
David C. Wyld et al. (Eds): AIAPP, NLPML, DMA, CRIS, SEC, CoSIT, SIGL - 2022

pp. 21-31, 2022. CS & IT - CSCP 2022 DOI: 10.5121/csit.2022.120902

PUZZLE SOLVING WITHOUT SEARCH

OR HUMAN KNOWLEDGE: AN
UNNATURAL LANGUAGE APPROACH

David Noever1 and Ryerson Burdick2

1PeopleTec, Inc., Huntsville, AL, USA
2University of Maryland, College Park, MD, USA

ABSTRACT

The application of Generative Pre-trained Transformer (GPT-2) to learn text-archived game

notation provides a model environment for exploring sparse reward gameplay. The transformer

architecture proves amenable to training on solved text archives describing mazes, Rubik’s

Cube, and Sudoku solvers. The method benefits from fine-tuning the transformer architecture to

visualize plausible strategies derived outside any guidance from human heuristics or domain

expertise. The large search space (>1019) for the games provides a puzzle environment in

which the solution has few intermediate rewards and a final move that solves the challenge.

KEYWORDS

Natural Language Processing (NLP), Transformers, Game Play, Deep Learning.

1. INTRODUCTION

The transformer architecture provides a scalable mechanism for natural language generation

(NLG) to encode long-range dependencies needed to output plausible text narratives.

Transformers [1] have rapidly advanced to rival or overtake other deep learning architectures

such as convolutional neural networks (CNN). Initially developed to handle long-term language

dependencies, this approach over-weights important relations via the “attention” method rather

than attempting to localize dependencies (CNN) or grow dense networks for all weights. While

the resulting sparse network extends available long-term connections needed to relate distant

parts-of-speech or sentence context, the net effect has grown to massive models now in the

trillions of connection weights [2]. This approach has since found application in other fields

unrelated to the original language modeling, such as non-local effects needed for visual context

problems. Among the early successes, the Generative Pretrained Transformer (GPT-2) from

Open AI [3] remains one of the most robust architectures for fine-tuning applications. In these

cases, the original training set gets specialized to diverse domains outside of its initial text data

[4]. As a result, previous work has applied GPT-2 to play chess [5], Go [6], and other complex

strategy games without knowing the explicit rules but instead learning the text patterns necessary

to transfer learning from archival play. Since no move constraints get introduced to the

transformer (e.g. legal vs. illegal moves), the trained model results in gameplay without human

knowledge [7]. Because of its origins in natural language modeling, GPT-2 serves as a viable

mimic of human narratives (sometimes called a “stochastic parrot”), particularly for the

specialized use case called here as “unnatural language” generation. Figure 1 highlights some

example applications of learning text archives for puzzles including Rubik’s cube, Sudoku, and

maze solvers.

http://airccse.org/cscp.html
http://airccse.org/csit/V12N09.html
https://doi.org/10.5121/csit.2022.120902

22 Computer Science & Information Technology (CS & IT)

1.1. Puzzles and Games

The application of AI and machine learning approaches to gameplay offers a rich history ranging

from Deep Blue in chess (1997) to AlphaZero [7]. One appealing aspect follows from the

obvious scoring metrics associated with scoring humans vs. machines. In economics and game

theory, a key distinction among the types of games amenable to AI implicitly favors perfect

information games, such as chess, checkers, Go, etc. The board state is known equally to the

human and machine players and gameplay progresses sequentially. The sequential play alternates

its moves in a way different from simultaneous plays like Rock, Paper, Scissors, which are also

perfect information but not alternating moves. Recent advances in Monte Carlo tree search [7]

have conquered human experts even in imperfect information games like poker, in which players

can bluff while concealing their true game state until forced to reveal winners and losers in the

final move of turning over cards or folding their hands. A third game category has recently

attracted AI attention and might be informally classed as open-ended worlds like the video play

in DOTA and StarCraft 2. Playing these games effectively as a tree search problem requires

Figure 2. Example sparse reward puzzles in text notation

Figure 1. Rubik's Cube String Notation and

Syntax for Position and Colors

Computer Science & Information Technology (CS & IT) 23

enormous computing resources and must handle the wide universe of available strategies (“where

almost anything goes”). The present research examines a fourth possible category well known to

the reinforcement learning community as games or puzzles that offer sparse rewards. These

problems are generally characterized by large state spaces and a relatively small number of states

which have an associated reward signal. Infrequent rewards often make gradient-based search

and other methods that depend upon a smooth reward signal impractical.

