
David C. Wyld et al. (Eds): SOEN, SIPP, PDTCA, ITE, CCSIT, NLPCL, DaKM, BIGML, AISC -2023
pp. 01-19, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.131201

CODE GENERATION BASED ON CONTROLLED

NATURAL LANGUAGE INPUT

Howard Dittmer and Xiaoping Jia

Jarvis College of Computing and Digital Media, DePaul University, Chicago, IL

ABSTRACT

Over time the level of abstraction embodied in programming languages has continued to grow.

However, most programming languages still require programmers to conform to rigid

constructs. These constructs have been implemented in the name of efficiency for the computer.

The continual increase in computing power allows us to consider techniques not so limited. To

this end, we have created CABERNET, a Controlled Natural Language (CNL) based approach

to program creation. CABERNET allows programmers to use an outline-based syntax. Using

heuristics and inference to analyze and determine the programmer’s intent, this tool chain can

create mobile applications. Using templates, a CABERNET application can be processed to run

on multiple run-time environments. Since processing a CABERNET program file results in a

native application, performance is maintained. In this paper, we compared sample applications

created in Swift, SwiftUI, and CABERNET. The CABERNET implementations were consistently

shorter than those produced in the other two languages. In addition, users surveyed consistently

found CABERNET easier to understand.

KEYWORDS

Controlled Natural Language, Literate Programming, Programming Language, Computer-

aided Software.

1. INTRODUCTION

Computer programming provides tools for improving the productivity of human users. The tools

that are embodied in computer programs have improved the productivity of all types of users.

However, one area that can still benefit from computer-based automation is of program

development. While many tools automate specific tasks performed by a programmer, there is a

lack of consistent automation directed at the actual process of creating instructions that embody

the program.

Computer-aided Software Engineering (CASE) tools have existed since the late 1960’s. These

approaches include everything from requirements capture to the evaluation of code for potential

errors. Unfortunately, most of these tools have been applied piecemeal to the problem of program

development. By starting with code generation based on inference and a controlled natural

language, we see an opportunity to address the programmer’s core function, actual code

generation.

Much has been made of using Artificial Intelligence (AI) to replace human efforts. In the field of

program development, there is an expectation that AI could generate computer programs based

on the input of requirements. Some recent work has involved the use of Machine Learning to

generate code. This effort in effect seeks to replace the human programmer’s efforts. Alternately,

we see our efforts as not an attempt to replace the developer but an opportunity to increase the

http://airccse.org/cscp.html
https://airccse.org/csit/V13N12.html
https://doi.org/10.5121/csit.2023.131201

2 Computer Science & Information Technology (CS & IT)

developer’s productivity. Our efforts follow the path of Intelligence Augmentation proponents

such as Doug Engelbart and Terry Winograd [1–3]. To that end, this approach combines

inference with developer interaction to create robust solutions to program needs while

maximizing developer productivity.

While significant research has proceeded us across the range of computer-assisted program

development, there still needs to be more progress on actual code generation. The challenge is to

create a flexible, intuitive, and natural methodology for the developer. The tool should allow for

synonyms, acronyms, abbreviations, and shorthand. It should allow flexibility in the structure of

the information provided to it. Most importantly, it must deal with ambiguous and unrecognized

content cleanly. Finally, the process must produce unambiguous and consistent results. Our

approach meets all these requirements.

Our goals are two-fold. We seek to provide novice developers with a tool and approach that

allows them to be productive without the learning curve in existing programming approaches. At

the same time, we seek to provide experienced developers with a methodology that improves

their productivity. To this end, we have created a programming methodology named

CABERNET. As part of our research, we have developed a tool to generate mobile applications

based on this methodology. This paper will describe the methodology and example applications

built with it. We believe that our approach provides a development platform that can produce

deterministic results while allowing flexibility in the input and code, which is easy to understand

and accessible for novices. This combination will provide the opportunity for significant

improvements in programmer productivity and quality.

2. BACKGROUND

The programming community continually looks for ways to improve the efficacy of those

involved in program development. We define the measure of improvement in programmer

efficacy or productivity as a reduction in the quantity of work required to produce a defect-free

program or program function. Researchers have long sought to automate various aspects of the

software development process. Today there are many tools and techniques available to help

developers in their work. Some of these are discussed below. As we will see, few of these

directly address code generation.

2.1. Machine Learning

A recent area of activity is computer-assisted programming through machine learning. The

approach involves training a tool with libraries or code repositories. Using this resource, the tool

then provides code recommendations to the programmer. Examples of this include Natural

Language-Guided Programming [4] and GitHub CoPilot [5], an OpenAI based code generation

tool. Another approach in this area is Genetic programming [6]. Genetic programming is similar

in usage to the other two solutions but is based on hand-coded training cases making it much

more expensive to implement.

These tools attempt to improve programmers’ productivity by providing coded solutions to

portions of programs as the developer works. This appears to be a benefit to a programmer,

particularly when working with a language or in a solution space with which they are not

familiar. These tools have been described as AI Pairs Programming and an automatic code

completion tool. Since GitHub CoPilot generates code based on examples collected from publicly

available code on GitHub there has been some question about the quality of the result. There is

no assurance that the source code is correct or efficient. A recent study [7] of the results of

Computer Science & Information Technology (CS & IT) 3

GitHub CoPilot generated code gives reason for concern. In this study, they found that in 28.7%

of the problems, GitHub CoPilot generated the correct code. In 20.1% of the problems, GitHub

CoPilot completely failed to provide a correct solution. If you combine the 51.2% of the time

where the solution is partially correct with the totally correct solutions, you get 79.9% of the time

where a solution would be helpful to a programmer. But these success rates are not such that a

programmer can expect a correct solution without significant review and refinement. Another

study of GitHub Copilot generated code [8] found code correctness ranged from 57% on Java

examples to 27% on JavaScript examples.

