
Automatized bioinformatics data integration in a

Hadoop-based data lake
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Abstract. When we work in a data lake, data integration is not easy, mainly because the data is usually
stored in raw format. Manually performing data integration is a time-consuming task that requires the
supervision of a specialist, which can make mistakes or not be able to see the optimal point for data in-
tegration among two or more datasets. This paper presents a model to perform heterogeneous in-memory
data integration in a Hadoop-based data lake based on a top-k set similarity approach. Our main con-
tribution is the process of ingesting, storing, processing, integrating, and visualizing the data integration
points. The algorithm for data integration is based on the Overlap coefficient since it presented better
results when compared with the set similarity metrics Jaccard, Sørensen-Dice, and the Tversky index. We
tested our model applying it on eight bioinformatics-domain datasets. Our model presents better results
when compared to an analysis of a specialist, and we expect our model can be reused for other domains of
datasets.
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1 Introduction

Data integration is a challenging task, even more nowadays where we deal with the V’s
for big data, such as variety, variability, and volume (Searls [1]; Lin et al.[2]; Alserafi et al.
[3]). Regarding the variety of data to be integrated into data lakes, having different types
of data can be considered one of the most difficult challenges, even more because most
datasets may contain unstructured or semi-structured information (Dabbèchi et al. [4]).
According to Hai, Quix, and Zhou [5], it is very onerous to perform interesting integrative
queries over distinct types of datasets. Another challenge is the high-dimensionality data
that may be stored in the data lake. To compute the similarity for that high-dimensional
data is expensive. Checking whether the tables are joinable or not is time-consuming
because of the large number of tables that may have in a data lake (Dong et al. [6])

To manually analyze different datasets for data integration, a person must check the
attributes and at least a dataset sample. To perform a more elaborated work, the person
must look for the data dictionary of each dataset, and sometimes it is not easily available.
According to Sawadogo and Darmont [7], it is a problem since it is time-consuming, error-
prone, and can lead to data inconsistency. Among the methods for data integration, the
logic-based ones that consider the dataframes as sets, such as the based on the overlap of
the values, could provide useful solutions (Levy [8]).

This paper presents a model we developed to perform heterogeneous data integration,
taking advantage of a data lake we build based on Hadoop. The integration model is based
on schema matching techniques, such as row content-based overlapping. To do so, we first
define the datasets for the experiments, related to the domain of bioinformatics. Then,
we build a data lake to ingest, store, process, and visualize the data. We use Apache Nifi
for data ingestion and the HDFS (Hadoop Distributed File System) for data storage. We
process the data using Python, and we create visualizations of the data using Neo4J.
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Our main contribution is a model that allows to quickly ingest different kinds of textual
datasets, transform them into dataframes, and, using an approach based on in-memory
set similarity for data integration, we suggest the top-k points of integration for the data.
We present experiments with eight bioinformatics datasets, and we compare our approach
with manual data integration performed by a domain specialist. Our paper can also be
used as a guide to building a data lake from scratch.

In what follows, we investigate automatized data integration. Section 2 presents an
explanation about the main topics that are essential for our study and related work.
Section 4 describes the methodology we followed, and Section 5 presents the results we
achieved. Section 6 discusses our results, challenges, and presents an example with the
usefulness of our model. Finally, Section 7 summarizes our conclusions and future work.

2 Background

In this section, we briefly present the basic concepts related to our study. We summarize
data integration, data lake, and present the datasets we used in our experiments. We finish
by discussing the related work.

2.1 Data integration

Data integration deals with the problem of combining different data sources to provide the
user with a unified view (Lenzerini [9]). There are different approaches for data integration,
and we base our work on the top-k overlap set similarity problem: For all the attributes
in all the dataframes, find the top fits for data integration, according to the intersection
among the attributes’ distinct values (Zhu et al. [10]). We based our work on an in-
memory set similarity approach since the integration is executed using Python notebooks.
As similarity metrics, we use the most well-known distance measures for sets similarity
according to Ontanón (2020) [11]: Tverski’s (Tversky [12]), Sørensen’s index (Sørensen
[13]), and Jaccard (Jaccard [14]), compared to the Szymkiewicz-Simpson overlap coefficient
(Vijaymeena and Kavitha [15]). We develop our data integration based on a data lake.

2.2 Data lake

In a previous work (Couto et al. [16]), we define a data lake as a central repository for raw
data storage, processing, and analysis, that can be used for unstructured, semi-structured,
and structured datasets. A data lake can be composed of different software with its own
tasks in an integrated ecosystem. It means we can have different software for data ingestion,
storage, processing, presentation, and security, and they have to work together. The most
used tool to create a data lake is Apache Hadoop [16]. Forster [17] states that Hadoop
is the most used distributed platform for storage, processing, and analysis of big data.
Hadoop is an Open-Source Software (OSS) developed in Java and maintained by the
Apache Software Foundation [18]. Hadoop is based on the Google MapReduce paradigm
and in Google File System, and it is mainly used for distributed processing in computer
clusters. We populate our data lake with bioinformatics datasets.