1.2. Sparse Rewards

One notable example of a sparse rewards task is the Rubik's cube. The Rubik's cube is a puzzle

with 6 rotating faces, each composed of 9 smaller squares ("cubies") which take one of 6 colors.

The objective is to rotate the faces until each face contains 9 squares of the same color. The

Rubik's cube is an extreme example of a sparse rewards task [8-9] it has a large state space

consisting of approximately 4.9×1019 possible configurations, and only the goal state has an

associated reward signal. This causes a sudden stepwise gain in rewards when making the final

solving move.

A less extreme example of a sparse rewards task is the numerical puzzle game, Sudoku. The

objective of Sudoku is to fill in missing cells of a 9×9 grid with the numbers 1-9, subject to the

conditions that no number may appear twice in the same row, column, or 3×3 block. Because of

these conditions, Sudoku is also known as a constraint satisfaction game. Like the Rubik's Cube,

Sudoku has an enormously large state space, as there are approximately 6.671×1021 valid Sudoku

grids alone [10], and a reward signal is only achieved during the final step of the solving process.

It is worth noting that traditional Monte Carlo tree search techniques have exhaustive computing

needs compared to GPT-2. For example, AlphaGo uses 1920 CPUs and 280GPUs (or $3000 in

electricity costs) for each game [11]. The research explores solving these sparse reward games

without reinforcement learning or Monte Carlo tree search. Instead, we apply the long-range

rewards (weights) found in current language transformers based on their attention strategies

applied to text generators. The best-known examples of games with text generators largely focus

on fine-tuning the GPT-2. Previous work has applied GPT-2 to perfect information games (e.g.

chess, Go). For Sudoku and Rubik’s Cube, deterministic (search) algorithms deliver sufficient

quantities of good training data such that traditional deep learning techniques can solve the games

using computer visions approaches and convolutional neural networks [12-13]. We propose to

solve the games using text-based (ASCII) archives and fine-tune the transformer architecture to

visualize another strategic solution to the sparse rewards challenges.

Figure 3. Solution Cube Notation for Visualizing Moves

24 Computer Science & Information Technology (CS & IT)

2. METHODS

This research compares solving three classes of games using language modeling: Rubik’s Cube,

Sudoku, and mazes. For each game or puzzle, language representations are generated from

archives of available gameplay and fine-tuning large pattern recognition models. While the

models were originally trained for language generation tasks, they can be fine-tuned to generate

plausible game moves. One common element of the approach stems from the game moves in a

string (ASCII text) format. Another notable feature is their visualization, so the language model

can be viewed as another game player and not an abstract symbol generator alone. In other

words, one can assess the model through a score and rate the strategies it employs.

2.1. Rubik’s Cube Representation

For a Rubik's task, we generated a dataset consisting of 5,000 pairs of initial cube configurations

and corresponding solutions. To generate the initial configurations, a scrambling formula was

created by randomly generating a sequence of moves to perturb the cube from the completed

state. These scrambling formulas were anywhere between 1 and 5 moves in length, and an equal

number of samples were generated for each possible scramble formula length. Once an initial

configuration was determined, the cube state was represented by an encoding string following

text formats[14]. As illustrated in Figures 2-3, this encoding uses the cube string positions for an

unfolded cube with ordered positions (9 digits) for the following faces: Up (U), Right (R), Front

(F), Down (D), Back (B) and Left (L). The string order proves important [15] since a fully solved

cube would have 9x(URFDBL) for the completed color faces. The position U1 can be any of the

6 standard colors (red, yellow, orange, blue, white, green). A starting state like “RBL…” means

the right color (say, green) is in fixed position U1, the back color (say, red) is in position U2, etc.

Finally, once all scrambling formulas were converted to encoding strings, duplicate cube states

were removed from the dataset and the remaining samples were split into a training set containing

2404 samples and a test set containing 601 samples.