These results indicate that GitHub Copilot will likely be valuable tools for programmers in the

future. However, given the questionable quality of the code source (GitHub public repository),

there will continue to be a need for a close review of the results. Additionally, these are tools to

aid programmers in their development efforts, not tools for creating programs.

2.2. Controlled Natural Languages

A natural language programming language has long been a goal in the programming community.

In 1983 Biermann, Ballard and Sigmon introduced NLC [9,10], a natural language notation,

which was interpreted directly to an output. In 1984 Knuth proposed Literate Programming [11],

which combined TEX and Pascal to produce a vocabulary that had the primary goal of

documenting for humans what the programmer desires. Literate Programming makes efforts to

improve the readability of programs. However, it does this by adding English content to program

code. The result is a program which is more verbose than the Pascal upon which it is built. In

2000 Price, Rilofff, Zachary, and Harvey introduced Natural Java [12], a notation that allows the

programmer to define a procedure in English, which is converted to Java.

There are also efforts to use natural language techniques to analyze artifacts created in

conventional programming languages. Michael Ernst suggested using these techniques to analyze

all kinds of artifacts [13] including “. . . error messages, variable names, procedure

documentation, and user questions.” Similarly, there have been efforts to define the user interface

by extracting information from the natural language requirements documents [14]. Essentially

this approach uses natural language tools and techniques to identify (and possibly satisfy)

requirements for the program by analysis of the information that the developer has created to

date. In 2001 Overmyer, et al. demonstrated the use of linguistics analysis to convert

requirements documents to models of the subject requirements [15].

In another approach, [16], Landhaeusser and Hug attempt to use full English to derive program

logic. English tends to be verbose, and a programming language based on the entire English

language results in significant content being required. Our approach utilizes a Controlled version

of English, which results in a simplified syntax. This simplified syntax allows the program to be

created with a concise source document.

Much of human interactions are dependent upon shared experience and idioms, which allow

humans to provide incomplete information and enable the listener to fill in the rest. Without these

implied nuances, human communications would be much more verbose. The challenge for using

a controlled natural language for defining a computer program is that we must replicate, at least

in part, these techniques which humans use to share information.

4 Computer Science & Information Technology (CS & IT)

2.3. Requirements Capture

Requirements capture is an area where Controlled Natural Language approaches have previously

been used [17]. For some years, the agile development community has sought to develop better

ways to capture user requirements. Test-Driven Development (TDD) [18] was initially associated

with agile development in Kent Beck’s book on eXtreme Programming [19] and then expanded

upon in his book on the subject [20]. This methodology seeks to direct the programming effort

towards requirements as embodied in a series of tests. These tests are generated by the

development team. More recently, parts of the agile community have embraced Behavior-driven

Development (BDD) as a starting point. Behavior-driven Development [21, 22] describes the

user’s requirements as a series of behaviors that can be converted into tests. These tests are then

used as those envisioned in Test-driven Development. These behaviors are described in a natural

language form. As such, BDD acts as a front-end for TDD. Cucumber [23, 24] and jBehave [25]

are popular tools that allow developers to capture their requirements in an end-user-friendly

format and produce a test suite for TDD applications. While these methodologies and associated

tools enable the user to describe the requirements in a natural language format, they still require

the program to be created in a traditional programming language.

2.4. Dynamic Programming Languages

In recent years there has been significant growth in the use of dynamic programming languages

for mainstream development. While Java, and C with their various derivatives, continue to be

widely used, Python (ranked number one in the TIOBE index), JavaScript (and its derivative,

TypeScript), PHP, Ruby, and Perl have moved into the top twenty most popular languages in the

TIOBE Index [26] and the StackOverflow annual programmer survey [27]. Dynamic

programming languages have gained a following because they have helped improve

programmers’ productivity. The combination of dynamic typing and concise syntax results in

fewer lines of code required to achieve the desired result. These advantages have led to claims of

productivity gains from 5 to 10 times [28]. With the advent of robust, dynamically typed

languages, developers have begun using these tools for applications previously thought to be the

domain of traditional statically typed languages. These languages have a syntax that is easier for

a programmer to understand, even if written by someone else. In general, the syntax used by

these languages is closer to that of a natural language. They still do require conformance to a

strict set of rules. However, they have limited the requirements for computer-driven structures

like variable declarations, which add to a traditional programming language’s verbosity. While

these languages’ use does not involve automation, they show that other cleaner, simpler syntax

languages offer improved programmer productivity opportunities.

2.5. Static Analysis

Static analysis tools come in a range of capabilities. The simplest of these tools are commonly

referred to as lint tools [29]. These tools review the program code and identify violations of

syntax rules provided for each target programming language. Violations can include punctuation,

the misspelling of reserved words, variables declared but never used, and other errors that can be

identified by reviewing the source code. In addition to stylistic checks, traditionally the approach

of linters, these tools have taken more ambitious approaches, such as using bug patterns. Two of

the most popular and successful products in the area are FindBug and PMD [30]. They have

proved very useful in finding bugs in already-written code. They help improve the code quality

but do not help create the code.

Computer Science & Information Technology (CS & IT) 5

2.6. Integrated Development Environments

The Integrated Development Environment (IDE) is the most used tool for developers. Among the

many capabilities a modern IDE provides is syntax highlighting [31], which involves highlighting

various constructs and keywords with colors and formatting to identify their function and usage.

These tools can aid the programmer by identifying errors in code when the color coding of the

source code does not match their intent. These features also include code completion [32],

automatically completing various words and constructs within the program based on the context

and previously entered code. Modern IDEs also provide for the integration of tools such as linters

and other static analysis tools. While a modern IDE is a valuable productivity enhancer, it still

requires that the programmer code the program in the target programming language’s particular

syntax.

