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ABSTRACT 
 

In this paper, the autonomous vehicle presented as a discrete-time Takagi-Sugeno fuzzy (T-S) 

model. We used the discrete-time T-S model since it is ready for the implementation unlike the 

continuous T-S fuzzy model. The main goal is to keep the autonomous vehicle in the centreline 

of the lane regardless the external disturbances. These disturbances are the wind force and the 

unknown curvature; they are applied to test if the autonomous vehicle moves from the 

centreline. To ensure that the autonomous vehicle remain on the centreline we propose a 

discrete-time fuzzy lateral controller called also steering controller. 
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1. INTRODUCTION 
 

Nowadays, vehicles have become an integral part of our daily lives. Most people worldwide need 
vehicles to move around, such as cars, buses, bicycles, taxis, etc. Also, those who are physically 

challenged use special vehicles. Due to the constant use of vehicles globally, so many people die 

every day because of vehicle collisions. Many studies declare that the main causes of these 
accidents are inattention, drowsiness, and illness [1] [2]. The purpose of autonomous cars lateral 

control is to maintain the vehicle in the lane under varied limits, and it is one of the most 

significant safety solutions. Over the last two decades, lateral stability control for autonomous 

vehicles has gotten a lot of attention from scientists and engineers, and numerous findings have 
been published [3]–[4]. Therefore, fruitful results with regard to stability and stabilization have 

been developed by researchers. By merging fuzzy logic and PID control, several authors propose 

a novel lateral control system design [5]. Others worked on controlling saturation through robust 
yaw control and stabilising lateral dynamics with concerns of parameter uncertainty. [6] A robust 

yaw-moment controller architecture for increasing vehicle handling and stability has been 

designed, taking into account parameter uncertainty and control saturation. However, the state 

vector only has two controllable parameters: the yaw rate and the sideslip angle; in this instance, 
there is insufficient information about the condition of the vehicles to allow for robust control. 

According to Sun et al. [7], the proposed proposal lacks a mathematical model, implying that no 

mathematical stability and stabilisation criteria exist to get access to system control. On the other 
hand, several researchers used deep learning and reinforcement learning approaches to examine 

vision-based autonomous driving [8]. Despite this, the model has no constraints, such as lateral 

wind force applied to the cars, unknown road curvature, or steering physical saturation. This 
means that the proposed solution is still far from being applicable in real-world driving 

conditions.Jiang and Astolfi [9] investigated an asymptotic stabilisation issue for a class of 
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nonlinear under actuated systems. Its solution is used in the control of a vehicle's nonlinear lateral 
dynamics, together with back stepping and forward control design approaches. This approach 

demonstrated that a vehicle may track any conceivable reference at a constant speed using the 

established controller, and the lateral deviation converges to zero. The challenges in this scenario 

are that the longitudinal vehicle speed is constant, there is only one controllable internal variable, 
and the stability is local. Based on the aforementioned rationale, lateral control of autonomous 

cars requires a system that provides access to several vehicle states and swipes into a wide range 

of longitudinal speed. As a result, the Takagi–Sugeno (T–S) fuzzy models [10] have been widely 
acknowledged and used. The T-S is well-known as a valuable and popular paradigm for 

approximating complicated nonlinear systems. The nonlinear systems were approximated by 

fuzzy "blending" local linear models using a set of "IF-THEN" rules, which has piqued the 
control community's curiosity. In this paper, we will focus on discrete-time T-S fuzzy control. 

This controller is essentially based on feedback control, more specifically the parallel distributed 

control (PDC) law. In addition, the state vector will contain six internal variables to allow more 

accessibility for the autonomous vehicle control. In most cases, the state vector could be 
unreadable, noisy, or completely inaccessible. Based on this motivation, in our work we 

developed an observer called Luenberger multiobservers to ensure the reconstruction of the 

system state vector for accurate automatic steering control. This state vector will indeed be used 
in the control law equation for the fuzzy controller design. The stability and stabilization 

conditions will be based on the quadratic Lyapunov function. The Linear Matrix Inequality 

(LMI) approach is used in the optimization. 
 