Figure 5. Maze generator and transformer solutions

Figure 4. Example Sudoku Starting and Final States

Computer Science & Information Technology (CS & IT) 25

After the initial Rubik's cube configurations and corresponding encodings were generated, a

solution was determined using the Kociemba algorithm [15]. The Rubik’s solution syntax

introduces each move as space-separated letters with punctuation and numbering conventions

describing the turn. A single letter alone means to turn that face in the URFDBL dictionary of

choices clockwise by 90 degrees (quarter turns). A letter with an apostrophe means the opposite

counterclockwise turn by 90 degrees. If the letter has a number 2, the face gets a half-turn (180

degrees). An example initial state and solution of single moves is shown in Figure 3. We

visualize each step of the cube solution using the Visual Cube application [16] and validate

solutions using the PyCuber python library [17].

2.2. Sudoku Representations

For Sudoku, we collected one million solved games [18], which consists of a similar split view of

the initial and final state. To divide the start and finished puzzle, we insert a word prompt [WP]

to demark the first digit of the 81 in the 9x9 puzzle (Figure 4). A zero value represents a blank or

open slot. The second demarcation [RESPONSE] serves as a delimiter for the puzzle solution.

The visualization of a solved puzzle was customized in a console application that pushes each

new digit onto the string for replacing the next available open gap (zero). The puzzle’s starting

and ending delimiters (<|…|>) allow the generated text of a proposed solution to be parsed and

truncated to simplify interpretation.

2.3. Maze Representations

For solving mazes, we generated 10,000 random mazes and embedded their ASCII text solutions

between the start and stop delimiters. To generate mazes of 4x4 and 5x5 [19], we use (+) and (-)

signs to outline the text grid boundaries, the use (|) pipe symbology to define walls. As shown in

Figure 5, we encode both the unsolved and solved mazes in a single training text example for

each maze. The training solutions follow the search methods outlined as breadth or depth-first

techniques [20]. Each example maze begins with the upper left corner as the starting position

(**); the direction of maze navigation follows a text arrow notation (^^=up; >>=right; vv=down;

<<=left). As with the other cases, the training set represents a series of maze pairings (unsolved

and solved) with one maze in a single row submitted to the transformer.

3. RESULTS

For each puzzle, this work found a visual representation of the language model at play. Where

possible, the gameplay is shown as animated versions with sequences of moves.

Figure 6. Rubik’s Cube Transformer Solving for

Single Rows

26 Computer Science & Information Technology (CS & IT)

3.1. Cube Solver

On the Rubik's Cube data, the transformer was unable to solve the complete puzzle more than

one in seven attempts. Out of the 601 generated responses for the test examples, 11 were invalid

(~1.8%), 576 were incorrect (~95.8%), and only 14 were correct (~2.3%). The small proportion

of invalid generated responses indicates that despite being trained initially on natural language,

the transformer has adapted well to the "unnatural" language of Rubik's cube formulae; even

when it was unable to solve the cube, the overwhelming majority of the time the transformer

produced an output which corresponds to a valid Rubik's formula. Figure 6 shows the solution for

single rows as an incomplete solution but progressively improved cube state.

Given the short fine-tuning period (~2000 epochs) and the small number of training examples

(~2400), it is significant that the transformer was able to solve the Rubik's puzzle at all.

Interestingly, though the majority (9/14) of correct generated responses were only 1-3 moves in

length, the remaining correct responses were long: one response was 52 moves long, three were

53 moves long, and the longest was 61 moves. Given the small sample size, it is difficult to

generalize about the transformer's performance. Regardless, the existence of these solutions

suggests the transformer may have learned certain solving patterns present in the Kociemba

algorithm.

A video comparing Rubik’s Cube solutions is found online [21]. Figure 7 compares the

Kociemba algorithm (right) to the transformer solution (left) at the same time step. The algorithm

solution shows a quarter turn before reaching the end with all six aligned colored faces after 71

steps. The transformer generates 64 steps before reaching the token limit (1024) for generated

text outputs as an inherent GPT-2 limit. To illustrate the sparse rewards, neither the algorithmic

nor transformer solution capitalizes on a partial reward, such as solving one color for a face or

multiple faces in an intermediate step. The transformer did, however, occasionally solve for

single rows and columns in instances where it was unable to solve the puzzle before reaching the

token limit. An example of the Rubik’s Cube transformer solving for rows and columns is shown

in Figure 6.

