
David C. Wyld et al. (Eds): CST, NLMLT, DMS, CLBD, ITCS, VLSIE - 2022 

pp. 119-126, 2022. CS & IT - CSCP 2022                                                      DOI: 10.5121/csit.2022.121911 

 
SCREENING DEEP LEARNING INFERENCE 

ACCELERATORS AT THE PRODUCTION LINES 
 

Ashish Sharma, Puneesh Khanna, Jaimin Maniyar 

 

AI Group, Intel, Bangalore, India 
 

ABSTRACT 
 

Artificial Intelligence (AI) accelerators can be divided into two main buckets, one for training 

and another for inference over the trained models. Computation results of AI inference chipsets 

are expected to be deterministic for a given input. There are different compute engines on the 

Inference chip which help in acceleration of the Arithmetic operations. The Inference output 

results are compared with a golden reference output for the accuracy measurements. There can 

be many errors which can occur during the Inference execution. These errors could be due to 

the faulty hardware units and these units should be thoroughly screened in the assembly line 
before they are deployed by the customers in the data centre.  

 

This paper talks about a generic Inference application that has been developed to execute 

inferences over multiple inputs for various real inference models and stress all the compute 

engines of the Inference chip. Inference outputs from a specific inference unit are stored and are 

assumed to be golden and further confirmed as golden statistically. Once the golden reference 

outputs are established, Inference application is deployed in the pre- and post-production 

environments to screen out defective units whose actual output do not match the reference. 

Strategy to compare against itself at mass scale resulted in achieving the Defects Per Million 

target for the customers 
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1. INTRODUCTION 
 

Artificial Intelligence (AI) is growing in recent years and is expected to be re-shaping industries. 
Deep Neural networks are in the heart of the AI revolution. Deep Neural Network is composed of 

layers of simulated neurons with different connectivity schemes. The new computation model is 

based on massive parallel execution of linear algebra operations. New dedicated architectures that 
are optimized for Deep Learning execution is required to achieve high efficiency and to meet the 

market requirements. Deep learning inference accelerators are designed specifically to deliver 

superior performance, low latency, power efficiency and cost savings for cloud, data centres and 

other emerging applications. 
 

SpringHill (NNP-I) is an Inference Chip from Intel which is used to accelerate execution of the 

arithmetic operations. It consists of 12 Inference Compute Engines (ICE) as described in Figure 
1. Each ICE contains hardware accelerator IPs DELPHI and DSP. The operations that are 

supported by DELPHI includes direct CNNs (convolution Neural Network) as well as GEMM 

(General Matrix Multiplication), nonlinear activation, quantization, and pooling operations. The 
ICE core is highly programmable and integrates a strong VLIW vector Tensilica DSP as 

http://airccse.org/cscp.html
http://airccse.org/csit/V12N19.html
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described in Figure 2. This allows a variety of operators that are not accelerated by the DL 
accelerator to be mapped to the DSP and executed in high efficiency. In addition, the ICE 

includes dedicated memory access blocks: a dedicated Deep Learning DMA (DSE) with 

dedicated features such as 4D walks, padding and stride; Compression/de-compression engine 

and MMU (Memory Management Unit). Each ICE has a large local SRAM of size 4MB to store 
the persistent data. A pair of ICE units are connected via ICEBO which allows the ICEs to share 

the data with each other. All the ICEs share LLC cache of size 24 MB. 

 

     
      

Figure 1. Inference Compute Engine (ICE) 

 

                 
 

Figure 2. DL Compute Engine and Vector Processing Unit (DSP) 
 
The NNP-I card is connected to the host processor using the PCI. The Inference applications run 

on the host. The model is loaded onto the card memory along with the inputs and weights. The 

inference outputs are transferred back to the host and subsequently to the Inference application. 
The inference accuracy for the same inputs for different inferences must remain the same. The 

inference application also collects the error statistics from the card.  
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Figure 3. NNPI Software Stack 

 
The NNPI Software stack described in Figure 3 includes the Graph Compiler, Platform/Drivers. 

The models are compiled using the Graph Compiler which generates the recipe.  The recipe is 
passed to the Inference Application. The Inference Application runs on the host server and 

interfaces with the card using the platform drivers. The recipe gets executed on the ICEs and the 

final output is shared back to the Inference Application. The outputs received after the Inference 
are compared with the expected outputs (software reference) and the Inference 

efficiency/accuracy is measured. 

 
There are different kinds of errors which can occur during the inference execution due to the 

hardware issues. These include Byte Mismatch (Computational) errors, Deep SRAM errors, ECC 

errors, PCIe AER errors, parity errors. The cards should be thoroughly screened at the factory 

with the help of a dedicated test content so that the faulty cards are not delivered to the 
customers.  

 

The silicon units are screened at the fabrication assembly line, followed by the screening at the 
card manufacturer before sending it to the customer ODM. The customer ODM runs extensive 

regression tests before deploying these cards in the data centre. The customer also keeps on 

running the periodic sanity tests on the cards to check the health of these cards. 