This paper is presented as follows. The vehicle modelling which is the part who is consecrated 

for the vehicle parameters and models. The third part presents the control design for the 

autonomous vehicle, which focuses on the stabilization of the autonomous vehicle. The final part 
is consecrated to show the results. 

 

2. VEHICLE PARAMETERS AND MODELS 
 
In this part, we show the different steps for the vehicle modelling. We start by introducing the 

vehicle parameters given in Table 1:  

 
Table 1.  Definition of parameters 

 

Parameters Description Value 

Bs Steering system damping 5.73 

Cf Front cornering stiffness 57000 N/rad 

Cr Rear cornering stiffness 59000 N/rad 

Is Steering system moment of inertia 0.02 kgm2 
 

Iz Vehicle yaw moment of inertia 2800 kgm2 

Kp Manual steering column coefficients 0.5 

 

lf Distance from the CG to the front axle 1.3 m 

 

lr Distance from the CG to the rear axle 1.6 m 

 

ls Look-ahead distance 5 m 

 

lw Distance from the CG to the 

impactcenter of the wind force 

0.4 m 

 

M Mass of the vehicle 2025 kg 
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Rs Steering gear ratio 16 

 

σt Tire length contact 0.13 m 

 

 

2.1. Road-vehicle model 

 

Using the well-known bicycle model described in [11]. The acquired model of the vehicle lateral 
dynamics is expressed as:  

 

[�̇�
�̇�
] = [

𝑎11 𝑎12
𝑎21 𝑎22

] [
𝛽
𝑟
] 𝛿 + [

𝑒1
𝑒2
] 𝑓𝑤 .(1) 

 

Where  𝛽  is the sideslip angle at the center of gravity (CG), and the yaw rate is r shown in Figure 

1. In (1), the lateral wind force is fw, and the elements of the system matrices are written as 
follows: 

 

𝑎11 = −2
(𝐶𝑟+ 𝐶𝑓)

𝑚𝜗𝑥
 ; 𝑎12 = 2

(𝑙𝑟𝐶𝑟− 𝑙𝑓𝐶𝑓)

𝑚𝜗𝑥
2 − 1 ; 

𝑎21 = 2
(𝑙𝑟𝐶𝑟− 𝑙𝑓𝐶𝑓)

𝐼𝑧
 ; 𝑎22 = −2

(𝑙𝑟
2𝐶𝑟+ 𝑙𝑓

2𝐶𝑓)

𝐼𝑧𝜗𝑥
. 

𝑏1 =
2𝐶𝑓

𝑚𝜗𝑥
 ; 𝑏2 =

2𝑙𝑓𝐶𝑓

𝐼𝑧
 ; 𝑒1 =

1

𝑚𝜗𝑥
 ; 𝑒2 =

𝑙𝑤

𝐼𝑧
 . 

 

 
 

Figure 1. Lateral vehicle behavior modeling. 

 

2.2. Vehicle position model on the road 

 

The vehicle positioning dynamics on the road is described by [11]:  
 

{
�̇�𝐿 = 𝜗𝑥𝛽 + 𝑙𝑠𝑟 + 𝜗𝑥𝜓𝐿̇ .

𝜓�̇� = 𝑟 − 𝜗𝑥𝜌𝑟.
(2) 
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Where 𝘺𝐿 is the lateral deviation error from the centerline of the lane projected forward a look 

ahead distance  𝑙𝑠 and 𝜓𝐿 is the heading error between the tangent to the road and the vehicle 

orientation. The road curvature is indicated by 𝜌𝑟 . 