3.2. Sudoku Solver

Figure 8 shows the GPT-2 gameplay for Sudoku from a randomly selected initial state to a partial

(but flawed) final solution. The orange diamonds show the repeated digits as errors in completing

the square with unique numbers both in the interior square and the overall rows and columns. A

validation algorithm that checks for repetitions (1-9) in every row, column, and sub-square could

potentially serve as an overlay on generated text games, much in the same way that Chess game

generators playing against humans filter out invalid moves. Because GPT-2 models include the

Figure 7. Transformer (left) vs. Kociemba

(right) algorithm

Computer Science & Information Technology (CS & IT) 27

training text formatting in their transformer architecture, the Sudoku training set may benefit

from the native grid or matrix rather than string input which masks the sub-grid orientation. The

resulting transformer would generate complete puzzle grids rather than require additional

visualizations as shown in Figure 8 for a console (command-line) player.

Figure 8. Sudoku Solution Stages using GPT-2

3.3. Maze Solver

Figures 5 and 9 show transformer solutions to the 5x5 (Fig. 5) and 4x4 (Fig. 9) maze sizes.

Unlike the Sudoku case, the maze training set preserves formatting for its basic maze grid

without removing all end-of-line breaks as a single string. In this way, the maze resembles a

narrative paragraph versus the Sudoku sentence format. The trained transformer outputs both a

viable unsolved maze and its proposed solution as a pair bracketed by starting and ending

delimiters. Since all outputs are generated unconditionally and without a prompt for a starting

maze, the output appears as both a scenario generator (viable unsolved maze) and a solution

generator (moves to complete the puzzle). Given the token limit of 1024 for generated text, the

proposed maze sizes stop at 6x6 grids if the formatting is 4 spaces per grid as shown in Figure 9

and if the unconditional output includes both the starting maze and its paired solution. If a

prompt or conditional model is run, the maze sizes naturally extend but the combinatorial moves

limit the solution’s viability.

Figure 9. Transformer solution to text mazes in 4x4 size

4. DISCUSSION

Many other games with sparse reward signals have received attention from the reinforcement

learning community, including Sokoban, Montezuma's Revenge, and Mountain Car [13,22].

Unlike these games, both Rubik’s Cube and Sudoku are well-suited to the application of text

generators because they conveniently allow for the examination of sparse rewards problems from

28 Computer Science & Information Technology (CS & IT)

within the confines of games with sequential play and discrete representations of state.

Additionally, for both games, deterministic (search) algorithms can provide sufficient quantities

of training data such that traditional deep learning techniques, e.g. CNNs, can solve them.

Compared to denser reward games, the maze, Rubik’s, and Sudoku puzzles require considerable

exploration across a flat fitness or optimization landscape. In the case where a solution might

take more computing resources to iterate exploratory steps, the attention mechanism behind GPT-

2 offers a method to attack the contextual problem of knowing where the numbers or colored

faces might relate to each other in the constrained volume of the cube or number squares. Figure

10 illustrates the Sudoku weights for layer 9 as an example of long-term attention and context

between a starting number and its long-range dependencies. However, the transformer’s ability to

solve beyond the 1024 token limit of generated solutions limits the exploration to easier game

starting points only. No transformer output for either game achieved a finished state from an

arbitrarily random (“hard scrambled”) state in the allotted number of steps. Instead, the

transformer trained on nearly completed states (e.g. perturbed from a finished state) showed

promise in accomplishing its goal to solve the puzzles. Just as with the chess and Go

Transformers, the goal of generating plausible gameplay shows possible application but succeeds

with supervision and filtering of illegal actions. The secondary goal of demonstrating rule-

acquisition (plausible moves) suggests that explicit human knowledge of strategies or heuristics

may not be needed specifically for opening or closing moves when the completion times fall

within the attention limit of the transformer’s context.

Well-known techniques in reinforcement learning emphasize turning a sparse reward game into a

denser environment. These approaches feature human domain expertise to craft heuristics, such

that the exploration space shrinks or partial rewards provide a stepping stone to reach the

solution. A simple example would be solving a maze problem by recursive backtracking or

applying the right-hand rule [23]. In the case of Rubik’s Cube solvers, many intermediate steps

might qualify as partial rewards, such as the layered method, cross, or daisy creations [24]. As a

bookkeeping strategy, human Sudoku solvers favor keeping track of which numbers are still

possible for each square, thus iteratively narrowing the search space. The hard-coding of such

heuristics however ranges outside the scope of the transformer architecture and its powerful

capabilities to take raw text games as its only input without domain knowledge when fine-tuned

to a new text source and format.