2.3 Bioinformatics datasets

Bioinformatics is the product of the union of computer science and biology (Lesk [19]),
where we use software to make inferences about datasets of modern molecular biology, so
we can connect the data and extract valuable predictions. There are a lot of bioinformatics
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datasets available, having the most variate information, formats, types, and size. Our study
selected eight datasets to populate our data lake and work on automatized data integration.
Table 1 presents the characteristics of each dataset, ordered by size from the smaller
(DRUGBANK) to the larger (IID). Table 1 shows that we selected heterogeneous datasets,
having varied sizes (from 1 MB to 1,8GB), from 13k entries to almost 1 million entries,
with the number of attributes varying from 6 to 253. The datasets are also presented in
different formats, such as TXT, XML, TSV, JSON, and via API.

Table 1. Characteristics of the bioinformatics datasets

Dataset Size (MB) Entries Attributes Format

DRUGBANK 0,95 13580 9 XML
DRUGBANK PROTEIN 1,40 26965 7 XML
OMIM 1,80 17092 14 TXT
DRUGCENTRAL 2,50 17390 19 TSV
MONDO 4,00 43233 12 JSON
DISGENET 10,30 84037 16 TSV
UNIPROT 30,20 565255 7 API
REACTOME 37,90 826877 6 TXT
IID 1800,00 975877 253 TXT

– OMIM (McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University
(Baltimore, MD), 2021 [20]): Online Mendelian Inheritance in Man - human genes and
genetic phenotypes. We used the genemap2 dataset.

– DISGENET (Pinero et al. [21]): Collections of genes and variants associated with
human diseases.

– REACTOME (Jassal et al. [22]): We are using the UniProt2Reactome dataset. It is
composed of reactions, proteins, and pathways.

– MONDO (Mungall et al. [23]): Ontology for disease definitions.

– DRUGBANK (Wishart et al. [24]): Pharmaceutical knowledge base, we split it into
two dataframes: DRUGBANK and DRUGBANK PROTEIN.

– IID (Kotlyar et al. [25]): Integrated Interactions Database - database of detected and
predicted protein-protein interactions. We used the human data annotated dataset.

– DRUGCENTRAL (Avram et al. [26]): Online drug compendium - we use the drug-
target interaction dataset.

– UNIPROT (Consortium [27]): We are using the reviewed Swiss-Prot XML dataset, a
non-redundant and manually annotated database containing protein sequences.

2.4 Related work

The work of Cockell et al. [28] describes Ondex, a Data Integration Platform. They repre-
sent the data as a graph, where the nodes present the concepts, and the edges present the
relations. They developed parsers to import the data to OXL format. Then, they use map-
pers and transformers to join different types of datasets, remove nodes that are not con-
nected and add information to the network. Finally, they manually traversed using Ondex
to search for interesting examples of drug repositioning. They use the following datasets:
DRUGBANK, UNIPROT, HPRD, KEGG, PFam, SymAtlas, G-Sesame, OpenBabel, and
BLAST. They use the cross-references presented on Uniprot to include accession numbers
from other linked datasets (e.g., ENSEMBL, GO, OMIM, PRINTS).
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Sellis et al. [29] use web services and ontologies to create Semantic Web services, to inte-
grate three biological databases: EMBL, MEDLINE, and Array Express. They answer the
following query: ”for a given Nucleotide Number (EMBL database), find all experiments
(Array Express database) and all publications (MEDLINE) which have taken place.” They
use OWL-S - an ontology-based on Web Ontology Languages that describe web services.

In his work, Hendler [30] discusses themes related to data integration, discovery, linked
data, and the combination of structured data and unstructured data, and the author
presents some theoretical approaches to deal with issues that come from heterogeneous
datasets integration. For instance: use of natural language processing, graph databases,
alignment using a third dataset.

Petermann et al. [31] developed a model named Business Intelligence with Integrated
Instance Graphs, which they use for graph-based data integration and analysis. Their
model has three types of graphs (separate graph databases): one for Unified Metadata
(UMG, where the nodes are the classes and the edges are the associations), one for Inte-
grated Instance (IIG, where the nodes are data objects and the edges are the relationships)
and the last one for Business Transactions (BTG). In their process, they first perform
metadata acquisition and integration for the UMG, then instance integration to create the
IIG, generation of BTGs, and graph analytics. They use Neo4J.

Bradshaw et al. [32] developed an automatic and semi-automatic semantic data inte-
gration approach, based on concept bags, for synonyms and non-synonymous concepts.
Concept bags are similar to word bags used in data mining. They compute the similarity
between data elements and medical terms. To check the similarity, they use the Jaccard
algorithm. They convert text or named entities in concept codes and then compare it
using a vector-based analysis method. They use the following datasets: UMLS (315 en-
tries), REDCap (899649 entries), Medical terms (60 entries). They state that their method
presents the same or better performance when compared to other approaches.

Zhu et al. [10] develop JOSIE: an algorithm for JOining Search using Intersection
Estimation. They use inverted indexes (mapping from words to their location - for quick
search in text files). They work with the join table search problem: for a column C in a
table, find other tables in the data lake where the intersection between column and C is
high. They use two data lakes: Open Data and WebTables. They compare their results
with MergeList-D and ProbeSet-D.

