
David C. Wyld et al. (Eds): CST, NLMLT, DMS, CLBD, ITCS, VLSIE - 2022

pp. 119-126, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.121911

SCREENING DEEP LEARNING INFERENCE

ACCELERATORS AT THE PRODUCTION LINES

Ashish Sharma, Puneesh Khanna, Jaimin Maniyar

AI Group, Intel, Bangalore, India

ABSTRACT

Artificial Intelligence (AI) accelerators can be divided into two main buckets, one for training

and another for inference over the trained models. Computation results of AI inference chipsets

are expected to be deterministic for a given input. There are different compute engines on the

Inference chip which help in acceleration of the Arithmetic operations. The Inference output

results are compared with a golden reference output for the accuracy measurements. There can

be many errors which can occur during the Inference execution. These errors could be due to

the faulty hardware units and these units should be thoroughly screened in the assembly line
before they are deployed by the customers in the data centre.

This paper talks about a generic Inference application that has been developed to execute

inferences over multiple inputs for various real inference models and stress all the compute

engines of the Inference chip. Inference outputs from a specific inference unit are stored and are

assumed to be golden and further confirmed as golden statistically. Once the golden reference

outputs are established, Inference application is deployed in the pre- and post-production

environments to screen out defective units whose actual output do not match the reference.

Strategy to compare against itself at mass scale resulted in achieving the Defects Per Million

target for the customers

KEYWORDS

Artificial Intelligence, Deep Learning, Inference, Neural Network Processor for Inference
(NNP-I), ICE, DELPHI, DSP, SRAM, ICEBO, IFMs, OFMs, DPMO.

1. INTRODUCTION

Artificial Intelligence (AI) is growing in recent years and is expected to be re-shaping industries.
Deep Neural networks are in the heart of the AI revolution. Deep Neural Network is composed of

layers of simulated neurons with different connectivity schemes. The new computation model is

based on massive parallel execution of linear algebra operations. New dedicated architectures that
are optimized for Deep Learning execution is required to achieve high efficiency and to meet the

market requirements. Deep learning inference accelerators are designed specifically to deliver

superior performance, low latency, power efficiency and cost savings for cloud, data centres and

other emerging applications.

SpringHill (NNP-I) is an Inference Chip from Intel which is used to accelerate execution of the

arithmetic operations. It consists of 12 Inference Compute Engines (ICE) as described in Figure
1. Each ICE contains hardware accelerator IPs DELPHI and DSP. The operations that are

supported by DELPHI includes direct CNNs (convolution Neural Network) as well as GEMM

(General Matrix Multiplication), nonlinear activation, quantization, and pooling operations. The
ICE core is highly programmable and integrates a strong VLIW vector Tensilica DSP as

http://airccse.org/cscp.html
http://airccse.org/csit/V12N19.html
https://doi.org/10.5121/csit.2022.121911

120 Computer Science & Information Technology (CS & IT)

described in Figure 2. This allows a variety of operators that are not accelerated by the DL
accelerator to be mapped to the DSP and executed in high efficiency. In addition, the ICE

includes dedicated memory access blocks: a dedicated Deep Learning DMA (DSE) with

dedicated features such as 4D walks, padding and stride; Compression/de-compression engine

and MMU (Memory Management Unit). Each ICE has a large local SRAM of size 4MB to store
the persistent data. A pair of ICE units are connected via ICEBO which allows the ICEs to share

the data with each other. All the ICEs share LLC cache of size 24 MB.

Figure 1. Inference Compute Engine (ICE)

Figure 2. DL Compute Engine and Vector Processing Unit (DSP)

The NNP-I card is connected to the host processor using the PCI. The Inference applications run

on the host. The model is loaded onto the card memory along with the inputs and weights. The

inference outputs are transferred back to the host and subsequently to the Inference application.
The inference accuracy for the same inputs for different inferences must remain the same. The

inference application also collects the error statistics from the card.

Computer Science & Information Technology (CS & IT) 121

Figure 3. NNPI Software Stack

The NNPI Software stack described in Figure 3 includes the Graph Compiler, Platform/Drivers.

The models are compiled using the Graph Compiler which generates the recipe. The recipe is
passed to the Inference Application. The Inference Application runs on the host server and

interfaces with the card using the platform drivers. The recipe gets executed on the ICEs and the

final output is shared back to the Inference Application. The outputs received after the Inference
are compared with the expected outputs (software reference) and the Inference

efficiency/accuracy is measured.