2.7. Declarative Syntax

Imperative programming [33] is the style utilized by most of the popular programming

languages. These languages require the programmer to describe how to construct the various

objects that make up a program. To build a user interface, the program would include the tedious

steps required to draw each object and then link them to the program logic. This process results in

the code being voluminous and difficult to read. It also can obscure the nature of what the

programmer is trying to achieve. Listing 1.1 contains the Swift code involved in creating a simple

button that invokes a method called processEachPayThis. This example includes eleven lines of

code. For all but the most knowledgeable, this code is hard to read and obscures the nature of the

programmer’s goal.

1 let button2 = UIButton(type: .system)

2 button2.setTitle(“Calculate”, for:.normal)

3 button2.frame = CGRect(x:self.view.bounds.maxX * 0.0,

4 y:35 * 3,

5 width:self.view.bounds.maxX * 0.5,

6 Height:30)

7 button2.titleLabel?.textAlignment = .left

8 button2.addTarget(self,

9 action: #selector(processEachPayThis),

10 for: .touchDown)

11 self.view.addSubview(button2)

Listing 1.1. Swift code for Simple Button

In 2019 Apple introduced SwiftUI [34], which utilizes a declarative syntax for describing the

program’s user interface. Declarative syntax [35] describes the results the programmer wants to

achieve but not how to achieve those results. Listing 1.2 includes the SwiftUI code required to

create the same button as in the previous example but does it in seven lines of code. This code is

easier to read and to understand what the programmer is trying to achieve. While this code is

considerably simpler than the Swift code, it still is rigid in its syntax and contains numerous

special words/commands. It requires the programmer to conform to a strict set of rules. As we

describe CABERNET in this paper, we will see that it can describe this same button in two lines

of code without these strict rules.

6 Computer Science & Information Technology (CS & IT)

1 HStack {

2 Button(action: {

3 self.processEachPayThis()

4 }) {

5 (Text(“Calculate”))

6 }

7 }

Listing 1.2. SwiftUI code for Simple Button

3. OUR APPROACH

The goal of our work is to provide a highly readable, flexible, extensible, and easy-to-learn

development methodology based on a CNL. To that end, we have developed CABERNET (Code

generAtion BasEd on contRolled Natural languagE inpuT), an approach that allows a

programmer to define a computer program using a Controlled Natural Language (CNL). Figure 1

lists the key advantages of the CABERNET development approach.

3.1. Basic Principles

The simplicity and directness of the approach are possible because many aspects of the design

can be inferred from the context. A programmer developing an application for a mobile device

seeks to conform to a set of user interface guidelines. These guidelines become one of the many

contextual influences on the application design. As previously noted, one significant advantage

enjoyed by humans in their use of natural language is the shared knowledge that allows for

portions of the communications to be implied. To overcome this challenge in human-computer

communications, we have utilized three techniques.

- Increased programmer efficiency

- Flexible and straightforward syntax

- Address needs of all programmers

- Natural language (English-like, controlled natural language)

o More flexible

o More forgiving

- Inference fills in gaps

Fig. 1. Key Characteristics of CABERNET

First, we have used a broad set of defaults, applied when the developer omits the needed

information from their descriptions. Second, we use inference to determine the developer’s intent

from the information provided (both within the user interface description and other artifacts that

make up the program). Third, our approach allows machine learning to adjust the defaults based

on developer choices during the development process. When information is missing, or the

information provided is ambiguous, we offer the developer options from which to choose a

solution. Based on these choices and the default solutions that the developer accepts or declines,

we build and reinforce our recommended solutions. The characteristics of the proposed

Controlled Natural Language model are listed in Figure 2. The result is that CABERNET

programs are consistently more concise than other similar approaches such as Literate

Programming.

Computer Science & Information Technology (CS & IT) 7

3.2. Flexible Nomenclature

One of the challenges of dealing with a natural language is the variety of words or phrases used

for a single object or concept. To deal with this, we make use of a thesaurus. We identify a group

of words or phrases that can be used interchangeably. Table 1 includes some examples of these

lists of synonyms.

These lists are just a small sample of possible synonyms that we should consider. Going one step

further, we consider what may be implied by a word or phrase. For example, the last item in the

list might include the word “to” as it could imply “go to.” These lists of synonyms are created in

several ways. First, they are generated from our knowledge of the domain and the terminology

used by programmers. Second, we can expand them using online resources like thesaurus.com,

thesaurus.Babylon-software.com, etc. Third, we can use search to find terms that are common in

the subject area. Finally, we can learn from the developer as they provide feedback when the

CABERNET processor cannot interpret the term.

3.3. Declarative with a Difference

We have seen the improvement in readability and productivity that is offered by declarative

programming approaches like SwiftUI. CABERNET takes that concept further; it offers

declarative with a difference. CABERNET combines a declarative style with a natural language-

based syntax. It then utilizes inference to discern the programmer’s intent. We couple that with a

robust set of defaults and templates to convert the program into a native executable.

- Input language is forgiving

o Outline-based structure

o Flexible

 Allow use of synonyms, acronyms, and standard abbreviations

 Allow flexibility in ordering and location of descriptions

o Terse

 Minimum input required

 In most cases, the input is keyword-based and does not require English

sentences

 Each bullet has limited context

 Utilize popular Markdown [36] lightweight markup language

- Model processing

o Tool processes natural language model

o Outputs canonical model

o Offers alternative interpretations

o Identifies ambiguous elements

o Highlights unrecognized and unused elements

- Canonical model

o Unambiguous

o Consistent with the natural language model and with itself

o Can target alternate platforms (iOS, Android, Etc.)