Zhang and Ives [33] develop JUNEAU, an approach to support multiple table relat-
edness measures, such as augmenting training data, finding potential features to extract,
clean data, and finding joinable or linkable tables. They use pruning, top-k, and approxi-
mation strategies to return the tables that are most related.

When we compare our work with JOSIE [10] and JUNEAU [33], which are the most
related, the main difference is related to our algorithm performing the data integration of
more than two dataframes and simultaneously outputting it to take advantage of the raw
data in the data lake.

3 Problem Statement

As stated by Khalid and Zimányi [34], managing and querying a data lake is a difficult
task, mainly because the data is heterogeneous, may have replicas or versions, have a
considerable volume, and present quality issues. In this sense, data integration, which
represents 80-90% of the challenges for data scientists (Abadi et al. [35]), is a fundamental
task to enable querying a data lake. However, integrating heterogeneous data into data
lakes is a complex task, mainly due to the variety of data types (Hendler [30], Alrehamy

Computer Science & Information Technology (CS & IT)140



and Walker [36] that can compose the data lake. If we only talk about textual data, there
are countless extensions and possible formatting, such as: .txt, .docx, .csv, .xls, .xml, .json
and so on. Furthermore, the analysis for the integration depends on experts, often data
scientists, who need to spend time inspecting data profile information, such as the types of
each attribute, a sample of that data, or studying the data dictionary - when the dictionary
is available. Finally, data integration is essential for extracting a more holistic view and
information from the data lake, enabling us to make simple to complex queries and add
value to the information.

Therefore, for the problem of automatic data integration in data lakes, the input would
a number of heterogeneous datasets and a threshold that limits the integration points of
interest. The output would be the points of integration among the datasets, and the
evaluation measures would be the ones based on an expert evaluation of the integration
points.

Regarding the complexity of the problem, according to Alserafi et al. [3], the equation
to calculate the total number of comparisons that needed to be performed to find the
columns candidate to data integration is

comparisons =

[
d× d− 1

2

]
×m2 (1)

where d represents the number of datasets, and m represents the average number of
attributes for each dataset. Considering our datasets (previously presented in Table 1),
we have 344 attributes in total, considering 9 dataframes, then m = 38. Thus, we would
have to perform about 51984 comparisons among the attributes.

4 Methods

The purpose of this study is to create a model for automating the integration of datasets.
To do so, we use similarity measures to check the possibility of data integration in a
Hadoop-based data lake. We started by creating the system architecture for the data lake,
based on Docker containers. Then, we worked on data management. Finally, we present
the algorithm we developed.

4.1 System architecture

Our data lake is supported by an Ubuntu 20 64-bit Linux server, having the following
configuration: 16GB RAM DDR3, Processor Intel® Core(R) I7-4790 CPU@3.6GHz x 8,
1TB disk capacity. The data lake is composed of ten Docker containers:

1. Apache Nifi: a framework used for data ingestion.
2. Python - Jupyter Notebook: a programming language and a web application to run

Python code, used for data processing.
3. Neo4J: a graph database used to visualize the integration among the dataframes.
4. Hadoop Namenode: the master node in the HDFS architecture
5. Hadoop History Server: keeps the logs of all the jobs that ran on Hadoop.
6. Hadoop Resource Manager: contains the YARN (Yet Another Resource Negotiator),

a service that manages the resources and schedules/monitors the jobs.
7. Hadoop Node Manager: launches and manages the containers on a node.
8. Hadoop Datanodes: Three containers (Datanode1, Datanode2, Datanode3). The worker’s

nodes in the HDFS architecture, where the data is stored.
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Fig. 1. Composition of the data lake

4.2 Data management

Data management includes data ingestion, storage, processing, and presentation, as illus-
trated in Figure 1. We ingested data into the data lake by creating processes in Apache
Nifi. We create one process for each dataset, where the process searches for the dataset
on HTTP (for MONDO, REACTOME, DISGENET, IID, and DRUGCENTRAL), or in
a local folder (for OMIM and DRUGBANK, because they are not available directly due
to the need of registering and licensing). Then we unzipped some of the datasets, and
we renamed them all for standardization. Apache Nifi then sends the datasets to Hadoop,
where they are stored in HDFS. For UNIPROT, we use the API directly on Jupyter. Then,
we start data processing using the Python - Jupyter Notebook docker. Lastly, we create a
graph visualization, based on Neo4J, to present the results.

4.3 Algorithm

We start the experiments by turning the datasets into Python Pandas dataframes. Pandas
is a Python library for data analysis and manipulation. The standardization of the datasets
as dataframes assure a unified entry for the algorithm, solving issues regarding one dataset
being derived under one condition and the others being on other conditions. To create the
DRUGBANK dataframe, we based on the solution provided by [37]. We also use other
libraries, such as HDFS, that provide a pure HDFS client, bioservices that provide API
access to UNIPROT, and the package py stringmatching that implements the similarity
metrics.

