hard dropping does not generate the next piece instantly.

As for the future work, we plan to do or add the following: a warning system that warns players
whenever they are about to “top out”; an awards system; T-spins and Mini T-spins; and a
symmetrical SRS rotation system [15].

We are currently in the process of implementing these features into the game.
Here is a segment of pseudocode for the Random Generator and the Next queue, though they
have not been implemented into the game itself.

e Make the entire next queue an ArrayList of tetracubes.
e Generate a random permutation of the bag of tetra cubes and add them to the next queue
once there are (visible length of next queue) tetracubes left in the next queue.
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