There are different kinds of errors which can occur during the inference execution due to the

hardware issues. These include Byte Mismatch (Computational) errors, Deep SRAM errors, ECC

errors, PCIe AER errors, parity errors. The cards should be thoroughly screened at the factory

with the help of a dedicated test content so that the faulty cards are not delivered to the
customers.

The silicon units are screened at the fabrication assembly line, followed by the screening at the
card manufacturer before sending it to the customer ODM. The customer ODM runs extensive

regression tests before deploying these cards in the data centre. The customer also keeps on

running the periodic sanity tests on the cards to check the health of these cards.

2. SCREENING PROCESS

2.1. Hardware Screener Inference Application

The Hardware Screener Application has been developed based upon the Inference APIs and

Management APIs exposed by the NNPI software. The Application creates an Inference context

and for each such context a Runtime process instance gets created on the device to run inferences.
The Inference library parses the recipe generated by the graph compiler and then allocates

122 Computer Science & Information Technology (CS & IT)

memory buffers on the host/device(s) and pass this information to the Runtime/ICE driver
framework. The ICE Driver framework schedules the different networks on the different ICE

units. Multiple threads are created in each context to extract the maximum utilization of the ICEs.

Figure 4. Hardware Screening Application

The Hardware Screening Application described in the Figure 4 is used to infer 50K images from
the ImageNet dataset for different models/workloads. This application generates the IFMs (Input

Feature Maps) and the OFMs (Output Feature Maps) on one hardware unit. The Inference is

executed on multiple hardware units and the outputs are compared with the saved OFMs from the
first hardware unit. If the outputs match, then these set of IFMs and OFMs would be used as

reference and this package is deployed at the assembly line to screen the units.

The other errors like ECC, DSRAM, MCE, PCIe are identified using the Software counters
incremented during the Inference execution. These software counters are being monitored by the

Hardware Screener Application using the Management APIs.

The detailed screening flow is described in the Figure 5.

Computer Science & Information Technology (CS & IT) 123

Figure 5. Flowchart of screening process

The AI workloads configurations are described in the Table 1. The workloads are generated for
different Quantization Types, Batch Sizes, Number of ICEs. The other parameters include the

Persistent Deep SRAM, Shared Read (ICEBO), Class of Service, ICEDC Sync (Barrier/Fence).

This test content stresses upon all the different execution flows within the ICEs and helps in
determining the errors.

Table 1. AI Workloads and Configurations

Workloads Quantization

Type

Batch

Size

Number

of ICEs

Persistent

Deep

SRAM

Shared

Read

(ICEBO)

Class of

Service

(CLOS)

ICEDC

Sync

(Barrier /

Fence)