After creating the dataframes, one of the authors, a specialist in data science, analyzed
the datasets to manually map the attributes candidates for points of integration. To do so,
the specialist analyzed the names of the columns and a sample of data for each column,
using data profiling techniques. The specialist took about four hours to finish this analysis,
and we present the manual mapping in Figure 2. Figure 2 presents the manual data
integration points, based on a graph visualization, where the nodes or vertices are the
names of the dataframes, and the edges are the attributes’ names. The orientation of the
arrow indicates that, for instance, the attribute ’lbl’ from the Mondo dataframe is a point
of integration to the dataframe Disgenet, meaning that a percentage of ’lbl’ is also present
in another attribute of Disgenet. We developed this Figure to be later compared with the
results of the algorithm we developed for data integration so that we could compare a user
specialist analysis with the algorithm output.

Our algorithm is based on the concept of intersection or overlap between two attributes
in sets of data. We first identify the unique values of each attribute for each dataset. Then
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Fig. 2. Manually mapped integration

we compare each dataset attribute with all the other datasets’ attributes to check if the
unique values of the content of each attribute are contained in any other attributes of all of
the other datasets. The attribute with fewer unique values indicates the orientation of the
data integration. For instance, let us analyze the following case that includes dataframes
(df) and attributes (att):

– df1[’att01’] has 10 unique values;

– df2[’att06’] has 20 unique values;

– 10 values from df1[’att01’] are also present on df2[’att06’].

In that case, we can notice that 100% of df1[’att01’] are also present in df2[’att06’],
being that a good point for data integration. The notation would be: df1[’att01’] −→
df2[’att06’]. Regarding the minimum value for data intersection, we defined a threshold
of 0.4 (in a range from 0–1)] to identify good integration points, but it is configurable
according to the user’s needs. It means that if two columns in a dataframe have 40% or
more of data in common, the two columns are candidates for data integration, and the
dataframes where the columns come from are integrable.

To define the best threshold for our experiments, we tested different values and com-
pared the results with the specialist’s analysis. We started with 0.9, and after each execu-
tion, we compared our results with the specialist’s manual integration. When we noticed
that the selected threshold retrieved at least all of the integration points defined by the
specialist, we stopped decreasing the threshold, determining the value of 0.4.

Figure 3 details the activities diagram for the Algotrithm 1 we developed. Figure 3
shows that we can configure restrictions to select the attributes to be analyzed, such
as the minimum number of unique values that an attribute must have to enter in the
comparisons, and if we want to perform comparisons with attributes that contain only
numeric values. Other restrictions include: removing attributes with only nulls or NaN
and removing attributes with binary values (0 or 1, T or F). The binary values would not
present real candidate points for data integration among the datasets since they mostly
represent True or False values. For instance, the IID dataset presents dozens of attributes
that are named after diseases, where the value = 0 corresponds to False and values = 1
corresponds to True (e.g.: ’bone disease’, ’overnutrition’, ’asthma’, ’lymphoma’).

The algorithm starts by creating dataframes for all the datasets, then it selects the first
source dataframe, which will be compared to the other dataframes. Then the attributes
of the source dataframe are compared with the attributes of the first candidate dataframe
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Fig. 3. Algorithm for data integration in UML Activity Notation
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Algorithm 1 Pseudo-code for the data integration algorithm
Require: 1datasets, 2minimum number of unique values, 3accept numeric comparisons (True or

False)
Ensure: dataframeLeftName + columnName, dataframeRightName + columnName: Overlap:value /

Jaccard:value / Sørensen-Dice:value / Tversky:value
1: for dataframes do
2: while columns in the dataframe = True do
3: if compare numeric values = False then
4: if value is numeric = True then
5: next column in while
6: end if
7: end if
8: if unique values ≤ predetermined value OR target column has already been compared

= True then
9: next column in while
10: else
11: if column values ̸= binary values then
12: for dataframes+ 1 do ▷ repeats the same logic as the previous for for the

next dataframe

13: ... for
14: if minimum number of unique values between compared columns ̸= 0 then
15: calculate Overlap, Jaccard, Sørensen-Dice, and Tversky

16: if Overlap, Jaccard, Sørensen-Dice, and Tversky > 0.4 then
17: return Output = Ensure
18: end if
19: end if
20: end for
21: end if
22: end if
23: end while
24: end for

to check the similarity. It happens until we do not have more source dataframes to be
compared to the candidates.

Our algorithm also handles so that there are no redundant comparisons among dataframes
and attributes. Firstly, we assure that a dataframe is not compared to itself by identify-
ing its previously defined name in the algorithm. Secondly, when we compared each at-
tribute of the first dataframe, we stored its description in a variable. Before comparing
the dataframe’s attribute with another, we check that there are no attributes with the
same description. Therefore, we exclude the possibility of redundant comparisons between
dataframes and attributes.

The algorithm returns a list having the names of the dataframes, attributes, and re-
sulting values for the Szymkiewicz-Simpson overlap coefficient – Equation 2, which is the
main result, compared to other similarity metrics (Jaccard – Equation 3, Sørensen-Dice
– Equation 4, and Tversky – Equation 5). The resulting values for the similarity metrics
range from 0 (attributes are not at all similar) to 1 (attributes contain the same data).
Next, we present the equations related to the metrics, where X represents the attribute
of the source dataframe and Y represents the attribute of the dataframe candidate to be
compared.

