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ABSTRACT 
 

Machine learning (ML) advancements hinge upon data - the vital ingredient for training. 

Statistically-curing the missing data is called imputation, and there are many imputation 

theories and tools. Butthey often require difficult statistical and/or discipline-specific 

assumptions, lacking general tools capable of curing large data. Fractional hot deck imputation 

(FHDI) can cure data by filling nonresponses with observed values (thus, "hot-deck") without 

resorting to assumptions. The review paper summarizes how FHDI evolves to ultra data-

oriented parallel version (UP-FHDI).Here, "ultra" data have concurrently large instances (big-

n) and high dimensionality (big-p). The evolution is made possible with specialized parallelism 

and fast variance estimation technique. Validations with scientific and engineering data confirm 
that UP-FHDI can cure ultra data(p >10,000& n > 1M), and the cured data sets can improve 

the prediction accuracy of subsequent ML. The evolved FHDI will help promote reliable ML 

with "cured" big data. 
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1. INTRODUCTION 
 

The data- and machine learning (ML)-driven research paradigm gradually became mainstream, 
offering ground-breaking solutions to daunting questions in broad science and engineering 

domains. The primary driving force is large data from various sensors, computational 

simulations, high-precision experiments, multifaceted surveys, and even social networks. 

However, large data suffer from missing values due to hardware breakdowns, software 
malfunctions, and human inconsistencies, which can result in severe accuracy deterioration in 

subsequent ML predictions and statistical inference.  

 
Still, to fill in the missing values, naive methods are widely used - e.g., simple deletion of 

instances involving missing values or a replacement with the means of the observed values. It is 

well known, however, that such naive methods can result in considerable bias [1,3] and may 

mislead to incorrect statistical inferences and ML predictions [1].  
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A robust statistical approach exists to handling incomplete data, the so-called imputation method, 
which replaces a missing value with statistically plausible values to create complete data. One of 

the most popular imputation methods is multiple imputation (MI) [2,6] which fills in missing data 

by creating separate data sets, accounting for variances within and between imputations. Many 

serial programs of variants of MI methods are already available in the global statistical platformR 
(e.g.,mice [7], mi [8], AmelianII [9], and VIM [10]). However, for broader engineering 

researchers, there exists a difficult hurdle for the routine use of the MI. MI cannot be easily 

applied to data sets obtained from a complex sampling design [11], and MI also requires the so-
called "congeniality" and "self-efficiency" conditions [12,13]. Without satisfying these 

conditions, MI may cause substantial bias and incorrect inference.  

 
High-performance computing technology has been harnessed for large-scale imputation. 

Researchers in various disciplines developed parallel imputation methods and software - e.g., [14, 

15] for bioinformatics data, [16] for big enterprise data, [17,18] for epidemiology data, and so on. 

However, these HPC-based imputation methods and software depend heavily on domain-specific 
knowledge. Their capability to handle general and/or ultra-large incomplete data (concurrently 

big-n and big-p) is not confirmed.  

 
Therefore, various existing approaches to handling missing data often require statistical and/or 

discipline-specific distributional assumptions of data, which are difficult for general users in 

broad science and engineering. Furthermore, existing theories and tools are not suitable for curing 
incomplete "ultra" data, i.e., large data with currently large instances (big-n) and high 

dimensionality (big-p).This review paper summarizes how the fractional hot-deck imputation 

(FHDI) has been evolving from a serial version (Section 2.1) to a parallel version for big-n or 

big-p data (Section 2.2) and even to the most advanced parallel version for curing ultra-large data 
(concurrently big-n and big-p, in Section 2.3).   

 

2. FHDI FOR SMALL TO ULTRA-LARGE DATA 
 
FHDI is a non-parametric imputation method and creates a complete data set with fractional 

weights after imputation while preserving the joint probability of the observed data. Some of the 

authors of this paper developed an R package, FHDI, available on CRAN [4,19] and its initial 

parallel version [5]. Yet, these tools have several limits to curing ultra-large incomplete data. This 
section presents the consistent evolution of serial version FHDI to HPC-based FHDI (called P-

FHDI) and even to ultra-large data-oriented parallel FHDI (named UP-FHDI).  

 

2.1. Serial Fractional Hot Deck Imputation (FHDI) 
 

FHDI takes several advantages: First, imputed values are built upon observed responses, not 
artificial values, thereby preserving the distribution features of original data; Second, a strong 

model assumption is not necessary for imputation [3]; Third, it works well for general-purpose of 

estimations without self-efficient or congeniality conditions; Thus, it is free from the improper 
imputation issue following the frequentist's EM framework [3]. The detailed formulations and 

example codes are available in [4], and this section summarizes the key equations and procedures 

of the serial FHDI.  

 

 



Computer Science & Information Technology (CS & IT)                                        193 

 
 

Figure 1. The key procedures of FHDI and an illustration of discretization of continuous variables (y) to 

discrete variables (z). 

