

David C. Wyld et al. (Eds): MLDS, IBCOM, CSIA, NLAI - 2022

pp. 47-55, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.122105

AMBIGUITY DETECTION IN REQUIREMENTS

CLASSIFICATION TASK USING FINE-TUNED

TRANSFORMATION TECHNIQUE

Sadeen Alharbi

Department of Software Engineering, King Saud University, Saudi Arabia

ABSTRACT

The software requirement specification (SRS) document is essential in software development.

This document influences all subsequent steps in software development. Nevertheless,

requirements problems, such as insufficient or ambiguous specifications, can cause

misunderstandings during the requirement analysis stage. This influences testing activities and

increases the project’s duration and cost overrun risk. This paper represents an intuitive

approach to detecting ambiguity in software requirements. The classifier should learn ambiguous

features and characteristics extracted from the text on a training set and try to detect similar

characteristics from a testing set. To achieve this, this study experimented with two main

approaches. The first approach is feature extraction, which uses the hidden states as features

and trains a support vector machine (SVM) classifier to assess software requirement ambiguity

without modifying the pre-trained model. Unfortunately, this approach only identified 68% of

the requirement ambiguity. The second approach is training an end-to-end model that updates
the parameters of the pre-trained model. This approach enhanced the baseline results by 13%.

KEYWORDS

Requirements classification, NLP, Ambiguity.

1. INTRODUCTION

The software engineering field has widely applied various machine learning (ML) techniques to

enhance organizations’ efficiency and effectiveness. A recent study (Lorenzoni et al., 2021)

revealed that ML models could be employed in different development stages of the software
lifecycle, especially in the quality and analytics process. Software quality assurance saves time

and money, as it helps developers discover errors and mistakes early in the development process.

Therefore, the quality of the software requirement specification (SRS) document is essential in
software development. This document influences all subsequent steps. Nevertheless,

requirements problems, such as insufficient or ambiguous specifications, can cause

misunderstandings during the requirement analysis stage. Research reveals that ML could help

develop models that can enhance the quality of requirements classification tasks (Lorenzoni et
al., 2021). However, selecting and implementing ML techniques to identify ambiguous

requirements is not a trivial task. Ambiguity in natural language requirements has long been

recognised as an unavoidable challenge in requirements engineering (RE). As a result, RE
researchers have launched a variety of initiatives to address the challenges of ambiguity. There is a

significant amount of research on using natural language processing (NLP) to address the

classification of requirements in natural language. However, there seems to be less interest from
the research community regarding the empirical evaluation of ML techniques for detecting

various aspects of ambiguities in requirements. This paper demonstrates findings on techniques

http://airccse.org/cscp.html
http://airccse.org/csit/V12N21.html
https://doi.org/10.5121/csit.2022.122105

48 Computer Science & Information Technology (CS & IT)

that address this gap by experimenting with two primary approaches.

The first approach is feature extraction, which uses the hidden states as features and trains a

support vector machine (SVM) classifier to assess software requirement ambiguity without

modifying the pre-trained model. The second approach is training an end-to-end model that
updates the parameters of the pre-trained model using a finetuned DistilBERT (Sanh et al., 2019), a

distilled version of BERT (Bidirectional Encoder Representations from Transformers), a recent

technique published by Google. DistilBERT is a pre-trained, smaller, general-purpose language
representation model that can be fine-tuned with adequate performance on different tasks. The

purpose of this study is to present an alternative and enhanced method to evaluate the ML model

of the usual feature extraction method. This study’s aims are as follows:

 Describe an ML process model for ML classification and perform related ambiguity

requirements classification modelling.

 Empirically evaluate random forest and finetuned DistilBERT for textual classification in the

context of ambiguity requirements using the F1-score measure.

The remainder of the paper is structured as follows: Section 2 describes related work. Section 3

explains requirement dependency, extraction, practical relevance and research questions. Section 4

elaborates on our ambiguous classification modelling of the ML process. Data used in this study are
detailed in Section 5, and empirical results in Section 6. Section 7 details the implications and

limitations of this study before summarising conclusions in Section 8.