The Overlap Equation calculates the size of the intersection divided by the smaller of
the size of the two attributes or sets:

overlap(X,Y ) =
|X

⋂
Y |

min(|X|, |Y |)
(2)
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The Jaccard measures the size of the intersection between two sets divided by the size of
the union:

jaccard(X,Y ) =
|X

⋂
Y |

|X ∪ Y |
(3)

The Sørensen-Dice similarity score returns twice the intersection divided by the sum of
the cardinalities.

dice(X,Y ) =
2× |X

⋂
Y |

|X|+ |Y |
(4)

The Tversky index is a generalization of the Sørensen-Dice’s and the Tanimoto coefficient
(aka Jaccard index) coefficient, but introduces the use of the parameters α and β, where α
= β = 1 produces the Tanimoto coefficient and α = β = 0.5 produces the Sørensen–Dice
coefficient:

tversky(X,Y ) =
|X

⋂
Y |

|X
⋂

Y |+ α|X − Y |+ β|Y −X| ;α, β >= 0 (5)

Our model also presents the option to insert nodes and edges in a Neo4J database to
better visualize the relationships among the dataframes.

5 Results

After analyzing the first results presented by the algorithm, we identified that some sug-
gested integration points are numeric values that, in our dataframes, do not represent
actual data integration points. For instance:

– UNIPROT[’Lenght’] it is the length of the canonical sequence and it varies from 3 to
4 numeric chars;

– OMIM[’Entrez Gene ID’] the National Center for Biotechnology Information (NCBI)
gene ID, values from 1 to 115029024;

– DRUGCENTRAL[’STRUCT ID’] the structure ID, and has values from 1 to 5390;
– DISGENET[’YearInitial’] and DISGENET[’YearFinal’] are years from 1924 to 2020;
– DISGENET[’NofPmids’] the PubMed id, and has values from 1 to 67;
– DISGENET[’NofSnps’] the Single nucleotide polymorphisms (SNP) id, has values from

1 to 284.

Because of that, we decided to add a parameter in the algorithm do set if we want to
make numeric comparisons. We set the parameter to false since, in our case, it does not
represent actual data integration points, but to be able to generalize for different domains
and different types of datasets, that kind of comparison must be useful.

Regarding the similarity metrics, as Tversky, Sørensen-Dice, and Jaccard present cor-
related values for our data (Tverski’s index with α and β = 0.5 was equal Sørensen-Dice
and twice the Jaccard coefficient), we show only the Jaccard and the overlap values in
Table 2.

After carefully comparing the Jaccard and Overlap results with the manual mapping
and reviewing the actual dataframes, we identified that the Overlap provides better in-
sights about the relationships that could be created among the dataframes.

For instance, for the relationship DISGENET[”diseaseType”] and MONDO [”lbl”],
the Jaccard index is equal to zero, while the Overlap is 0,667. We checked the data,
and we really found a point for integration in that case. Another example is DRUG-
BANK[”drugbank id”] and DRUGBANK PROTEIN[”drugbank id”], which represent the