Computer Science & Information Technology (CS & IT) 29

Figure 10. Layer visualization of long-range dependence for a single Sudoku game

One intriguing outcome of exploring transformers with sparse rewards is to suggest new

approaches. The attention mechanism itself builds in overweighted connection strengths across

longer-range contexts, a critical feature for language models. Ironically, one can posit that

attention weights create a sparse reward landscape appropriate for generating interesting narrative

text since a frequency-based word approach emphasizes common but less telling words (such as

stop words “a”, “the”, etc.). In this way, attention-based models effectively balance the training

dataset based on token interest and context rather than frequency. For games, the reinforcement

learning community similarly maps flat gradient landscapes to maximize the ratio of rewarding

exploitation steps compared to fruitless exploration ones. A simple strategy in sparse rewards

substitutes “curiosity-driven” exploration, such that incremental rewards appear when going to

points previously not visited. In Sudoku, one can imagine a similar exclusion priority or

constraint geared towards not aimlessly substituting [1-9] digits when a row, column, or sub-

square already has it. This approach prioritizes a restricted action. In the linguistic origins of

GPT-2, the same reward or weight structure might favor novel word choices to avoid repetitive

phrases.

The capability of transformers and other text generation methods to play games extends far

beyond mazes, Rubik's Cube, and Sudoku. Previous research has highlighted their potential to

generate plausible moves for other games which have historically served as benchmarks for

game-playing algorithms, notably Chess [5] and Go [6]. Other board games and puzzles offer

additional angles from which to examine environments with sparse reward signals (Figure 11).

Hex, a board game that has previously drawn attention from the AI community, is one such

game. Like Rubik's and Sudoku, it is a perfect information game where the only obvious reward

signal is triggered after the final, game-winning move. Unlike Rubik's and Sudoku, Hex is a

competitive, 2-player game. It is also amenable to Smart Game Format (SGF), a common

30 Computer Science & Information Technology (CS & IT)

standardized notation for the textual representation of game states. Other candidate games and

puzzles include TwixT, which is similar to Hex in both game layout and objective, and Tantrix,

which offers sparse rewards in a competitive setting with more than 2 players.

5. CONCLUSIONS

Without encoding puzzle heuristics, the application of GPT-2 can generate viable moves in three

sparse reward games: mazes, Rubik’s Cube, and Sudoku. These examples offer a novel text-

based method to learn plausible moves without human instruction, heuristics, or explicit domain-

specific rulesets. These puzzles provide appealing visualization environments to track algorithmic

progress incrementally and score winning strategies, identify novel solutions, and augment the

traditional black-box understanding inherent in large-scale transformers. Just as attention-based

methods provide long-range context, future efforts for improving transformers in gameplay

should emphasize larger token limits (>2048 in GPT-3) or condensed game notations for

archives.

ACKNOWLEDGEMENTS

The authors would like to thank the PeopleTec Technical Fellows program and the Internship

Program for encouragement and project assistance.

REFERENCES

[1] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I.

(2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-

6008).

[2] Child, R., Gray, S., Radford, A., & Sutskever, I. (2019). Generating long sequences with sparse

transformers. arXiv preprint arXiv:1904.10509.

[3] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are

unsupervised multitask learners. OpenAI Blog, 1(8), 9. https://github.com/openai/gpt-2

[4] Woolf, Max, (2020), GPT-2-Simple, a Python Package, https://github.com/minimaxir/gpt-2-simple

[5] Noever, D., Ciolino, M., & Kalin, J. (2020). The Chess Transformer: Mastering Play using

Generative Language Models. arXiv preprint arXiv:2008.04057.

[6] Ciolino, M., Noever, D. & Kalin, J. (2020). The Go Transformer: Natural Language Modeling for

Game Play. arXiv preprint arXiv:2007.03500.

[7] Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ... & Hassabis, D.

(2017). Mastering the game of go without human knowledge. Nature, 550(7676), 354-359.