2. RELATED WORK

A variety of studies have been conducted to improve the quality of software requirements. For

example, researchers in (Davis et al., 1993) focused on quality characteristics classification and

designed a complete checklist (Berry et al., 2006). Arora et al. 2015 presented an automatic
system that supports a toolkit based on checking the conformation approach applied to

requirements templates (Arora et al., 2013). The technique is known as text chunking, as it was

developed in NLP. In addition, Femmer et al. 2014 presented a method for tracking poor
requirements based on selected criteria on the ISO/IEC/IEEE 29148 for software requirement

quality (29148, 2011). This study aims to detect requirements that break the principles of RE

(Femmer et al., 2014). They also developed a tool for detecting the violation of requirement

principles by utilising a part-of-speech (POS) tagging approach, dictionaries and morphological
analysis.

Alshazly et al. 2014 examined ways of detecting faults in SRS documents based on specific fault
taxonomies. They suggested a taxonomy that concentrates on the faults in the requirement

analysis stage and added correlations between them and the causes of their occurrences to ensure

the SRS document’s quality.

Haron et al. 2015 developed a conceptual model for addressing lexical ambiguity in Malay

sentences to minimise the possibility of misinterpretation errors by specifying probable

ambiguous Malay words. Before this work, researchers in 2014 conducted a study to specify a list
of potential vouge terms in the Malay language, aiming to help SRS requirement engineers avoid

employing ambiguous terms while writing SRS documents.

Several works also concentrate on enhancing SRSs by employing NLP and ML, such as the work

by Sateli et al. 2012.

Computer Science & Information Technology (CS & IT) 49

Most works in the literature focus on detecting defects in requirements specification, referring to
several requirement templates, such as Rupp’s, EARS, IEEE 830 and ISO/IEC/IEEE 29148.

However, the current study has revealed that not all requirements follow the requirement

templates and can be interpreted in different ways due to their ambiguity. Therefore, it is essential

to have a technique to detect requirement ambiguity based on a genuinely unstructured text.

Moreover, validating the requirements for defect detection based on the requirement template is

challenging, since case studies that follow the requirement structure are limited. In addition,
requirement specifications are closely related to the underlying language used to express the

requirement. Therefore, focusing on a specific ambiguous type that occurs at the word level can

benefit the research.

3. DATA

This section first explains the data collection and preparation process. Then, it clarifies the

ambiguity definition in the requirement classification task. Finally, the section demonstrates of

agreement measure applied to ensure the quality of the labelling process.

3.1. Collection and Preparation

The software requirements sentences were collected from the free database PURE (PUblic

Requirements dataset) (Ferrari et al., 2017). A total of 600 software requirements sentences from

10 previous real-world, publicly available, natural language projects were collected. Of these

50 Computer Science & Information Technology (CS & IT)

sentences, 80% were used for training 20% for testing. Table 1 shows the projects and the number
of software requirements sentences.

Most software requirements sentences are represented in unstructured and natural language.

Consequently, applying the assessment directly to those textual data may lead to low-quality
results, increasing the importance of data preparation techniques. The first technique is cleaning

the software requirement sentences by removing non-English characters and keeping only the

alphabet letters, for example, removing the punctuation and noising characters (, @, $). The
second technique is stop word filtering, one of the most widely used pre-processing steps across

different NLP applications. Stop words are words that help build ideas but do not have any

independent significance, such as conjunctions, articles and prepositions. Stop word filtering
eliminates words that will not affect the ambiguity assignment process such that, in the feature

extraction phase, the vectorisation of the term will derive only from the assertion that carries

meaning and effect in ambiguity detecting.

3.2. Ambiguity Definition in Requirements Classification

Ambiguity is a complicated and multi-faceted concept (Gervasi and Zowghi, 2010). A better

understanding of the nature and source of ambiguity can help in addressing the challenges of

requirements by allowing more informed decision making. Ambiguity in natural language arises

from different sources, such as a consistent symbolic interpretation, a conceptual problem, or a
syntactic or linguistic problem. However, determining ambiguity’s root cause is difficult (Gervasi

and Zowghi, 2010). Therefore, the researcher provides various ambiguity taxonomies and

classifications to study different types of natural language. One considerable classification was
provided by Berry; Berry and Kamsties, which taxonomises ambiguity as such:

- Lexical ambiguity occurs at the word level when a word has several possible meanings.
- Structural/syntactic ambiguity occurs at the sentence level when a sentence can be

interpreted in more than one way.

- Semantic ambiguity occurs at the sentence level when there is no syntactic or lexical

ambiguity, but the sentence predicate logic can lead to several interpretations.
- Language error ambiguity is a grammatically faulty structure that leads to a different

meaning due to the error.

- Pragmatic ambiguity concerns the relationship between a sentence’s context and its
interpretations. Pragmatic ambiguity usually occurs because of the uncertainty of traditional

knowledge and human knowledge about context.