Computer Science & Information Technology (CS & IT)146



T
a
b
le

2
.
F
in
a
l
d
a
ta

in
te
g
ra
ti
o
n
m
a
p
p
in
g

D
F
1

C
o
lu
m
n
D
F
1

D
F
2

C
o
lu
m
n
D
F
2

O
v
er
la
p
J
a
cc
a
rd

U
N
IP

R
O
T

E
n
tr
y

←
R
E
A
C
T
O
M
E

U
N
IP

R
O
T

id
en
ti
fi
er

0
,4
0
9

0
,0
5
8

U
N
IP

R
O
T

G
en

e
n
a
m
es

←
O
M
IM

A
p
p
ro
v
ed

S
y
m
b
o
l

0
,4
6
6

0
,0
1
5

U
N
IP

R
O
T

G
en

e
n
a
m
es

←
D
IS
G
E
N
E
T

g
en

eS
y
m
b
o
l

0
,4
8
3

0
,0
0
9

U
N
IP

R
O
T

G
en

e
n
a
m
es

←
II
D

sy
m
b
o
l2

0
,4
8
4

0
,0
1
7

U
N
IP

R
O
T

G
en

e
n
a
m
es

←
D
R
U
G
C
E
N
T
R
A
L

G
E
N
E

0
,4
8
6

0
,0
0
2

U
N
IP

R
O
T

G
en

e
n
a
m
es

←
II
D

sy
m
b
o
l1

0
,4
8
8

0
,0
1
7

D
R
U
G
C
E
N
T
R
A
L

A
C
C
E
S
S
IO

N
→

D
R
U
G
B
A
N
K

P
R
O
T
E
IN

u
n
ip
ro
t
id

0
,4
8
8

0
,0
1
8

U
N
IP

R
O
T

O
rg
a
n
is
m

←
D
R
U
G
B
A
N
K

P
R
O
T
E
IN

o
rg
a
n
is
m

0
,4
9
9

0
,2
0
6

D
R
U
G
C
E
N
T
R
A
L

A
C
C
E
S
S
IO

N
→

II
D

u
n
ip
ro
t1

0
,5
0
9

0
,0
7
2

D
R
U
G
C
E
N
T
R
A
L

A
C
C
E
S
S
IO

N
→

II
D

u
n
ip
ro
t2

0
,5
1
0

0
,0
7
1

D
IS
G
E
N
E
T

g
en

eS
y
m
b
o
l

←
D
R
U
G
C
E
N
T
R
A
L

G
E
N
E

0
,5
2
8

0
,1
1
0

R
E
A
C
T
O
M
E

U
N
IP

R
O
T

id
en

ti
fi
er
←

D
R
U
G
B
A
N
K

P
R
O
T
E
IN

u
n
ip
ro
t
id

0
,5
4
6

0
,0
3
0

R
E
A
C
T
O
M
E

U
N
IP

R
O
T

id
en

ti
fi
er
←

II
D

u
n
ip
ro
t2

0
,5
6
5

0
,1
0
7

R
E
A
C
T
O
M
E

U
N
IP

R
O
T

id
en

ti
fi
er
←

II
D

u
n
ip
ro
t1

0
,5
6
7

0
,1
0
5

D
R
U
G
B
A
N
K

P
R
O
T
E
IN

u
n
ip
ro
t
id

→
II
D

u
n
ip
ro
t1

0
,5
8
3

0
,1
4
7

D
R
U
G
B
A
N
K

P
R
O
T
E
IN

u
n
ip
ro
t
id

→
II
D

u
n
ip
ro
t2

0
,5
9
0

0
,1
4
7

O
M
IM

A
p
p
ro
v
ed

S
y
m
b
o
l
←

D
R
U
G
C
E
N
T
R
A
L

G
E
N
E

0
,6
0
9

0
,0
8
2

D
R
U
G
C
E
N
T
R
A
L

G
E
N
E

→
II
D

sy
m
b
o
l1

0
,6
1
5

0
,0
7
6

D
R
U
G
C
E
N
T
R
A
L

G
E
N
E

→
II
D

sy
m
b
o
l2

0
,6
1
7

0
,0
7
5

R
E
A
C
T
O
M
E

U
N
IP

R
O
T

id
en

ti
fi
er
←

D
R
U
G
C
E
N
T
R
A
L

A
C
C
E
S
S
IO

N
0
,6
2
4

0
,0
1
9

D
IS
G
E
N
E
T

d
is
ea
se
T
y
p
e

→
M
O
N
D
O

lb
l

0
,6
6
7

0
,0
0
0

R
E
A
C
T
O
M
E

S
p
ec
ie
s

→
D
R
U
G
C
E
N
T
R
A
L

O
R
G
A
N
IS
M

0
,7
5
0

0
,0
5
1

U
N
IP

R
O
T

E
n
tr
y

←
D
R
U
G
C
E
N
T
R
A
L

A
C
C
E
S
S
IO

N
0
,8
2
9

0
,0
0
4

O
M
IM

A
p
p
ro
v
ed

S
y
m
b
o
l
→

II
D

sy
m
b
o
l1

0
,8
6
6

0
,7
0
4

D
IS
G
E
N
E
T

g
en

eS
y
m
b
o
l

→
II
D

sy
m
b
o
l1

0
,8
8
0

0
,4
6
4

O
M
IM

A
p
p
ro
v
ed

S
y
m
b
o
l
→

II
D

sy
m
b
o
l2

0
,8
8
5

0
,7
1
7

D
IS
G
E
N
E
T

g
en

eS
y
m
b
o
l

→
II
D

sy
m
b
o
l2

0
,8
9
8

0
,4
6
9

U
N
IP

R
O
T

E
n
tr
y

←
D
R
U
G
B
A
N
K

P
R
O
T
E
IN

u
n
ip
ro
t
id

0
,9
0
9

0
,0
0
8

D
IS
G
E
N
E
T

g
en

eS
y
m
b
o
l

→
O
M
IM

A
p
p
ro
v
ed

S
y
m
b
o
l

0
,9
1
5

0
,5
3
6

U
N
IP

R
O
T

E
n
tr
y

←
II
D

u
n
ip
ro
t1

0
,9
5
3

0
,0
3
0

U
N
IP

R
O
T

E
n
tr
y

←
II
D

u
n
ip
ro
t2

0
,9
6
0

0
,0
3
1

D
R
U
G
B
A
N
K

d
ru
g
b
a
n
k
id

←
D
R
U
G
B
A
N
K

P
R
O
T
E
IN

d
ru
g
b
a
n
k
id

1
,0
0
0

0
,5
7
9

Computer Science & Information Technology (CS & IT) 147



Fig. 4. Final data integration

same data according to the Overlap coefficient and to our manual analysis, and in this
case, the Jaccard index is 0,579.

Hence, the Overlap coefficient seems to represent better how similar two attributes are
and the level of data integration we could achieve if we integrate two dataframes using the
top-ranked pairs of attributes indicated by the algorithm. Thus, we decided that in our
case, it is better to use the Overlap Coefficient.