 

2. SCREENING PROCESS 
 

2.1. Hardware Screener Inference Application 
 
The Hardware Screener Application has been developed based upon the Inference APIs and 

Management APIs exposed by the NNPI software. The Application creates an Inference context 

and for each such context a Runtime process instance gets created on the device to run inferences.  
The Inference library parses the recipe generated by the graph compiler and then allocates 
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memory buffers on the host/device(s) and pass this information to the Runtime/ICE driver 
framework. The ICE Driver framework schedules the different networks on the different ICE 

units. Multiple threads are created in each context to extract the maximum utilization of the ICEs. 

 

 
 

Figure 4. Hardware Screening Application 

 

The Hardware Screening Application described in the Figure 4 is used to infer 50K images from 
the ImageNet dataset for different models/workloads. This application generates the IFMs (Input 

Feature Maps) and the OFMs (Output Feature Maps) on one hardware unit. The Inference is 

executed on multiple hardware units and the outputs are compared with the saved OFMs from the 
first hardware unit.  If the outputs match, then these set of IFMs and OFMs would be used as 

reference and this package is deployed at the assembly line to screen the units.  

 

The other errors like ECC, DSRAM, MCE, PCIe are identified using the Software counters 
incremented during the Inference execution. These software counters are being monitored by the 

Hardware Screener Application using the Management APIs. 

 
The detailed screening flow is described in the Figure 5. 
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Figure 5. Flowchart of screening process 

 

The AI workloads configurations are described in the Table 1. The workloads are generated for 
different Quantization Types, Batch Sizes, Number of ICEs. The other parameters include the 

Persistent Deep SRAM, Shared Read (ICEBO), Class of Service, ICEDC Sync (Barrier/Fence). 

This test content stresses upon all the different execution flows within the ICEs and helps in 
determining the errors. 

 
Table 1. AI Workloads and Configurations 

 
Workloads Quantization 

Type 

Batch 

Size 

Number 

of ICEs 

Persistent 

Deep 

SRAM 

Shared 

Read 

(ICEBO) 

Class of 

Service 

(CLOS)  

ICEDC 

Sync 

(Barrier / 

Fence) 

Number 

of Inputs 

Execution 

Time 

ResNet50 

 

GEMMLOWP 12 12 N Y Y Y 50K 30 secs 

ResNet50 SYMLOWP 12 12 N Y Y Y 50K 30 secs 

ResNet50 GEMMLOWP 2 2x6 N Y Y Y 50K 150 secs 

ResNet50 SYMLOWP 2 2x6 N Y Y Y 50K 150 secs 

ResNet50 FP16 2 2x6 N Y Y Y 50K 900 secs 

ResNet50 GEMMLOWP 1 1x12 Y N N N 50K 350 secs 

ResNet50 SYMLOWP 1 1x12 Y N N N 50K 350 secs 

ResNet50 FP16 1 1x12 Y N Y Y 50K 2000 secs 

ResNext GEMMLOWP 12 12 N Y Y Y 50K 60 secs 

ResNext SYMLOWP 12 12 N Y Y Y 50K 60 secs 

ResNext GEMMLOWP 2 2x6 N Y Y Y 50K 300 secs 

ResNext SYMLOWP 2 2x6 N Y Y Y 50K 300 secs 

ResNext GEMMLOWP 1 1x12 Y N N N 50K 1000 secs 

ResNext SYMLOWP 1 1x12 Y N N N 50K 1000 secs 

ShuffleNet GEMMLOWP 12 12 N Y Y Y 50K 20 secs 

ShuffleNet SYMLOWP 12 12 N Y Y Y 50K 20 secs 

ShuffleNet GEMMLOWP 2 2x6 N Y Y Y 50K 120 secs 

ShuffleNet SYMLOWP 2 2x6 N Y Y Y 50K 120 secs 

ShuffleNet GEMMLOWP 1 1x12 Y N N N 50K 220 secs 

ShuffleNet SYMLOWP 1 1x12 Y N N N 50K 220 secs 

ShuffleNet FP16 1 1x12 N Y Y Y 50K 1350 secs 

ResNet50 GEMMLOWP 1 1x12 Y N N N 50K 350 secs 

ResNet50 SYMLOWP 1 1x12 Y N N N 50K 350 secs 

ResNet50 SYMLOWP 12 12 Y N N N 50K 30 secs 

VGG19 GEMMLOWP 1 1x12 Y N N N 50K 2400 secs 

VGG19 SYMLOWP 12 12 Y N N N 50K 180 secs 
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VGG19 GEMMLOWP 12 12 Y N N N 50K 180 secs 

ResNet50 GEMMLOWP 12 12 N Y Y Y 50K 300 secs 

ShuffleNet GEMMLOWP Y N N N 

ResNet50 GEMMLOWP 2 2x3 N Y Y Y 50K  300 secs 

ShuffleNet GEMMLOWP N Y Y Y 

ResNet50 GEMMLOWP 2 2x2 N Y Y Y 50K 500 secs 

ResNext GEMMLOWP N Y Y Y 

ShuffleNet  GEMMLOWP N Y Y Y 

Total Time                 4 hours 

 

2.2. Hardware Screening at Assembly Lines 
 
The hardware units are screened at different stages using the Hardware Screener Application as 

shown in the Figure 6. 