 

2.3. The vehicle steering model 
 

The electronic power steering system is presented as [3]: 

 

�̈� = 2
𝐾𝑝𝐶𝑓𝜎𝑡

𝑅𝑠
2𝐼𝑠

𝛽 + 2
𝐾𝑝𝐶𝑓𝜎𝑡

𝑅𝑠
2𝐼𝑠

𝑙𝑓

𝜗𝑥
𝑟 ⋯− 2

𝐾𝑝𝐶𝑓𝜎𝑡

𝑅𝑠
2𝐼𝑠

𝛿 −
𝐵𝑠

𝐼𝑠
�̇� +

1

𝑅𝑠𝐼𝑠
𝑇𝑠 .(3) 

 

Where 𝑇𝑠 is the steering torque, δ is the steering angle, 𝑙𝑠 is the inertia moment of the steering 

column, 𝐵𝑠 is the damping factor of the column, 𝑅𝑠 is the reduction ratio of the column, 𝜎𝑡 is the 

width of the tire contact finally, the manual steering column coefficient is 𝐾𝑝. 

 

2.4. The autonomous vehicle model 
 

Based on (1), (2) and (3) the autonomous vehicles model is: 
 

�̇�(𝑡) = 𝐴𝑣𝑥(𝑡) + 𝐵𝑣𝑢𝑢(𝑡) + 𝐵𝑣𝑤𝑤(𝑡).    (4)                                    

 

Where  𝑥 = [𝛽𝑟𝜓𝐿𝘺𝐿𝛿�̇�]
𝑇

 is the vehicle vector state, 𝑤 = [𝑓𝑤𝜌𝑟]
𝑇is the disturbance vector, and 

u = Ts  is the input vector. The control-based system matrices in (4) are expressed as: 

 

𝐴𝑣 =

[
 
 
 
 
 
𝑎11 𝑎12 0
𝑎21 𝑎22 0
0 1 0

0 𝑏1  0
0 𝑏2  0
0    0  0

𝑣𝑥 𝑙𝑠 𝑣𝑥
0 0 0
𝑎61 𝑎62 0

0 0  0
0 0   1
0 𝑎65 𝑎66]

 
 
 
 
 

;𝐵𝑣𝑙𝑤 =

[
 
 
 
 
 
𝑒1   0
𝑒2   0
0 −𝑣𝑥
0   0
0    0
0     0 ]

 
 
 
 
 

.Bv =

[
 
 
 
 
 
0
0
0
0
0
1

RsIs]
 
 
 
 
 

. 

 

We have 

 

𝑎61 = 2
𝐾𝑝𝐶𝑓𝜎𝑡

𝑅𝑠
2𝐼𝑠

, 𝑎62 = 2
𝐾𝑝𝐶𝑓𝜎𝑡

𝑅𝑠
2𝐼𝑠

𝑙𝑓

𝑣𝑥
 ,𝑎65 = −2

𝐾𝑝𝐶𝑓𝜎𝑡

𝑅𝑠
2𝐼𝑠

, 𝑎66 = −
𝐵𝑠

𝐼𝑠
. 

 
As a result, the control analysis and development in this work will be based on the discrete-time 

system described below (5). 

 

x(k + 1) = A x(k) + Bd u(k) + Blww(k)               (5) 

 

Te = 0.01 second is the discretization time. A is the discrete-time matrix of Av, Bd is the 

discrete-time matrix of Bv and Blw is the discrete-time matrix of 𝐵𝑣𝑙𝑤. 
 

3. AUTONOMOUS VEHICLE STABILIZATION ARCHITECTURE 
 

In this section, we present the control design steps for the aim purpose is to control the 

autonomous vehicle presented in (5). 
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3.1. The autonomous vehicle T-S model 

 

The discrete-time (T-S) system is presented by fuzzy IF-THEN rules. 

 
The Rule i is of the form: 

 

IF  E1(k) is 𝑄1i and… En(k)is Qni THEN 
 

{
x(k + 1) = Aix(k) + Biu(k).

y(k) = Cix(k).
             (6) 

 

Where 𝐸1,… , 𝐸𝑛 are linear functions, 𝑄1i, … . 𝑄𝑛𝑖 are the fuzzy sets, and n is the number of the 

rules. In addition, 𝑥𝑘 ∈ ℝ
𝑛 is the state vector; 𝑢𝑘 ∈ ℝ

𝑝 is the measurable output vector; 𝐴𝑖 , 𝐵𝑖 
and 𝐶𝑖 are the system matrices with appropriate dimension, In addition, the premise variables are 

represented by the vector ꓩ(𝑘) = [ꓩ1(𝑘)… . ꓩ𝑞(𝑘)]. The autonomous vehicle model is: 