- Tools

o Predefined rules

o Learn additional rules from experience

o Learn from documentation of target framework

Fig. 2. Characteristics of CABERNET CNL

8 Computer Science & Information Technology (CS & IT)

Figure 3 depicts the process of converting a CABERNET source into an executable program. The

process starts by tokenizing the CABERNET source based on the structure of the Markdown

outline. The tokenized version is then inspected for terms that can be matched with synonyms in

the thesaurus. Where there are tokens that seem to be missing, they are added by inference. The

resulting tokens or groups of tokens are identified as actions, symbols, formatting, etc. based on

their context. The accuracy of that identification is then tested based on other objects in the

program. Where appropriate, outline levels are then simplified using Natural Language tools. The

CABERNET processor then generates code for the target platform by applying the appropriate

templates. Finally, the program is compiled or interpreted by the target platform development

tool.

Table 1. CABERNET Synonym Examples.

Widget Type Synonyms

Binary input widget “option,” “switch,” “checkbox”

Application “App,” “Application,” “Program”

Application Screen “Window,” “Screen,” “Scene”

Process Directive “save,” “undo,” “calculate,” “evaluate”

Switch State “true,” “selected,” “on”

Load new screen “go,” “go to,” “load,” “to”

4. NOTATION

4.1. Markdown

The notation for the Controlled Natural Language tool is based on the Markdown [37, 38]

lightweight markup language. Markdown was created in 2004 by John Gruber [39]. An additional

benefit of Markdown as the underlying format of CABERNET is that the source code can be

processed using the Markdown tool. The result is an attractively formatted file that displays the

program structure without the Markdown tags and formatting characters.

Fig. 3. Processing CABERNET program

4.2. Outline Structure

A CABERNET program is structured as an outline, including only the information necessary to

distinguish itself from the default. Some high-level outline properties that define the CABERNET

syntax are identified in Figure 4.

Computer Science & Information Technology (CS & IT) 9

#, ##, ###, etc. = Object hierarchy

App = Application

Scene / Screen

“*” = Properties and / or actions

Object with no properties is a label

Properties which begin with a verb = Button

“blank”, “phone number”, etc. = input field

“option” = checkbox or switch

Quoted Text = Literal

Fig. 4. CABERNET Outline Properties

The outline structure captures the hierarchical structure of the program. Each succeeding

indentation of the outline represents another embedded structure in the resulting program. The

CNL code of an example application is found in Listing 1.3. Line 1 of this code identifies the

basic application. Lines 2 and 17 are one level indented from the application and start two

different screens. The lines such as 4, 5, and 7 that begin with ‘###’ are one additional level

indented and define the objects on the subject screen.

Outline entries that start with a ‘*’ describe the content of the various objects. Entries such as 6

and 21 that start with a verb describe actions to be taken when clicking the object. Entries such as

line 22 that begin with a characteristic describe the format of that field. Entries like that

beginning on line 30 define a calculation that is used to populate the field. Lines like 8 and 12,

which do not fall into other categories provide a default entry for the field.

1 # App

2 ## Scene

3 * home

4 ### “Home Listing”

5 ### “Acreage Calculator”

6 * to acreagecalc

7 ### “Owner Name”

8 * enter some text

9 ### “City”

10 * enter some text

11 ### “State”

12 * xx

13 ### “Zip Code”

14 * xxxxx-xxxx

15 ### “Active Listing”

16 * option selected

17 ## Screen

18 * acreagecalc

19 ### “Acreage Calculator”

20 ### “Calculate”

21 * calculate Lot Acreage

22 * background green

23 ### “Cancel”

24 * cancel entry

25 ### “Lot Width”

26 * enter some text

27 ### “Lot Depth”

28 * enter some text

29 ### “Lot Acreage”

30 * Divide Lot Width times Lot Depth by 43560

Listing 1.3. CABERNET Sample Code.

10 Computer Science & Information Technology (CS & IT)

5. THESAURUS

The use of a CNL means that multiple names can describe an object in the user interface. For

example, in Listing 1.3, line 2, we refer to one screen of the application as a “Scene.” On line 17,

we call the second screen as a “Screen.” Additionally, these objects can be called different things

based on the target platform involved. As a result, the subject tool must create alignment between

what the CNL code calls an object and what the target platform expects. To allow CABERNET

to accommodate this varied nomenclature, we have implemented the concept of a thesaurus. The

thesaurus captures a range of words that can be treated as synonyms. Examples of the thesaurus

word lists are shown in Figure 1.

6. NATURAL LANGUAGE PROCESSING

As noted, we have limited the description of the application content to the ’*’ outline levels. Each

of these outline items can contain brief entries that describe the content or the material’s format.

These outline items are also where the controlled natural language entries exist for describing the

program function and content. Each item is very limited in scope and context and is therefore

relatively easy to interpret. For example, line 30 in Listing 1.3 describes the calculation of the

value displayed in the object.

Divide Lot Width times Lot Depth by 43560

Calculated items like this are identified by mathematical operators’ precedents such as multiply,

divided by, plus, numbers, and mathematical symbols.

Divide Lot Width times Lot Depth by 43560

Once an item is identified as potentially being a mathematical calculation, it is further evaluated

to see if all the information needed is present to evaluate the item. First, the items are parsed to

identify the names of objects in the code that contain the inputs to the calculation. In this

example, these include Lot Width, and Lot Depth.

The remaining text is then examined for adverbs such as quickly, precisely, and carefully and

articles such as the, a, and an, which do not add to our understanding of the calculation being

performed.

At this point, we should have all the information we need to evaluate the calculation. The biggest

challenge to evaluating the remaining text is to understand how to group the calculation.

Mathematical expressions are usually evaluated from left to right adjusted by precedence rules

and grouping defined by parenthesis. Our tool uses all of these, but it must also consider grouping

defined by the natural language of the statement. In its simplest form, this could include “a times

b,” “a * b,” or “multiply a times b.” All three of these statements are equivalent and do require

any special consideration of the grouping of the items. A more complicated example could

involve “(a + b + c) / d,” “divide a plus b plus c by d,” “divide the sum of a and b and c by d,” or

“(a plus b + c) divided by d”. This last example will have a different result than “a plus b plus c

divided by d” which would be the same as “a + b + (c / d)”. By considering the grouping

provided by English statements of the forms “Divide. . . expression. . . by. . . expression”,

“Multiply...expression...times...expression” or “Sum of...expressions,” we can properly evaluate

the calculations described in the natural language of these expressions. In this example, we need

to determine to which values the “divide” at the beginning of the line applies.