This paper only focuses on lexical ambiguity, as this type occurs at the word level and can be
written in particular rules. The model follows the rules of avoiding ambiguity mentioned by

authors Karl Wiegers and Joy Beatty as follows:

- The sentences must be clear with regard to any adjectives, adverbs and adverbial phrases

without any supported by values that describe the level of services—for example, ’small

system’.
- The sentences must be clear with regard to any phrases that modify other words in a

sentence— for example, ’user-friendly system’.

- The sentences must be clear with regard to vague words, such as ’clear’, ’all’, ’many’, and

’some’.
- The sentences must be clear with regard to any indefinite pronouns that do not refer to a

specific person, amount or thing—for example,’any time’.

Computer Science & Information Technology (CS & IT) 51

3.3. Agreement Measure: Cohen’s kappa coefficient

The author labelled and judged each sentence in the dataset and assigned a value of one if the

sentence was ambiguous and zero if it was unambiguous. Since the author evaluated the training
and test set and the data are overlapping, as shown in Figure 1, it is recommended that the

processes be verified with evaluations conducted by external experts for a sample of the data. The

sample should comprise at least 10% of the test cases.

Kappa is applied in the domains of meta-analysis and content analysis when a researcher needs to

determine the accuracy of coding for nominal variables based on raters’ agreement. The kappa

statistics include classifying N items into C mutually exclusive categories; then, the agreement is
calculated. There are variations in the way the kappa coefficient is calculated—for example, the

difference in the number of raters and whether the distribution is fixed or free. Fixed marginal

kappa is used when the raters must distribute a specific number of items under each category; free
marginal kappa does not restrict the number of cases placed into each category (Randolph, 2005).

In the present study, the kappa values range from -1 to 1, where -1 means ‘complete disagreement’

and 1 means ‘perfect agreement’. The most common results for the kappa values are shown in
Table 2.

We performed an inter-judge agreement analysis on 11% of the cases studied in this project. Two

external raters worked on the task; the first was the author, and the second was an experienced
software engineering employee. These raters compared their classifications, and free marginal

kappa was applied, since there was no restriction on the number of cases under each category.

Table 4 shows the kappa statistics results and their interpretation.

Most of the results were either ’moderate agreement’ or ’substantial agreement’. In general, the

results were acceptable, as the average agreement was ’substantial’.

52 Computer Science & Information Technology (CS & IT)

4. METHODOLOGY

To build the requirement classification system, it is necessary to train a model that can classify

requirement sentences into the categories of ambiguous or unambiguous. To do so, this study

employed a variant of BERT called DistilBERT (Sanh et al., 2019). The main benefit of this
model is that its performance is similar to that of BERT while being smaller and more efficient.

Furthermore, applying this model enables the researchers to train a classifier in a short amount of

time.

4.1. Tokenizing the Whole Dataset

As a transformer model, DistilBERT cannot accept a string in its original raw form as an input.

Instead, transformer models usually suppose that the text has been tokenised into numerical

vectors. Tokenisation is when a string is broken down into atomic units. Different tokenisation
techniques exist to be adapted, and the best approach of words splitting into sub-units is usually

comprehended from the dataset.

The Map() method was applied to tokenise the whole dataset. This method provides a suitable

way to use a processing function for each sentence in a dataset. The Map() function applies the

tokeniser to a set of sentences. After preparing a Map() as the primary processing function, it is

possible to use it across all the splits in the dataset. By default, the Map() method operates on
each sentence in the corpus.

4.2. Training a requirements Classifier

According to (Tunstall et al., 2022), pretrained models like DistilBERT are usually applied in a

text sequence to predict masked words. However, in the requirement classification task, using

language models (LM)s directly is impossible, as some modifications are needed (see Fig. 2).

The first step is accomplished when the token encoding is created. This happens when the text is

tokenised and expressed as one-hot vectors. Then, all token encodings are transformed into token
embeddings. These token embeddings are vectors inhabiting a lower-dimensional space. Next,

token embeddings are handled via the encoder layers to generate a hidden state for each input

token. Finally, each hidden state is provided to a layer that predicts the masked input tokens for the

Computer Science & Information Technology (CS & IT) 53

pretraining objective of language modelling. This replaces the LM layer with a classification
layer for the classification task. Then, we have two options to train the model on our requirements

classification data: feature extraction and fine tuning.