Number

of Inputs

Execution

Time

ResNet50

GEMMLOWP 12 12 N Y Y Y 50K 30 secs

ResNet50 SYMLOWP 12 12 N Y Y Y 50K 30 secs

ResNet50 GEMMLOWP 2 2x6 N Y Y Y 50K 150 secs

ResNet50 SYMLOWP 2 2x6 N Y Y Y 50K 150 secs

ResNet50 FP16 2 2x6 N Y Y Y 50K 900 secs

ResNet50 GEMMLOWP 1 1x12 Y N N N 50K 350 secs

ResNet50 SYMLOWP 1 1x12 Y N N N 50K 350 secs

ResNet50 FP16 1 1x12 Y N Y Y 50K 2000 secs

ResNext GEMMLOWP 12 12 N Y Y Y 50K 60 secs

ResNext SYMLOWP 12 12 N Y Y Y 50K 60 secs

ResNext GEMMLOWP 2 2x6 N Y Y Y 50K 300 secs

ResNext SYMLOWP 2 2x6 N Y Y Y 50K 300 secs

ResNext GEMMLOWP 1 1x12 Y N N N 50K 1000 secs

ResNext SYMLOWP 1 1x12 Y N N N 50K 1000 secs

ShuffleNet GEMMLOWP 12 12 N Y Y Y 50K 20 secs

ShuffleNet SYMLOWP 12 12 N Y Y Y 50K 20 secs

ShuffleNet GEMMLOWP 2 2x6 N Y Y Y 50K 120 secs

ShuffleNet SYMLOWP 2 2x6 N Y Y Y 50K 120 secs

ShuffleNet GEMMLOWP 1 1x12 Y N N N 50K 220 secs

ShuffleNet SYMLOWP 1 1x12 Y N N N 50K 220 secs

ShuffleNet FP16 1 1x12 N Y Y Y 50K 1350 secs

ResNet50 GEMMLOWP 1 1x12 Y N N N 50K 350 secs

ResNet50 SYMLOWP 1 1x12 Y N N N 50K 350 secs

ResNet50 SYMLOWP 12 12 Y N N N 50K 30 secs

VGG19 GEMMLOWP 1 1x12 Y N N N 50K 2400 secs

VGG19 SYMLOWP 12 12 Y N N N 50K 180 secs

124 Computer Science & Information Technology (CS & IT)

VGG19 GEMMLOWP 12 12 Y N N N 50K 180 secs

ResNet50 GEMMLOWP 12 12 N Y Y Y 50K 300 secs

ShuffleNet GEMMLOWP Y N N N

ResNet50 GEMMLOWP 2 2x3 N Y Y Y 50K 300 secs

ShuffleNet GEMMLOWP N Y Y Y

ResNet50 GEMMLOWP 2 2x2 N Y Y Y 50K 500 secs

ResNext GEMMLOWP N Y Y Y

ShuffleNet GEMMLOWP N Y Y Y

Total Time 4 hours

2.2. Hardware Screening at Assembly Lines

The hardware units are screened at different stages using the Hardware Screener Application as

shown in the Figure 6.

Figure 6. Stages of Deployment

The different error types which lead to failing cards are described in the Table 2.

Table 2. Error Types and their description

Error Type Description

Byte Mismatch (Computational

Errors)

The Inference output should match byte by byte with the

golden reference output. If these outputs differ, then it leads to

the byte mismatch errors.

ECC Errors Error correction code memory (ECC memory) uses an error

correction code (ECC) to detect and correct n-bit data

corruption which occurs in memory. The ECC errors are also

divided into the correctable and non-correctable errors.

Deep SRAM Errors DSRAM arrays are the densest circuitry on a chip. The error

correction logic is also added with the SRAMs to detect/correct

the DSRAM errors. If the DSRAM errors are not corrected,

then it leads to DSRAM single/multi bit errors.

PCI Express Advanced Error

Reporting (AER)

PCI Express errors can occur on the PCI Express link itself or

on behalf of transactions initiated on the link. The PCI AER
errors are divided into the correctable errors and uncorrectable

errors. Uncorrectable errors can cause a particular transaction

or a particular PCI Express link to be unreliable.

Parity Errors / Memory Check Errors

(MCE)

Parity error is an error that results from irregular changes to

data, as it is recorded when it is entered in memory. Different

types of parity errors can require the retransmission of data or

cause serious system errors, such as system crashes.

VMin Errors VMin errors are seen due to the voltage sensitivity at various

operating frequencies of the chip. This also leads to the byte

mismatch or the computational errors.

https://en.wikipedia.org/wiki/Error_correction_code
https://en.wikipedia.org/wiki/Error_correction_code
https://en.wikipedia.org/wiki/Data_corruption
https://en.wikipedia.org/wiki/Data_corruption

Computer Science & Information Technology (CS & IT) 125

The following table shows the data for the 20 bad units which have been screened using the
Hardware Screener application. The errors have been detected in the first iteration using the

respective workloads.

Table 3. Units detected using Hardware Screening Application

SNo Workload Quantization Type Batch Size No of ICEs No of errors Failed Iteration Error Type

1 ResNext GEMMLOWP 2 2 2 1 Bytes Mismatch

2 ResNext SYMLOWP 1 1 1 1 DSRAM Error

3 ResNext SYMLOWP 1 1 35 1 Bytes Mismatch

4 ResNext GEMMLOWP 2 2 4 1 Bytes Mismatch

5 ResNext SYMLOWP 1 1 6 1 Bytes Mismatch

6 ResNet50 SYMLOWP 1 1 22 1 Bytes Mismatch

7 ShuffleNet SYMLOWP 1 1 11 1 Bytes Mismatch

8 ShuffleNet GEMMLOWP 2 2 3 1 MCE Error

9 ResNet50 GEMMLOWP 2 2 16 1 Bytes Mismatch

10 ResNet50 FP16 1 1 29 1 Bytes Mismatch

11 ResNext SYMLOWP 1 1 12 1 Bytes Mismatch

12 ResNext SYMLOWP 2 2 7 1 Bytes Mismatch

13 ShuffleNet GEMMLOWP 2 12 11 1 Bytes Mismatch

14 ResNext SYMLOWP 1 1 4 1 Bytes Mismatch

15 ResNext SYMLOWP 1 1 1 1 ECC Error

16 ShuffleNet GEMMLOWP 2 2 3 1 Bytes Mismatch

17 ShuffleNet GEMMLOWP 2 2 14 1 Bytes Mismatch

18 ResNet50 FP16 1 1 36 1 Bytes Mismatch

19 ResNext SYMLOWP 1 1 22 1 Bytes Mismatch

20 ResNext SYMLOWP 1 1 3 1 Bytes Mismatch

3. CONCLUSIONS

The Hardware Screener Application to screen out any bad/defective units is currently deployed at
pre- and post-production environments within Intel, Intel Card Manufacturers, Customer ODM

Manufacturers, and Customer Data Centres.