 

x(k + 1) = ∑ ωi
n
i=1 (ꓩ(k))(Aix(k) + Biu(k) + 𝐵𝑖

𝑤w(k)).(7) 

 

{
∑ 𝜔i
n
i=1 (ꓩ(k)) = 1

ωi(ꓩ(k)) ≥ 0.
       (8) 

 

With 

 

ωi(ꓩ) =
wi(ꓩ(t))

∑ wi(ꓩ(t))
n
i=1

  ;  wi(ꓩ(t)) =∏Mji(ꓩ(t))

q

j=1

. 

 

The proposed Lyapunov function is:  

 

V(x(k)) = xk
TS xk.        (9) 

 
The discrete-time T-S fuzzy system described in equation (7) is asymptotically stable if there 

exists a common symmetric matrix S = ST > 0 such that the following LMI are feasible [12] 

[13]: 

 

{
S > 0.

Ai
TS Ai − S < 0.

       (10) 

 

3.2. Autonomous vehicle stabilization 
 
The control law is: 

 

u(k) = −∑ ωi(ꓩ(k))[Gix(k)].
n
i=1 (11) 

 

Using the discrete-time T-S system previously described in (7), a closed loop control given by the 
new PDC law: 

 

{
x(k + 1) = ∑ ∑ ωi(ꓩ(k))ωj(ꓩ(k))ϑijx(k).

n
j=1

n
i=1

ϑij = ( Ai − BiGj).
           (12) 
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Hypothesis 1: The T-S system is locally controllable as described in [14]. 
 

The discrete time T-S models stabilization conditions for a closed-loop PDC controller are that 

there exists a symmetric matrix S > 0 as well as gains Gi, ∀i ∈ In satisfying: 

 

{

Cdiscrete(ϑii, S) < 0, ∀𝑖 ∈ In,

Cdiscrete(ϑij, S) ≤ 0, ∀i, j ∈ In
2

ωi(ꓩ(k))ωj(ꓩ(k)) ≠ 0.

     (13) 

 
And, 

  

Cdiscrete(ϑij, S) = [
ϑij+ϑji

2
]
T

S [
ϑij+ϑji

2
] − S.            (14) 

 

The conditions are: 
 

(Ai − BiGi)
TS(Ai − BiGi) − S < 0.                            (15) 

  

Multiplying (15) in pre and post by S−1, we come by the following inequality: 
 

S−1(AiS
−1 − BiGiS

−1)TS(AiS
−1 − BiGiS

−1) > 0. (16) 

 

It’s supposed that X = S−1 and Hi = GiS
−1, thus we get the following: 

 

X(AiX − BiHi)
TS (AiX− BiHi) > 0.               (17) 

 

The inequality (17) can be presented in LMI form by the application of the Schur complement as 
follows: 

 

[
X ∗

AiX − BiHi X
] > 0 ∀ 𝑖 ∈ 𝐼𝑛 .     (18) 

 

By application of the same approach and the same steps, the condition Cdiscrete(ϑij, S) ≤ 0 is 

given by: 

 

[
X ∗

Ai+Aj

2
X −

1

2
(BjHi + BiHj) X

] ≥ 0 ∀(i, j) ∈ In
2 , i < 𝑗.(19) 

 

The discrete-time T-S system described in equation (7) are globally asymptotically stable via the 

novel PDC control law, if there are symmetric matrices such as S = ST > 0 and M = MT ≥ 0 
which verifies [15]: 

 

{

𝐶𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(ϑii, S) + (r − 1)M < 0, ∀𝑖 ∈ In,

𝐶𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(ϑij, S) − M ≤ 0, ∀i, j ∈ In
2 , i < 𝑗,

ωi(ꓩ(k))ωj(ꓩ(k)) ≠ 0.