Computer Science & Information Technology (CS & IT) 11

If the programmer had entered Width rather than Lot Width or Depth rather than Lot Depth, we

would have failed to complete the transformation. However, this is an example of where we

would have prompted the programmer for guidance. These would be an example of where the

transformation was close, and we would have suggested to the programmer a possible match. In

some cases, an item will include mathematical symbols or appear to describe a calculation, but

CABERNET cannot convert it to a mathematical expression. Lines 12, and 14 are examples of

this. These lines contain mathematical symbols, but the other text does not contain object names,

so we cannot translate them into formulas.

Fig. 5. Construct Processing

A mathematical calculation is but one type of item described in a CABERNET outline item.

Using the same approach CABERNET can evaluate a wide range of program constructs. The

steps in the process are as shown in Figure 5

This approach can be used for a wide range of programming constructs. By combining items such

as database queries, logic statements, mathematical expressions, graphic generation, and file

manipulation, we can generate a working program.

Figure 6 represents the output of our example application. In Figure 6(a), we have the entry

screen for a real estate application. The App, Scene and Screen bullets are for organization and

are used to separate the application by screens. “Calculate” and “Acreage Calculator” are actions

and become buttons. The descriptions of the actions taken for each of the tappable objects are

listed as sub-bullets. Next comes multiple blank fields for the owner’s name, city, state, and zip

code. Finally, there is the options field represented by switch objects. Depending upon the

platform targeted, these could alternately be check- boxes. In this case, the option field is selected

by default. Likewise, they could be called switches in the CNL instead of being called options.

These alternate names for this object are but one example of how an object can be called multiple

things in the CNL or could have multiple objects implemented based on the given CNL. As

described above, these choices are made or prioritized based on the developer or target platform

preferences.

12 Computer Science & Information Technology (CS & IT)

Figure 6(b) is the second screen of the application and includes an acreage calculator. This screen

contains two blanks filled with the lot width and lot depth. Finally, there is a calculated field

representing the size of the lot in acres. As previously described, the text defines this final field in

lines 29 through 30. This calculation is triggered by tapping the “Calculate” button described in

lines 20 through 22.

7. EVALUATION

7.1. Advantages and Limitations

Much of the approach’s power comes from the flexibility of nomenclature. This flexibility comes

from the use of thesaurus, which allows for alternate terms to describe objects and properties

within the application. Much of this information is generated based on general domain

knowledge. The approach also allows for expanding and customizing this information by

applying search techniques to the target development platform’s documentation / APIs. Using

search techniques to index this platform documentation, we can expand and improve the

dictionaries and thesaurus used to interpret the CNL input.

 (a) Real Estate App (b) Acreage Calculator

Fig. 6. App example screens.

Among other advantages, our approach is well suited to integrate with agile processes.

The CNL source code is self-documenting since it is written in a human-readable/understandable

form. This human-readable format makes it easy to understand and refactor as needed.

The result is a dual-purpose artifact (documentation and source code). The implementation is in

Computer Science & Information Technology (CS & IT) 13

the form of a domain-specific programming language. Our CNL is not intended

to be a general-purpose language like Attempto English. As a result, the proposed syntax

is concise and lends itself to the proposed application of inference and machine learning. While

the example provided in this research involves mobile development, the approach is well-suited

for a broad range of programming applications.

7.2. Code Size

The key process metrics that we seek to address with CABERNET include code development

speed, clarity, and size. As can be seen from the example CABERNET programs are very

concise. Because they rely heavily on inference, the alignment between how the programmer and

the computer understand the program is strong. To evaluate CABER- NET we have compared its

code with the alternate ways of implementing some iPhone applications. The program in Listing

1.3 is one of the examples used in this comparison. While it took 30 lines of code to implement

this application in CABERNET the same program took 211 and 96 lines of code in Swift and

SwiftUI respectively. Note that these line counts do not include lines that include only brackets

and spaces. Table 2 shows a comparison of the code required by each of the languages to create

this program and the other two examples. The second example involves adding highlighting to

one of the fields based on the content of the field. This adds 10 lines of code to the SwiftUI

program but only one line of code to the CABERNET program. As we can see, Swift requires

over seven times as many lines of code as does CABERNET to implement these screens. While

the SwiftUI implementation is shorter than the Swift implementation, it still requires more than 3

times as many lines of code as does CABERNET.

Table 2. Comparison of code size

Example CABERNET Swift SwiftUI

Real Estate App Lines of Code 30 211 96

Comparison with CABERNET 1X 7.3X 3.3X

Real Estate App

Revised

Lines of Code 31 106

Comparison with CABERNET 1X 3.5X

Tip Calculator Lines of Code 14 104 57

Comparison with CABERNET 1X 7.4X 4.1X

Much of this Swift and SwiftUI code implements things that CABERNET handles as default

values and constructs. One clear example of this is the actual calculation of the acreage value. In

the CABERNET version, the calculation is defined in line 30. In addition, line 21 describes the

action to be taken when we tap the subject button. To perform the same calculation in Swift, we

need to include 3 lines to declare the variables involved, 9 lines to create the button, and 6 lines to

perform the actual calculation. That is a total of 18 lines of code. For the SwiftUI

implementation, we have 3 lines for declaring the variables, 4 lines to define the button, and 4

lines for the method to perform the calculation. This is a total of 11 lines of code. Again, these

line counts do not include any lines which include brackets. The Swift and SwiftUI code must

check for common errors like dividing by zero and blank entry fields in addition to the steps

required to describe the screen features. CABERNET performs these functions by default, thus

eliminating the need to check for these things. If there were a reason to allow a program to divide

by zero or perform a calculation using an empty field, then CABERNET would expect the

programmer to say so and describe how it should be handled. In the absence of such descriptions,

CABERNET assumes that these are errors and handles them appropriately.