To better visualize the relationships between the dataframes, we create a database
on Neo4J, where the nodes are the dataframes, and the edges are the name of the at-
tributes. Figure 4 presents the final data integration resulting from our algorithm for the
bioinformatics dataframes. In this graph visualization, similar to the manually mapped
data integration visualization, the names of the dataframes are the vertices. The names of
the attribute responsible for the integration are presented in the edges that connect the
vertices. Figure 4 presents 9 nodes and 32 edges, some with only one edge between them
(such as MONDO and DISGENET) and others having a high concentration of edges, such
as IID, UNIPROT, and DRUGCENTRAL. The higher concentration of edges pointing to
a dataframe means that the dataframe is referenced by a high number of other dataframes,
meaning they represent an important point of integration.

When we manually mapped the points for integration, we identified 10 points (see Fig-
ure 2), while our model identifies 32 points, presented in Table 2. For instance, we manually
mapped an integration between DRUGCENTRAL[”SWISSPROT”] and UNIPROT [”EN-
TRY”], but our model shows that the coefficient for that integration is less than 0,4, while
suggesting two better points: DRUGCENTRAL[”GENE”] → UNIPROT[” Gene names ”],
with a overlap of 0,487, and DRUGCENTRAL[”ACCESSION”]→ UNIPROT[”ENTRY”],
with an overlap of 0,829.

Additionally, our model discovered 22 more paths of integration that were not manually
identified, which we list above:

– From IID and: DISGENET, DRUGCENTRAL, OMIM, REACTOME, and DRUG-
BANK PROTEIN
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– From UNIPROT and: OMIM and DISGENET
– From REACTOME and: DRUGBANK PROTEIN and DRUGCENTRAL
– From DRUGBANK PROTEIN and DRUGCENTRAL

The scalability of the proposed solution takes place in terms of enabling comparisons
between all attributes of all datasets. For example, the 19 attributes of DRUGCENTRAL
are compared with the 253 attributes of the IID and so on, creating a bigger and bigger
search space as we add more datasets for comparison.

Regarding the evaluation, we performed an analysis to answer the following question:
1) What is the average execution-time speedup provided by our model, including the data
manipulation and algorithm? We ran the model 10 times to get the average running time.
It takes on average 2 hours and 30 minutes to run in the hardware we described in Section
4.1. Note that we run it in memory, in hardware with a humble configuration.

6 Discussion

We faced some challenges during the development and execution of our model. Initially,
we had to elaborate on different ways of treating the datasets, as they had different data
types. After this process, the researchers met to define the best way to carry out the
comparison process. Effectively, the algorithm creation process started when we defined
the four ways to calculate distances (Overlap, Jaccard, Sorensen, and Tversky’s). Then,
the initial algorithm implemented worked for most columns of the datasets. However, the
algorithm generated errors, specifically for columns with information of the ”JSON” or
”XML” type, being corrected and treated soon afterward. After running the algorithm, we
noticed that some of the comparisons generated 100% matches in many cases. Therefore,
we verified that there were columns with information of binary values, which meant ”False”
or ”True”, but that was not necessarily relevant and similar to each other. We address
this issue by removing columns with these data types from our comparison. We also skip
Null and empty values, in the comparison steps. Furthermore, when we ran with all the
datasets simultaneously, the initial version of the algorithm worked but took longer than
we expected. Therefore, we performed refactoring in the algorithm, so we executed in the
settings described in Section 4.1, we could obtain better results in a considerably shorter
time.

The challenges we faced during algorithm development are all data-related. When we
start data analysis with data pre-processing, the data must go through a cleaning phase,
which could have ruled out some of the related challenges. However, one of the goals of the
algorithm is to receive data from different formats with different types of attributes and
be able to perform the necessary initial comparisons. In this way, we allow the algorithm
to be executed even by people without specific knowledge in data processing, so they can
and still obtain good results for their data integration.

Let us now discuss the utility of our model, by considering the data integration ex-
ample in the field of bioinformatics. A data scientist has access to a data lake with the
same bioinformatics datasets we worked on: OMIM, DISGENET, REACTOME, MONDO,
DRUGBANK, IID, DRUGCENTRAL, and UNIPROT. The data scientist received the
task to study neglected diseases, such as tuberculosis. To do so, it is necessary to explore
the data related to the gene inhA, which is related to the organism Mycobacterium tu-
berculosis. Having those two pieces of information, it is easy to find the related data on
UNIPROT. Actually, it may be on the top-5 results of a quick search on Google. But
how will the person know if and how the data found in UNIPROT can be integrated with
the other data sources, so they can find additional information? Well, usually the person
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would have to put an effort into understanding the schema of all the datasets, analyze the
data dictionary, a sample of data, and so on.

Using our data integration model, we will be able to see that UNIPROT is easily
integrated with OMIM, DISGENET, IID, and DRUGCENTRAL by the gene name. By
integrating with OMIM, we would have more details about genetic phenotypes related to
the gene inhA; while DISGENET would bring the variants of the genes related to the
tuberculosis disease. IID adds information about how a protein related to inhA (Enoyl-
[acyl-carrier-protein] reductase [NADH]) interacts with other proteins. UNIPROT can also
be integrated with REACTOME since REACTOME contains a field named UNIPROT
identifier. Thus, we would have additional information about how the molecules interact
in a cell to change the cell or create a certain product; for instance, turn genes on or off.