4.2.1. Transformers as Feature Extraction

Extracting features to build a classifier using a transformer is relatively simple. During the training

phase, the hidden states are used as input features and the labels as targets for the classifier, while
the weights of the parameters are frozen. Then, different models are trained on the most popular

classifiers in binary text classification. The machine learning techniques are logistic regression

(LR), support vector machine (SVM) and Knearest neighbours (KNN). The training is applied on
the classifiers without modifying the pre-trained model.

4.2.2. Fine-Tuning Transformers

In this approach, the whole end-to-end model is trained, including the update process of pre-

trained model parameters. The hidden states are trained as demonstrated in Figure 2, as they are

not fixed, as in the approach explained in 4.2.1. First, the pretrained DistilBERT model is used.
Then, the researcher logs in to huggingface (Wolf et al., 2019) and utilises the TrainArguments

class to define the training parameters.

5. EXPERIMENT

This section presents the experiments on the prepared data demonstrated in Section 3 using the

method discussed in Section 4.2.1 and 4.2.2. The following experiments evaluate the system’s

ability to detect and classify the ambiguity of natural requirement sentences. Results are described
using the conventional F-score, which describes the relation between recall and precision as

follows:

where precision measures the percentage of correctly classified samples in relation to the total

samples, and recall is the number of correct positive results divided by the number.

5.1. Baseline experiments

At this stage, the pre-processed dataset now contains all the information required to train a

classifier on it. The hidden states were used as input features and the labels as targets. The
corresponding arrays were created in the well-known Scikit-learn format (Pedregosa et al., 2011).

As mentioned above, the experiment was done for the most popular classifiers in binary text: LR,

SVM and KNN. The dataset was split into training and testing sets, where 80% of the data were

used for training and 20% for testing. Table 4 shows that the highest F-score is obtained from
the LR classifier; the results of all utilised classifiers are approximate.

54 Computer Science & Information Technology (CS & IT)

The results indicate that popular classifiers are able to learn from trained data to detect ambiguity in

natural requirement sentences. However, their efficacy is insufficient for companies to apply

these classifiers in real-life projects.

5.2. Decoding with Fine-Tuning Transformers

All models were trained for 20 epochs with a batch size of 64 with learning rate 2e−5. All

parameters of the model were fine-tuned during training, and no layer was left frozen. Then, the

model was evaluated on the test dataset. The ability of the model to detect ambiguity in
requirement sentences achieved an F-score of 77%. This represents an enhancement of 13%

compared to LR, 22% compared to KNN and 16 The result of this work has not been compared

with others, because prior work was more focused on classifying the functional and non-
functional requirements rather than detecting ambiguity in natural requirement sentences.

6. CONCLUSIONS

In conclusion, this study introduces a software requirements classification system intended to
assist software engineering in writing requirements sentences. The system is designed to detect

potentially ambiguous words in software requirements sentences and classify them as ambiguous

or not. First, three classification approaches (LR, SVM and KNN) were applied in the system
implementation. Then, the system was enhanced using a finetuned transformer technique and

successfully classified the ambiguous requirement sentences with an F-score of 77%. This result

indicates that the system achieved the research objectives.

While conducting this work, some difficulties were faced during the implementation phase.

Detecting ambiguity in software requirements sentences is a new area of research, and few

academic resources are available. This limitation creates a challenge to include detecting
ambiguous phrases in requirement sentences and requires high-quality rules to detect them.

ACKNOWLEDGEMENTS

This research project was supported by the Deanship of Scientific Research, King Saud

University, Saudi Arabia, by a funding through Vice Deanship of Scientific Research Chairs.
Also, I would like to thank my student: Saja Alharbi for collecting the data for her project for the

year 2021.

REFERENCES

[1] ISO/IEC/IEEE 29148. (2011). “Systems and software engineering—life cycle processes—

requirements engineering”.

[2] Amira A Alshazly, AhmedMElfatatry, and Mohamed S Abougabal. 2014. Detecting defects in

software requirements specification. Alexandria Engineering Journal, 53(3):513–527.

[3] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, and Frank Zimmer. (2015). “Automated checking

Computer Science & Information Technology (CS & IT) 55

of conformance to requirements templates using natural language processing”. IEEE transactions on

Software Engineering, 41(10):944–968.