14 Computer Science & Information Technology (CS & IT)

The result of these aspects of CABERNET is that the source document includes only the basic

description of the program content. The implementation, error handling and other processes

normally included in a program’s source file are all added by the templates and processing done

by the CABERNET tool. The result is that the CABERNET file is brief and easy to understand.

Across these examples, Swift required about 7.3 times as many lines of code as CABERNET. In

the same examples, SwiftUI required between 3.3 and 4.1 times as many lines of code as

CABERNET. This is a significant difference that results in more opportunities for typos and

errors to be introduced. At this point, we should note that CABERNET is more forgiving with the

input provided. As previously noted, CABERNET allows a significant range of word selection in

its programs. On the other hand, Swift and SwiftUI require strict adherence to the program

structure. The combination of longer programs and strict rules make Swift and SwiftUI more

vulnerable to errors.

8. EASY TO UNDERSTAND

Lines of code are but one means of measuring the effort required to create a program. Additional

measurements involve how difficult it is to craft the code, how readable the code is, and how well

the program processing the code deals with alternative inputs. These all contribute to how easy it

is for a programmer to learn the language. The measurement of these aspects of the language is

more subjective than the simple counting of lines of code. Nevertheless, they are all important to

understanding how successful CABERNET is / can be in improving programmer productivity.

Fig. 7. Ease of Understanding

To understand the relative ease of understanding a program written in CABERNET vs. the same

program written in Swift or SwiftUI we surveyed 47 people. These survey participants were

solicited from undergraduate and graduate students at two major University computer science

programs. When asked about their level of programming ability 31 participants self-identified as

a “Student”, 7 as a “Developer” and 1 as a “Novice”. When asked about their years of

programming experience 33 reported 3 or more years of experience and 6 reported 2 or fewer.

The survey participants were provided sample programs implemented in CABERNET, Swift and

SwiftUI. Of the 35 questions included in the survey, there are 8 which ask the participants to

evaluate how Easy to Understand the various samples were. The results of these questions are

Computer Science & Information Technology (CS & IT) 15

included in Figure 7. The figure graphs the percentage of responses at a given rating on a scale of

zero to ten with ten being the easiest to understand. 80% of the ratings on CABERNET were a 7

or better. On the same basis, the Swift and SwiftUI examples were 46% and 52% were rated 7

respectively.

Table 3. Mean Ease of Understanding Scores

Language Overall Developers Students

CABERNET 7.75 8.29 7.62

Swift 5.53 4.64 5.69

SwiftUI 6.26 5.81 6.35

The mean score for CABERNET on these questions was 7.75. The mean score for Swift and

SwiftUI were 5.53 and 6.26 respectively. The chart in Figure 8 shows the actual responses for

CABERNET and SwiftUI. From this, you can see that while the SwiftUI results form a normal

distribution around it’s mean the CABERNET results have a more single-sided distribution. 48%

of the responses for CABERNET are a rating of either a 9 or 10.

Fig. 8. CABERNET Responses vs SwiftUI

If we consider the groups that self-identify as Students and Developers independently, we get

comparable results. The developers gave the CABERNET examples a mean score of 8.29 on the

Easy-to-Understand questions. The students gave CABERNET a mean score of 7.62 on these

same questions. On the other hand, the developers gave Swift and SwiftUI mean scores of 4.64

and 5.81 respectively. The students gave Swift and SwiftUI mean scores of 5.69 and 6.35

respectively. All these values can be seen in Table 3.

9. RESPONDENT FEEDBACK

In addition to the quantitative responses based on examples, application survey respondents were

offered the opportunity to provide comments about the various programming options. In total

there were 52 comments submitted. Some of these responses had to do with the mechanics of the

survey itself rather than the tools or were general. Twenty-one were simply positive comments

about CABERNET. Seventeen of the comments expressed concern about the granularity of

control provided by CABERNET. A couple of representative examples of these types of

comments are as follows.

16 Computer Science & Information Technology (CS & IT)

“It is much more readable in terms of figuring out what it is doing and judging what the

result will look like. However, it seems harder if I wanted to make something specific,

because I wouldn’t know where to start with getting the right syntax.”

“I think this would be a good tool for quick form or mock-up creation, but there are

many things I wonder about it. As for these examples - can I change the size of the entry

boxes? Can I move fields on the screen? How would function look? I am intrigued but

scared since so much of the ”brains” dictating things is hidden.”

“Cabernet is good for a quick solution. The other two are good if you want more specific

options and to understand the development tools.”

These respondents were concerned that they would not be able to achieve precise control over the

end application. In a couple of cases, they equated this with the approach being more suitable for

end-user programming. While it is possible to write the requirements for precision control of the

resulting application the respondent seemed to want more surety that they know how

CABERNET will interpret their input.

10. RELATED WORK

10.1. Programmer Productivity

The underlying goal of our research is to improve the productivity of program developers. Of

course, the first challenge is to define what we mean by productivity. We view productivity as the

quantity of defect-free functionality a developer can produce per unit of time or effort. How do

we evaluate that productivity? It is a common belief that productivity varies between program

developers by as much as 10:1. In his research, William Nichols [40] showed that the relationship

between programmers and productivity was weak. He found a high degree of variability in

programmer productivity across a range of tasks. In comparing developers’ performance on a

range of tasks, only half of the variation could be attributed to the differences between

programmers. Lutz Prechelt [41] highlights the wide variety of things that affect the program

development process’s overall productivity. The choice of programming language [42] is a

significant element in determining the productivity of the overall process. These evaluations

involve comparing traditional languages like C and Java vs. scripting languages like Python and

Perl. This work found that the scripting languages resulted in shorter programs and shorter

development efforts. At the same time, the run-time performance did not suffer because of using

scripting languages.