    (20) 

 

𝐶𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(ϑij, S) = [
ϑij+ϑji

2
]
T

S [
ϑij+ϑji

2
] − S.        (21) 
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Using theorem announced in [13] helps to decrease the conservatism. Theorem 1: if there exist 

matrices  S = ST > 0, Mij = Mij
T and matrices Gi which verifies: 

 

{

Cdiscrete(ϑii, S) + (r − 1)M < 0, ∀𝑖 ∈ In.

Cdiscrete(ϑij, S) − M ≤ 0, ∀i, j ∈ In
2 , i < 𝑗.

ωi(ꓩ(k))ωj(ꓩ(k)) ≠ 0.

    (22) 

 

M = [
M11… . M1n

M1n… . Mnn
].                          (23) 

 

Applying the previous equations, the autonomous vehicle model presented in (7) is globally 

asymptotically stable.  
 

{
 

 
X = S−1 .

Yii = XMijX.

Gi = HiX
−1.

∀i ∈ In.

      (24)                                                                    

 

3.3. Multiobservers design 
 

To perform the control of the autonomous vehicle we need the entire state vector 𝑥(𝑘). To 
achieve this goal we applied the following observer’s equation: 

 

{

X̂(k + 1) = ∑ ωi(ꓩ(k))((Aix̂(k) + Biu(k)) + Ni(y(k) − ŷ(k))) .
𝑛
𝑖=1

ŷ(k) = ∑ ωi
n
i=1 (ꓩ(k))Cix̂(k).

 (25) 

 
The error state vector is written as:   

 

 x̃(k) = x(k) − x̂(k).         (26) 
 

Knowing that, the dynamics of the state vector error is given by: 

 

{
x̂(k + 1) = ∑ ∑ ωi

n
j=1 (ꓩ(k))ωj(ꓩ(k))αijx̃(k).

n
i=1

αij = Ai −HiCj , ∀(i, j) ∈ In
2 .

(27) 

 

In fact, the design of Luenberger observers requests the computing of local gains Ni ∈ In  to 

guarantee the convergence to 0 of the state vector error dynamics. In addition, we should 

guarantee that S = ST > 0 and matrices Ni ∈ In valid the following conditions: 
 

{

𝐶𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(αii, S) < 0, ∀𝑖 ∈ In.

𝐶𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(αij, S) ≤ 0, ∀i, j ∈ In
2

ωi(ꓩ(k))ωj(ꓩ(k)) ≠ 0.

.              (28) 

 

𝐶𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒(αij, S) = [
𝛼ij+αji

2
]
T
S [

αij+αji

2
] − S.     (29) 

 

The equations (28) and (29) can be written as LMIs applying the Schur complement: 
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[S 
S ∗

Ai+Aj

2
−
1

2
(HjCj + HjCi) S

] ≥ 0                                       (30) 

 

When  i < 𝑗. 

  
We improve the observers by using the following theorem. Theorem 2: the multiple Luenberger 

observers are globally asymptotically stable if there exist symmetric matrices S > 0 ,Mij and 

Ni ∈  In that satisfy: 

 

{
  
 

  
 
Cdiscrete(αii, S) + Mii < 0, ∀𝑖 ∈ In.

Cdiscrete(αij, S) + Mij ≤ 0, ∀i, j ∈ In
2 .

[
M11 M1n

M1n Mnn
] .

ωi(ꓩ(k))ωj(ꓩ(k)) ≠ 0.

αij = Ai − NiCj , ∀(i, j) ∈ In
2 .

         (31) 

 

The LMI’s are given by: 

 

{
 
 
 
 

 
 
 
 

S > 0.

[
S − Mii ∗

SAi − HiCi S
] > 0 ∀ 𝑖 ∈ In.

[
S − Mij ∗

S
Ai+Aj

2
−
1

2
(HiCj +HjCi) S

] ≥ 0 ∀ i < 𝑗. 𝑖, 𝑗 ∈ In
2

M = [
M11… . M1n

M1n… . Mnn
] .