[8] Demaine, E. D., Eisenstat, S., & Rudoy, M. (2017). Solving the Rubik's Cube Optimally is NP-

complete. arXiv preprint arXiv:1706.06708.

[9] Darbandi, A., & Mirroshandel, S. A. (2020). A Novel Rubik’s Cube Problem Solver by Combining

Group Theory and Genetic Algorithm. SN Computer Science, 1(1), 1-16.

[10] Felgenhauer, B., & Jarvis, F. (2006). Mathematics of sudoku I. Mathematical Spectrum, 39(1), 15-22.

[11] Rajput, V. (2021) Deep Learning model compression, Medium, https://medium.com/codex/reducing-

deep-learning-size-16bed87cccffRider

[12] Gaddam, D. K. R., Ansari, M. D., & Vuppala, S. (2021). On Sudoku Problem Using Deep Learning

and Image Processing Technique. In ICCCE 2020 (pp. 1405-1417). Springer, Singapore.

[13] McAleer, S., Agostinelli, F., Shmakov, A., & Baldi, P. (2018). Solving the Rubik's cube without

human knowledge. arXiv preprint arXiv:1805.07470.

[14] Liu, L., Liu, X., Gao, J., Chen, W., & Han, J. (2020). Understanding the difficulty of training

transformers. arXiv preprint arXiv:2004.08249.

[15] Kociemba, H. (2019) Cube Explorer, http://kociemba.org/download.htm

[16] Rider, C. (2017), Visual Cube, http://cube.rider.biz/visualcube.php

[17] Liaw, W., (2021) PyCuber: Rubik's Cube package in Python, https://github.com/adrianliaw/PyCuber

[18] Park, K., (2016), “1 million Sudoku games”, Kaggle.com, https://www.kaggle.com/bryanpark/sudoku

https://github.com/minimaxir/gpt-2-simple
http://cube.rider.biz/visualcube.php
https://github.com/adrianliaw/PyCuber

Computer Science & Information Technology (CS & IT) 31

[19] Rosettacode.org, “Maze solving” task, Accessed (2021), see

https://rosettacode.org/wiki/Maze_solving

[20] Sinck, A. (2016) ASCII Art Maze Solver, https://github.com/asinck/Ascii-Art-Maze-Solver

[21] Noever, D. (2021) Cube Animation Solutions, https://deeperbrain.com/demo/rubix_transformer.mp4

[22] Moore, A. W. (1990). Efficient memory-based learning for robot control.

[23] Roberts, E. Recursive Backtracking, Stanford Computer Science, CS 106B,

https://cs.stanford.edu/people/eroberts/courses/cs106b/handouts/16-RecursiveBacktracking.pdf

[24] Youcandothecube.com (accessed 2021), Rubiks Cube Solution,

https://www.youcandothecube.com/videos/rubiks-cube-video-solution

AUTHORS

David Noever has 27 years of research experience in machine learning and data mining.

He received his Ph.D. from Oxford University, as a Rhodes Scholar, in theoretical physics

and B.Sc. from Princeton University. While at NASA, he was named 1998 Discover

Magazine's "Inventor of the Year," for the novel development of computational biology

software and internet search robots, culminating in co-founding the startup company cited

by Nature Biotechnology as first in its technology class. He has authored more than 100

peer-reviewed scientific research articles and book chapters. He also received the Silver Medal of the

Royal Society, London, and is a former Chevron Scholar, San Francisco.

Ryerson Burdick is a researcher in the Gemstone Honours Program, University of

Maryland, College Park USA. In 2022 he will receive his bachelor’s degree in computer

science with a minor in neuroscience. His research focuses on the intersection of human

and artificial intelligence, including natural language processing, ethical AI, computer

vision, and structured output learning. His work contributes to the growing field of data-

driven psychiatric diagnosis and ultimately work towards reducing misdiagnosis and bringing about

targeted treatment.

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

https://rosettacode.org/wiki/Maze_solving
https://github.com/asinck/Ascii-Art-Maze-Solver
https://cs.stanford.edu/people/eroberts/courses/cs106b/handouts/16-RecursiveBacktracking.pdf
http://airccse.org/

	Abstract
	Natural Language Processing (NLP), Transformers, Game Play, Deep Learning.