 

 
 

Figure 6. Stages of Deployment 

 

The different error types which lead to failing cards are described in the Table 2. 
 

Table 2. Error Types and their description 

 
Error Type Description 

Byte Mismatch (Computational 

Errors) 

The Inference output should match byte by byte with the 

golden reference output. If these outputs differ, then it leads to 

the byte mismatch errors. 

ECC Errors Error correction code memory (ECC memory) uses an error 

correction code (ECC) to detect and correct n-bit data 

corruption which occurs in memory. The ECC errors are also 

divided into the correctable and non-correctable errors.  

Deep SRAM Errors DSRAM arrays are the densest circuitry on a chip. The error 

correction logic is also added with the SRAMs to detect/correct 

the DSRAM errors. If the DSRAM errors are not corrected, 

then it leads to DSRAM single/multi bit errors. 

PCI Express Advanced Error 

Reporting (AER) 

PCI Express errors can occur on the PCI Express link itself or 

on behalf of transactions initiated on the link. The PCI AER 
errors are divided into the correctable errors and uncorrectable 

errors. Uncorrectable errors can cause a particular transaction 

or a particular PCI Express link to be unreliable.  

Parity Errors / Memory Check Errors 

(MCE) 

Parity error is an error that results from irregular changes to 

data, as it is recorded when it is entered in memory. Different 

types of parity errors can require the retransmission of data or 

cause serious system errors, such as system crashes. 

VMin Errors VMin errors are seen due to the voltage sensitivity at various 

operating frequencies of the chip. This also leads to the byte 

mismatch or the computational errors. 

https://en.wikipedia.org/wiki/Error_correction_code
https://en.wikipedia.org/wiki/Error_correction_code
https://en.wikipedia.org/wiki/Data_corruption
https://en.wikipedia.org/wiki/Data_corruption
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The following table shows the data for the 20 bad units which have been screened using the 
Hardware Screener application. The errors have been detected in the first iteration using the 

respective workloads. 

 
Table 3. Units detected using Hardware Screening Application 

 
SNo Workload Quantization Type Batch Size No of ICEs No of errors Failed Iteration Error Type 

1 ResNext GEMMLOWP 2 2 2 1 Bytes Mismatch 

2 ResNext SYMLOWP 1 1 1 1 DSRAM Error 

3 ResNext SYMLOWP 1 1 35 1 Bytes Mismatch 

4 ResNext GEMMLOWP 2 2 4 1 Bytes Mismatch 

5 ResNext SYMLOWP 1 1 6 1 Bytes Mismatch 

6 ResNet50 SYMLOWP 1 1 22 1 Bytes Mismatch 

7 ShuffleNet SYMLOWP 1 1 11 1 Bytes Mismatch 

8 ShuffleNet GEMMLOWP 2 2 3 1 MCE Error 

9 ResNet50 GEMMLOWP 2 2 16 1 Bytes Mismatch 

10 ResNet50 FP16 1 1 29 1 Bytes Mismatch 

11 ResNext SYMLOWP 1 1 12 1 Bytes Mismatch 

12 ResNext SYMLOWP 2 2 7 1 Bytes Mismatch 

13 ShuffleNet GEMMLOWP 2 12 11 1 Bytes Mismatch 

14 ResNext SYMLOWP 1 1 4 1 Bytes Mismatch 

15 ResNext SYMLOWP 1 1 1 1 ECC Error 

16 ShuffleNet GEMMLOWP 2 2 3 1 Bytes Mismatch 

17 ShuffleNet GEMMLOWP 2 2 14 1 Bytes Mismatch 

18 ResNet50 FP16 1 1 36 1 Bytes Mismatch 

19 ResNext SYMLOWP 1 1 22 1 Bytes Mismatch 

20 ResNext SYMLOWP 1 1 3 1 Bytes Mismatch 

 

3. CONCLUSIONS 
 

The Hardware Screener Application to screen out any bad/defective units is currently deployed at 
pre- and post-production environments within Intel, Intel Card Manufacturers, Customer ODM 

Manufacturers, and Customer Data Centres. 

 
This work has helped significantly to screen out the cards due to the following errors: 

 

 Byte Mismatch/Computational errors  

 Vmin sensitive issues fixing the voltage sensitivity at various operating frequencies 

 Power/ Frequency related issues 

 Memory Related errors – Deep SRAM, MRC errors  

 ECC Correctable/Uncorrectable errors  

 Floating point accumulator errors 

 
The execution of this flows has also helped in the achieving the following significant targets: 

 

 Stability of Hardware/Software - Many significant software bugs, hangs were also 

revealed and fixed in pursuit of executing continuous inferencing over multiple days 

 DPMO Target - Defects per million opportunities target has been achieved 

 Deviations in expected performance over multiple hours/days of execution  
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