Hi = SNi.

. (32) 

 

4. RESULTS 
 
We applied the enhanced PDC control law design called classic PDC [16] to the discrete-Time T-

S fuzzy model representing the autonomous vehicle system to ensure the lateral control purpose 

under certain constraints. Equations (25) and (32) give: 

 

{
S = X−1.
Gi = HiS.
Hi = SNi.

(33) 

  

Based on (33), we get the following gains and matrices: 

 

S = 𝑒−03

[
 
 
 
 
 
0.0513 0.0139 0.0693 0.0120 0.1275 0.0070
0.0139 0.0062 0.0235 0.0041 0.0400 0.0025
0.0693 0.0235 0.1267 0.0196 0.21158 0.0121
0.0120 0.0041 0.0196 0.0051 0.0368 0.0019
0.1275 0.0400 0.2158 0.0368 0.4979 0.0266
0.0070 0.0025 0.0121 0.0019 0.0266 0.0029]

 
 
 
 
 

 

G1 = [ 538.7210   88.1555  137.5593   21.1442 − 146.3325  − 56.7097]. 

G2 = [545.2576   58.9360  139.5243   21.1255 − 148.8607  − 56.7512]. 
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For multi-observer gains are: 
 

N1 =  𝑒03

[
 
 
 
 
 
0.0116      0.0007
0.0828  − 0.0020
0.0285 − 0.0003
0.2673 − 0.0020
−0.0196 − 0.0273
9.3447        7.3696 ]

 
 
 
 
 

,N2 = 𝑒04

[
 
 
 
 
 
0.0026      0.0000
0.0152 − 0.0001
0.0076 − 0.0000
0.0624  − 0.0001
0.0074 − 0.0023
−1.2496   0.6264 ]

 
 
 
 
 

. 

 
 

We tested our controller with different scenarios. The first scenario is to assume that the 

autonomous vehicle system will start far from the origin with different orientation. The initial 

state vector 𝑥0 = [0; 0.02; 0.04; 0; 0; 0.9], which is not the system equilibrium point 
[0;0;0;0;0;0], example, the lane centreline. We can certainly observe in figure 4-8 that our 

stabilization control law converges all the state variables to zero, which means that our 

autonomous vehicle reaches the centreline of the lane. These results prove the robustness of our 
controller. The second scenario is to apply a disturbance mitigation. We subjected the 

autonomous vehicle to a lateral wind force of 1500 Newton. Figure 2 and Figure 3 show a 

remarkable robust stabilization. Our model showed robustness and effectiveness against the 

disturbances.  
 

 
 

Figure 2. Stabilized output1 
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Figure 3. Stabilized output2. 

 

 
 

Figure 4. Sideslip angle. 
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Figure 5. Yaw rate. 

 

 
 

Figure 6. Lateral deviation error. 
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Figure 7. Heading error. 

 

 
 

Figure 8. Steering angle. 
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Figure 9. Steering rate 

 
Figure 4 presents the sideslip angle convergence to equilibrium point in 10 seconds. Figure 5 

shows that the yaw rate converges in 12 seconds. Figures 6-9 show that the lateral deviation 

error, the heading error and the steering angle converges in 8 seconds. These results show the 
effectiveness of our control design. 

 

5. CONCLUSIONS 
 

In this paper, we propose a control design for an autonomous vehicle. The discrete-time T-S 
system represents the autonomous vehicle model. The state vector is computed by using the 

Luenberger observer. Furthermore, we applied a PDC control law to the T-S fuzzy model. 
Feasible LMI conditions have been developed to guarantee lane keeping under certain limits. The 

results show that the lateral control of the autonomous vehicle to keep it on the centreline of the 

lane is well done under various constraints and scenarios. In future work, we will improve the 

heading error percentage to ensure more safety when we want to go back to the centreline of the 
lane. 

 

ACKNOWLEDGEMENTS 
 

The research work was supported by the Canada Research Chairs Fund Program and Natural 

Sciences and Engineering Research Council of Canada under Discovery Grant Project RGPIN 
/1056-2017. 