[4] Chetan Arora, Mehrdad Sabetzadeh, Lionel Briand, Frank Zimmer, and Raul Gnaga. (2013). “Rubric:

A flexible tool for automated checking of conformance to requirement boilerplates.” In Proceedings

of the 2013 9th Joint Meeting on Foundations of Software Engineering, pages 599– 602.
[5] Daniel M Berry. (2007). “Ambiguity in natural language requirements documents”. In Monterey

Workshop, pages 1–7. Springer.

[6] Daniel M Berry, Antonio Bucchiarone, Stefania Gnesi, Giuseppe Lami, and Gianluca Trentanni.

(2006). “A new quality model for natural language requirements specifications”. In Proceedings of

the international workshop on requirements engineering: foundation of software quality (REFSQ).

[7] Daniel M Berry and Erik Kamsties. (2004). “Ambiguity in requirements specification”. In

Perspectives on software requirements, pages 7–44. Springer.

[8] Alan Davis, Scott Overmyer, Kathleen Jordan, Joseph Caruso, Fatma Dandashi, Anhtuan Dinh, Gary

Kincaid, Glen Ledeboer, Patricia Reynolds, Pradip Sitaram, et al. (1993). “Identifying and measuring

quality in a software requirements specification”. In [1993] Proceedings First International Software

Metrics Symposium, pages 141–152. IEEE.

[9] Henning Femmer, Daniel M.ndez Fern.ndez, Elmar Juergens, Michael Klose, Ilona Zimmer, and J.rg
Zimmer. (2014). “Rapid requirements checks with requirements smells: two case studies”. In

Proceedings of the 1st International Workshop on Rapid Continuous Software Engineering, pages 10–

19.

[10] Alessio Ferrari, Giorgio Oronzo Spagnolo, and Stefania Gnesi. (2017). “Pure: A dataset of public

requirements documents”. In 2017 IEEE 25th International Requirements Engineering Conference

(RE), pages 502–505. IEEE.

[11] Vincenzo Gervasi and Didar Zowghi. (2010). “On the role of ambiguity in re”. In International

Working Conference on Requirements Engineering: Foundation for Software Quality, pages 248–

254. Springer.

[12] Hazlina Haron and Abdul Azim Abd Ghani. (2014). “A method to identify potential ambiguous

malay words through ambiguity attributes mapping: An exploratory study”. arXiv preprint
arXiv:1402.6764.

[13] Hazlina Haron, Abdul Azim Abdul Ghani, and Hazliza Haron. (2015). “A conceptual model to

manage lexical ambiguity in malay textual requirements”. ARPN Journal of Engineering and Applied

Sciences, 10(3):1405–1412.

[14] Giuliano Lorenzoni, Paulo Alencar, Nathalia Nascimento, and Donald Cowan. (2021). “Machine

learning model development from a software engineering perspective: A systematic literature

review”. arXiv preprint arXiv:2102.07574.

[15] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.

Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,

and E. Duchesnay. (2011). “Scikit-learn: Machine learning in Python”. Journal of Machine Learning

Research, 12:2825–2830.

[16] Justus J Randolph. (2005). “Free-marginal multirater kappa (multirater k [free]): An alternative to
fleiss’ fixed-marginal multirater kappa”. Online submission.

[17] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. (2019). “Distilbert, a distilled

version of bert: smaller, faster, cheaper and lighter”. arXiv preprint arXiv:1910.01108.

[18] Bahar Sateli, Elian Angius, Srinivasan Sembakkam Rajivelu, and Ren. Witte. (2012). “Can text

mining assistants help to improve requirements specifications”. Mining Unstructured Data (MUD

2012), Canada.

[19] Lewis Tunstall, Leandro von Werra, and Thomas Wolf. (2022). “Natural language processing with

transformers”. " O’Reilly Media, Inc.".

[20] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,

Pierric Cistac, Tim Rault, R.mi Louf, Morgan Funtowicz, et al. (2019). “Huggingface’s transformers:

State-of-the-art natural language processing”. arXiv preprint arXiv:1910.03771.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	1. INTRODUCTION
	2. RELATED WORK
	3.1. Collection and Preparation
	3.2. Ambiguity Definition in Requirements Classification
	3.3. Agreement Measure: Cohen’s kappa coefficient
	4. METHODOLOGY

	4.1. Tokenizing the Whole Dataset
	4.2. Training a requirements Classifier
	4.2.1. Transformers as Feature Extraction
	4.2.2. Fine-Tuning Transformers
	5. Experiment

	5.1. Baseline experiments
	5.2. Decoding with Fine-Tuning Transformers
	6. CONCLUSIONS
	Acknowledgements
	References