Additionally, integrating with DRUGCENTRAL would add information about inter-
actions related to the drugs and tuberculosis. The integration with DRUGCENTRAL will
allow integration with DRUGBANK, which brings supplementary information about the
substance of the drugs and related products. For instance, we will find that Pretomanid
is a medication for the treatment of tuberculosis. Finally, having the disease type from
DISGENET, we could connect with the MONDO ontology, and learn about the different
types of the disease, such as endocrine, esophageal, ocular, spinal tuberculosis, and others.

7 Conclusions

In this paper, we presented a model for automatized data integration in a Hadoop data
lake, and we present experiments with eight well-known datasets from the bioinformatics
domain, having different sizes and formats. We tested the similarity among the dataframes
with different similarity measures, and we identified that The Overlap coefficient and
Jaccard would be enough for us to validate our proposal.

Because the Overlap coefficient presented better results than the actual data and a
specialists analysis, our experiments suggest that the Overlap coefficient is the best option
for the in-memory set similarity approach we developed. Based on the Overlap coefficient,
we found the top-k overlap set similarity that can help define data integration points for
datasets in a data lake. For future work, we plan to implement text similarity strategies
to magnify the reach of our results and increase the points for data integration based on
semantic and syntactic.

Availability of data and materials

The data that support the findings of this study are available from:

– UNIPROT (UniProtKB - Reviewed (Swiss-Prot)). API available at [38].
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– IID: Available at [41]. Release: 2018-11.
– MONDO: Available at [42]. Release: v2021-01-15.
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21. J. Piñero, J. M. Ramı́rez-Anguita, J. Saüch-Pitarch, F. Ronzano, E. Centeno, F. Sanz, and L. I.

Furlong, “The disgenet knowledge platform for disease genomics: 2019 update,” Nucleic acids research,
vol. 48, pp. D845–D855, 2020.

22. B. Jassal, L. Matthews, G. Viteri, C. Gong, P. Lorente, A. Fabregat, K. Sidiropoulos, J. Cook, M. Gille-
spie, R. Haw, et al., “The reactome pathway knowledgebase,” Nucleic acids research, vol. 48, pp. D498–
D503, 2020.

Computer Science & Information Technology (CS & IT) 151



23. C. J. Mungall, J. A. McMurry, S. Köhler, J. P. Balhoff, C. Borromeo, M. Brush, S. Carbon, T. Conlin,
N. Dunn, M. Engelstad, et al., “The monarch initiative: an integrative data and analytic platform
connecting phenotypes to genotypes across species,” Nucleic acids research, vol. 45, pp. D712–D722,
2017.

24. D. S. Wishart, C. Knox, A. C. Guo, S. Shrivastava, M. Hassanali, P. Stothard, Z. Chang, and
J. Woolsey, “Drugbank: a comprehensive resource for in silico drug discovery and exploration,” Nucleic
acids research, vol. 34, pp. D668–D672, 2006.

25. M. Kotlyar, C. Pastrello, Z. Malik, and I. Jurisica, “Iid 2018 update: context-specific physical protein–
protein interactions in human, model organisms and domesticated species,” Nucleic acids research,
vol. 47, pp. D581–D589, 2019.

26. S. Avram, C. G. Bologa, J. Holmes, G. Bocci, T. B. Wilson, D.-T. Nguyen, R. Curpan, L. Halip,
A. Bora, J. J. Yang, et al., “Drugcentral 2021 supports drug discovery and repositioning,” Nucleic
Acids Research, vol. 49, pp. D1160–D1169, 2021.

27. U. Consortium, “Uniprot: a worldwide hub of protein knowledge,” Nucleic acids research, vol. 47,
pp. D506–D515, 2019.

28. S. J. Cockell, J. Weile, P. Lord, C. Wipat, D. Andriychenko, M. Pocock, D. Wilkinson, M. Young, and
A. Wipat, “An integrated dataset for in silico drug discovery,” Journal of integrative bioinformatics,
vol. 7, pp. 15–27, 2010.

29. T. Sellis, D. Skoutas, and K. Staikos, “Database interoperability through web services and ontologies,”
in International Conference on BioInformatics and BioEngineering, (Athens, GR), pp. 1–5, IEEE,
2008.

30. J. Hendler, “Data integration for heterogenous datasets,” Big data, vol. 2, pp. 205–215, 2014.

31. A. Petermann, M. Junghanns, R. Müller, and E. Rahm, “Graph-based data integration and business
intelligence with biiig,” Proceedings of the VLDB Endowment, vol. 7, pp. 1577–1580, 2014.

32. R. L. Bradshaw, R. Gouripeddi, and J. C. Facelli, “Concept bag: A new method for computing concept
similarity in biomedical data,” in International Work-Conference on Bioinformatics and Biomedical
Engineering, (Granada, ES), pp. 15–23, Springer, 2019.

33. Y. Zhang and Z. G. Ives, “Finding related tables in data lakes for interactive data science,” in Inter-
national Conference on Management of Data, (Portland, US), pp. 1951–1966, ACM, 2020.
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