10.2. Next Paradigm Programming Languages

Yannis Smaragdakis [43] considered how next-generation programming languages will change to

support significant productivity improvements. This research is based on the author’s experiences

developing using DataLog (a declarative language based on ProLog). His conclusions are heavily

influenced by the belief that future languages will depend upon the compiler (or interpreter) to

perform the heavy lifting behind the scenes. The programmer will specify their desired result in

the programming language, and the tool (compiler or interpreter) will determine the methods

required to achieve those goals. This conclusion aligns with our approach for CABERNET.

Computer Science & Information Technology (CS & IT) 17

10.3. Natural Programming Languages

To date, none of the efforts to use natural language as a programming language have been

accepted by mainstream programming applications. Good and Howland [44] explored the use of

natural languages for teaching programming or computational thinking. This research involves a

study of the role-playing game toolkit for Neverwinter Nights 2. The program as shipped allows

the creation of scenarios using NWScript, an Electron tool-set-based programming tool. The

researchers studied users’ programming with NWScript and then using natural-language-based

input. They evaluated the ability of non-programmers to script events using NWScript and

natural language. They found that none of the users were able to script their events with the

NWScript tool successfully. When using unconstrained natural language, they found significant

confusion about how to formulate input. After several iterations of more constrained input

methods, their final solution involved a hybrid graphical-textual-based programming tool. Our

approach also recognizes that unconstrained natural language can be confusing for users.

However, rather than taking the hybrid approach proposed by Good and Howland, we chose to

implement a more focused application of natural language, which allows us to make inferences

by the context of the individual natural language phrases.

Gao [45] presents a survey of Controlled Natural Languages (CNL) used for machine-oriented

applications. This work includes consideration of Attempto Controlled English (ACE),

Processable English (PENG,) and Computer-processable English (CPL). From this research,

these CNLs make their inputs very constrained and impose a rigid set of rules. These limitations

are necessary to enable direct translation to machine-processable logic. The result is a much less

natural syntax that imposes rules not that dissimilar to traditional programming languages.

Wang, Ginn, et al. [46] have applied the concept of a language that learns from the programmers

to Natural Language input. In this way, the program compiler/interpreter continually learns from

the programmer to the point where most of the programs in their research were based on this

user-defined notation. This work demonstrates how natural language programming can be

effective when it grows based on user input. In CABERNET, we start with a natural language

interpreter and allow that interpreter to grow and improve based on programmer input, much like

the Dependency-based Action Language (DAL) in Wang, Ginn et al.’s research.

10.4. Code Snippets

One of the most common processes used by developers is searching online development

resources to identify approaches to solving specific problems. StackOverflow is a site frequented

by many programmers seeking to find answers to their programming questions. Yan et al. [47]

created CosBench which takes natural language input and searches for code snippets that are

relevant to the search criteria. They compared their results with six other tools attempting to do

the same thing. In a survey article, Allamanis et al. [48] identified a depth of work undertaking

this same approach. These are interesting tools but are not programming methodologies in

themselves.

11. CONCLUSION

This work has shown that there is potential for a CNL-based programming tool. CABERNET has

demonstrated a programming approach that is easy for both developers and students to

understand. The tool is significantly more concise than the present common programming

techniques for mobile device development. It also incorporates common error-checking

techniques without burdening the developer with their implementation.

18 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] G.C.Murphy, Beyond Integrated Development Environments: Adding Context to Software

Development, 2019 IEEE/ACM 41st International Conference on Software Engineering: New Ideas

and Emerging Results (ICSE-NIER) pp. 73-76, 2019.

[2] J. Markoff, Machines of Loving Grace, The Quest for Common Ground Between Humans and

Robots. Harper Collins, 2015.

[3] L. Fisher, Siri, Who is Terry Winograd. https://www.strategy-business.com/article/Siri-Who-Is-

Terry- Winograd. Accessed: 2023-2-27.

[4] G. Heyman, R. Huysegems, P. Justen and T. Cutsem, Natural Language-Guided Programming,

arXiv, 2021.

[5] A. M. Dakhel, V. Majdinasab, A. Nikanjam, F. Khomh, M. Desmarais, Z. Ming, Jiang, GitHub

Copilot AI pair programmer: Asset or Liability, arXiv, 2022.

[6] D. Sobania, M. Briesch and F. Rothlauf, Choose Your Programming Copilot: A Comparison of the

Program Synthesis Performance of GitHub Copilot and Genetic Programming, arXiv, 2021.

[7] S. McIntosh, W. Shang, G. R. Perez, B. Yetistiren, I. Ozsoy and E. Tuzun, Assessing the quality of

GitHub copilot’s code generation, Proceedings of the 18th International Conference on Predictive

Models and Data Analytics in Software Engineering, 2022.

[8] D. Lo, S. McIntosh, N. Novielli, N. Nguyen and S. Nadi, An Empirical Evaluation of GitHub

Copilot’s Code Suggestions, 2022 IEEE/ACM 19th International Conference on Mining Software

Repositories (MSR), 2022.

[9] B. Ballard and A. Biermann, Programming in Natural Language: ”NLC” as a Prototype,

Proceedings of the Annual Conference, ACM, 1979.

[10] A. Biermann, B. Ballard, and A. Sigmon, An Experimental Study of Natural Language

Programming. In: International Journal of Man-Machine Studies 18.1, pp. 71–87., 1983

[11] D. Knuth, Literate Programming, The Computer Journal,pp. 97-111., 1984.

[12] D. Price, E. Rilofff, J. Zachary, and B. Harvey, NaturalJava: A Natural Language Interface for

Programming in Java. In: Proceedings of the 5th . . ., 2000.