 

REFERENCES 
 
[1] J. Jiang and A. Astolfi, "Shared-Control for the Lateral Motion of Vehicles,"European Control 

Conference (ECC), Limassol, pp. 225-230, 2018. 

[2] N. Enache, M. Netto, S. Mammar, and B. Lusetti, “Driver steering assistance for lane departure 

avoidance,” Control Eng. Pract., vol. 17, no. 6, pp. 642–651, Jun. 2009. 



286       Computer Science & Information Technology (CS & IT) 

[3] Nguyen, A.T.; Coutinho, P.; Guerra, T.M.; Palhares, R.; Pan, J. Constrained Output-Feedback 

Control for Discrete-Time Fuzzy Systems with Local Nonlinear Models Subject to State and Input 

Constraints. IEEE Trans. Cybern. 2020, 51, 4673–4683. 

[4] Ling, S.; Wang, H.; Liu, P.X. Adaptive Fuzzy Tracking Control of Flexible-Joint Robots Based on 

Command Filtering. IEEE Trans. Ind. Electron. 2020, 67, 4046–4055. 
[5] Naranjo, J.E.; González, C.; García, R.; De Pedro, T.; Haber, R.E. Power-steering control architecture 

for automatic driving. IEEE Trans. Intell. Transp. Syst. 2005, 6, 406–415. 

[6] Du, H.; Zhang, N.; Dong, G. Stabilizing vehicle lateral dynamics with considerations of parameter 

uncertainties and control saturation through robust yaw control. IEEE Trans. Veh. Technol. 2010, 59, 

2593–2597. 

[7] Sun, W.; Wang, X.; Zhang, C. A model-free control strategy for vehicle lateral stability with adaptive 

dynamic programming. IEEE Trans. Ind. Electron. 2019, 67, 10693–10701. 

[8] Li, D.; Zhao, D.; Zhang, Q.; Chen, Y. Reinforcement learning and deep learning based lateral control 

for autonomous driving [application notes]. IEEE Comput. Intell. Mag. 2019, 14, 83–98. 

[9] Jiang, J.; Astolfi, A. Lateral control of an autonomous vehicle. IEEE Trans. Intell. Veh. 2018, 3, 228–

237. 

[10] T. Takagi and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and 
control,” IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. SMC-15, no. 1, pp. 116–132, Jan./Feb. 

1985. 

[11] R. Rajamani, "Vehicle Dynamics and Control". Boston, Springer, 2012. 

[12] S. Boyd, E. Feron, L. El Ghaoui and V. Balakrishnan, "Linear matrix inequalities in system and 

control theory" SIAM studies in applied and numerical mathematics; vol. 15. Philadelphia, PA: 

Society for Industrial and Applied Mathematics, 1994. 

[13] K. Tanaka, M. Nishimura and H. O. Wang, "Multi-objective fuzzy control of high rise/high speed 

elevators using LMIs," Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. 

No.98CH36207), Philadelphia, PA, USA, pp. 3450-3454 vol.6, 1998. 

[14] Euntai Kim and Heejin Lee, "New approaches to relaxed quadratic stability condition of fuzzy 

control systems," in IEEE Transactions on Fuzzy Systems, vol. 8, no. 5, pp. 523-534, Oct. 2000. 
[15] M. Chadli, D. Maquin and J. Ragot, "An LMI formulation for output feedback stabilization in 

multiple model approach," Proceedings of the 41st IEEE Conference on Decision and Control, 2002., 

Las Vegas, NV, USA, pp. 311-316 vol.1,2002. 

[16] M. A. Jemmali, M. Otis and M. Ellouze. “Robust stabilization for discrete-time Takagi-Sugeno fuzzy 

system based on N4SID models”. Engineering Computations, May 2019. 

 

 

 

© 2022 By AIRCC Publishing Corporation. This article is published under the Creative Commons 

Attribution (CC BY) license. 

http://airccse.org/

	Abstract
	Keywords
	Takagi-Sugeno model, Steering control, lane keeping, observers.