This work has helped significantly to screen out the cards due to the following errors:

 Byte Mismatch/Computational errors

 Vmin sensitive issues fixing the voltage sensitivity at various operating frequencies

 Power/ Frequency related issues

 Memory Related errors – Deep SRAM, MRC errors

 ECC Correctable/Uncorrectable errors

 Floating point accumulator errors

The execution of this flows has also helped in the achieving the following significant targets:

 Stability of Hardware/Software - Many significant software bugs, hangs were also

revealed and fixed in pursuit of executing continuous inferencing over multiple days

 DPMO Target - Defects per million opportunities target has been achieved

 Deviations in expected performance over multiple hours/days of execution

REFERENCES

[1] Quantization Algorithms: https://intellabs.github.io/distiller/algo_quantization.html

[2] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770-778).

[3] Zhang, X., Zhou, X., Lin, M., & Sun, J. (2018). Shufflenet: An extremely efficient convolutional

neural network for mobile devices. In Proceedings of the IEEE conference on computer vision and

pattern recognition (pp. 6848-6856).

https://intellabs.github.io/distiller/algo_quantization.html

126 Computer Science & Information Technology (CS & IT)

[5] Deng, J., Dong, W., Socher, R., Li, L. J., Li, K., & Fei-Fei, L. (2009, June). Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition

(pp. 248-255). Ieee.

[6] SpringHill (NNPI-1000) Intel's Data Center Inference Chipset, HotChips Conference 2019.

[7] Simonyan, Karen & Zisserman, Andrew. (2014). Very Deep Convolutional Networks for Large-Scale
Image Recognition. arXiv 1409.1556.

[8] S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, "Aggregated Residual Transformations for Deep

Neural Networks," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2017, pp. 5987-5995, doi: 10.1109/CVPR.2017.634.

[9] Spring Hill - Microarchitectures - Intel - WikiChip. (n.d.). from

https://en.wikichip.org/wiki/intel/microarchitectures/spring_hill

[10] Glenn Henry, Parviz Palangpour, Michael Thomson, J Scott Gardner, Bryce Arden, Jim Donahue,

Kimble Houck, Jonathan Johnson, Kyle O’Brien, Scott Petersen, Benjamin Seroussi, Tyler Walker,

"High-Performance Deep-Learning Coprocessor Integrated into x86 SoC with Server-Class CPUs

Industrial Product", 2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA), pp.15-26, 2020

AUTHORS

Ashish Sharma (ashish3.sharma@intel.com) is an AI Software Engineering Manager at

Intel Technologies, Bangalore. He holds a Masters in Computer Systems from BITS
Pilani. He has been in R&D for 23 years. He leads the SW Validation and Development

activities primarily for Tensorflow, PyTorch, PyLightning frameworks, Security and

Linux Kernel drivers on Intel Training/Inference Accelerators. He has been leading

multiple work groups within the team focusing on Leveraging Industry Practices,

Standardization, Competition in AI.

Puneesh Khanna (puneesh.khanna@intel.com) is a AI Frameworks Architect at Intel

Technologies, Bangalore. He holds a Masters in Machine Learning and AI from LJMU

University, UK. He has been in R&D for 17 years. He works primarily on Tensorflow

and Pytorch frameworks and enabling state of art deep learning models on Intel AI

accelerators. He has been also contributing to the opensource code of these AI
frameworks. He is leading an AI cohort group of GAR region, solving enterprise specific

problems by leveraging AI and ML at Intel.

Jaimin Maniyar (jaimin.maniyar@intel.com) is a AI Solutions Engineer at Intel

Technologies, Bangalore. He holds a Masters in Machine Learning and AI from Vellore

Institute of Technology. He has been in R&D for 5 years. He works primarily on

Tensorflow and Pytorch frameworks and enabling state of art deep learning models on

Intel AI accelerators. He has delivered many AI and ML Sessions at Intel collaborating

with Dataa Centre Skills Academy.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

mailto:ashish3.sharma@intel.com
mailto:puneesh.khanna@intel.com
mailto:jaimin.maniyar@intel.com

	Abstract
	Keywords
	Artificial Intelligence, Deep Learning, Inference, Neural Network Processor for Inference (NNP-I), ICE, DELPHI, DSP, SRAM, ICEBO, IFMs, OFMs, DPMO.