[13] M. Ernst, Natural Language is a Programming Language - Applying Natural Language Processing

to Software Development., SNAPL, 2017.

[14] R. Juarez-Ramırez, C. Huertas, and S. Inzunza, Automated Generation of User-Interface Prototypes

Based on Controlled Natural Language Description., COMPSAC Workshops, 2014

[15] S. Overmyer, and B. Lavoie, Conceptual modeling through linguistic analysis using LIDA, ICSE

’01 Proceedings of the 23rd International Conference on Software Engineering, May 2001.

[16] M. Landhaeusser, and R. Hug, Text Understanding for Programming in Natural Language - Control

Structures, RAISEICSE pp. 7-12, 2015.

[17] A. Fatwanto, Specifying translatable software requirements using constrained natural language,

2012 7th International Conference on Computer Science & Education (ICCSE 2012), pp. 1047-

1052, 2012.

[18] L. Williams, E. Maximilien, and M. Vouk, Test-driven development as a defect-reduction practice,

Software Reliability Engineering, 2003. ISSRE 2003. 14th International Symposium pp. 34-45,

2003.

[19] K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley Professional,

October 1999.

[20] K. Beck, Test-driven Development, Addison-Wesley Professional, 2003.

[21] D. North, Introducing BDD, https://dannorth.net/introducing-bdd/, Accessed: 2023-2-28, 2006.

[22] behavior-driven.org, Behaviour Driven Software, http://behaviour-driven.org, Accessed: 2023-2-28,

2016.

[23] M. Wynne, A. Hellesoy, and S. Tooke, The cucumber book: behaviour-driven development for

testers and developers, Pragmatic Bookshelf, 2017.

[24] Cucumber LTD., emphCucumber, https://cucumber.io, Accessed: 2023-2-28, 2018.

[25] jbehave.org, What is jBehave?, https://jbehave.org, Accessed: 2023-2-28, 2017.

[26] TIOBE Software, TIOBE Index for December 2022, https://www.tiobe.com/tiobe-index/, Accessed:

2022-12-29, 2022.

[27] Stack Overflow, Stack Overflow Developer Survey 2022, https://survey.stackoverflow.co/2022/,

Accessed: 2022-12-29, 2022.

Computer Science & Information Technology (CS & IT) 19

[28] S.Ferg, Python and Java: A Side-by-Side Comparison,

http://pythonconquerstheuniverse.wordpress.com/2009/10/03/python-java-a-side-by-side-

comparison/, Accessed: 2023-2-28, 2011.

[29] P. Louridas, Static code analysis, IEEE Software, 2006.

[30] S. Wagner, F. Deissenboeck, M. Aichner, J. Wimmer and M. Schwalb, An Evaluation of Two Bug

Pattern Tools for Java, IEEE, 2008.

[31] T. R. Beelders and J. du Plessis, The Influence of Syntax Highlighting on Scanning and Reading

Behaviour for Source Code, SAICSIT, 2016.

[32] J. Li, Y. Wang, I. King and M. Lyu, Code Completion with Neural Attention and Pointer Networks,

CoRR, 2017.

[33] R. Sebesta, Concepts of Programming Languages, Addison-Wesley, 2015.

[34] J. Varma, SwiftUI for Absolute Beginners, Apress, 2019.

[35] C. Barker, Learn SwiftUI, Packt Publishing Ltd, 2020.

[36] S. Leonard, The text/markdown Media Type, 2016.

[37] S. Leonard, Guidance on markdown: Design philosophies, stability strategies, and select

registrations, 2016.

[38] C. Tomer, Lightweight Markup Languages, 2015.

[39] J. Gruber, Introducing Markdown, https://daringfireball.net/2004/03/introducing markdown,

Accessed: 2022-12-29, 2004.

[40] W. Nichols, The End to the Myth of Individual Programmer Productivity, IEEE Software pp. 71-75,

2019.

[41] L. Prechelt, Rethinking Productivity in Software Engineering, 2019.

[42] L. Prechelt, An empirical comparison of seven programming languages, Computer pp. 23-29, 2020.

[43] Y. Smaragdakis, Next-Paradigm Programming Languages: What Will They Look Like and What

Changes Will They Bring?, 2019.

[44] J. Good and K. Howland, Programming language, natural language? Supporting the diverse

computational activities of novice programmers, Journal of Visual Language and Computing pp. 78-

92, 2017.

[45] T. Gao, Controlled Natural Languages and Default Reasoning, 2019.

[46] S.I. Wang, S. Ginn, P.Liang and C.D. Manning, Naturalizinga Programming Language via

Interactive Learning, ACL pp. 929-938, 2017.

[47] S. Yan, H. Yu, Y. Chen, B. Shen and L. Jiang, Are the Code Snippets What We Are Searching for?

A Benchmark and an Empirical Study on Code Search with Natural-Language Queries, 2020 IEEE

27th International Conference on Software Analysis, Evolution and Reengineering (SANER) pp.

344-354, 2020.

[48] M. Allamanis, E. T. Barr, P. Devanbu and C. Sutton, A Survey of Machine Learning for Big Code

and Naturalness, arXiv, 2017.

AUTHORS

Howard Dittmer received his MS in Software Engineering from DePaul University, and he received a BS

in mechanical engineering from Virginia Tech. Currently, he is pursuing his PhD in Computer Science

from DePaul University. His research interests include Software Engineering.

Xiaoping Jia received his undergraduate degree and Master’s degree in Computer Science from Fudan

University, Shanghai, China. He received his Ph.D. in Computer Science from Northwestern University.

He is currently the Director of Institute for Software Engineering at DePaul University. His research

interests include Software Engineering, Systems Development, Programming Languages.

	Abstract
	Keywords
	Controlled Natural Language, Literate Programming, Programming Language, Computer-aided Software.