 

Fig. 1 presents the key procedures of FHDI and an intuitive illustration of the variable 

discretization. The basic setup of FHDI is as follows. Suppose that we have a finite population of 

size N, indexed by U = {1, 2, . . . ,N}, with two continuous variables 𝑦1 and 𝑦2. Let 𝑧1 and 𝑧2 be 

discretized values of 𝑦1 and 𝑦2, respectively. 𝑧1is assumed to take discrete values {1, . . . ,G} and 

𝑧2  takes {1, . . . , H}. Let 𝛿𝑝  (p = 1, 2), a response indicator function of 𝑦𝑝 , i.e., 1 if 𝑦𝑝  is 

observed and 0 otherwise. The finite population U can be subdivided into G × H cells based on 𝑧1 

and 𝑧2, and we assume a cell mean model on the cells such that 

 

𝑦 | (𝑧1  =  𝑔, 𝑧2  =  ℎ)  ∼  (µ𝑔ℎ ,Σ𝑔ℎ), 𝑔 =  1, . . . , 𝐺, ℎ =  1, . . . , 𝐻, 

 

where 𝑦 =  (𝑦1, 𝑦2), µ𝑔ℎ  =  (µ1,𝑔ℎ , µ2,𝑔ℎ) is a vector of cell means and Σ𝑔ℎ is the variance-

covariance matrix of 𝑦 in cell (gh).Let 𝑦𝑜𝑏𝑠  and 𝑦𝑚𝑖𝑠  be the observed and missing part of 𝑦, 

respectively. We assume that the data are missing at random (MAR) in the sense that𝑃(𝛿 | 𝑦)  =
 𝑃(𝛿 | 𝑦𝑜𝑏𝑠)where 𝛿 =  (𝛿1, 𝛿2). Let A be the index set of the sample elements selected from the 

finite population U. Let 𝐴𝑅 be the index set of the respondents who answered both items 𝑦1 and 

𝑦2 . Similarly, define 𝐴𝑀 as the set of nonrespondents who have at least one missing value, 

i.e.,𝐴𝑀  =  {𝑗 ∈ 𝐴; δ1jδ2𝑗  =  0}. Denote 𝑛𝑅 = 𝑛(𝐴𝑅) and 𝑛𝑀 = 𝑛(𝐴𝑀), respectively. 

 
The key procedures of FHDI initially proposed by [19] consist of the following steps.The first 

cell construction step constructs imputation cells. The imputation cell variable z can be given in 

advance or can be obtained using the estimated sample quantiles.From the realized values of 

𝑧1𝑖and 𝑧2𝑖 (i.e., the i-th entity of 𝑧1 and 𝑧2, respectively), we can construct two sets of observed 

patternsof (𝑧1, 𝑧2) for 𝐴𝑅 and 𝐴𝑀. Let 𝑉𝑅 be the set of all observed combinations of 𝑧1 and 𝑧2 in 

𝐴𝑅. 𝑛(𝑉𝑅)𝑚𝑎𝑥 is 𝐺 × 𝐻 at maximum, but it can be smaller in the realized samples. Similarly, we 

obtain 𝑉𝑀  basedon the observed parts of nonrespondents. For example, we may have 𝑉𝑀  = 
{(NA,NA), (NA, 1), (NA, 2), (1,NA), (2,NA)}in the case of two binary outcomes. 

 

Once the imputation cells are finalized from the above discretization, the next step needs to 

estimate the cell probabilities 𝜋𝑔ℎdefined by 

 

𝜋𝑔ℎ  =  𝑃(𝑧1  =  𝑔, 𝑧2  =  ℎ), 𝑔 =  1, . . . , 𝐺;  ℎ =  1, . . . , 𝐻. 

 

The initial cell probabilities are obtained using only the respondents in 𝐴𝑅 . These initial cell 

probabilities are updated using the expectation maximization(EM) method, modified from the 
EM by weighting [20]. Details of the modified EM algorithm are given in [4]. In essence, the EM 

algorithm seeks to adjust each donor's weight so that the joint probability distribution can be as 

smooth as possible. The central importance lies in how to prepare the fractional weight for each 

donor robustly, i.e. 𝑤𝑖𝑗  where 𝑖  corresponds to the i-thdonor while 𝑗  corresponds to the j-th 

recipient. Complete mathematical formulae for the EM algorithm and 𝑤𝑖𝑗  are presented in [4].  
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The unbiased fully efficient fractional imputation (FEFI) employs all respondents as donors to 
each recipient in the same cell and then assigns the FEFI fractional weights to each donor. 

However, this FEFI may not be attractive in practice due to its huge size. Instead of using all the 

respondents, we can select just M donors among the FEFI donors with the selection probability 

proportional to FEFI fractional weights and then assign equal fractional weights. As for donor 
selection, we used a tailored systematic sampling method given in [4]. Variance estimation after 

imputation is vital to offer an uncertainty measure to researchers. FHDI uses the Jackknife 

variance estimation scheme.   
 

As a simple validation, Table 1 presents the standard errors of the three mean estimators. The 

sample data is generated as n = 100 for the multivariate data vector 𝑦𝑖 = (𝑦1𝑖 , 𝑦2𝑖 , 𝑦3𝑖 , 𝑦4𝑖), 𝑖 =
 1, . . . , 𝑛.  The standard normal distributions are used for random value generation, and the 

Bernoulli distribution is used for random missingness for each variable as 𝛿𝑘~𝐵(𝑝𝑘),where 

(𝑝1, 𝑝2, 𝑝3, 𝑝4) = (0.6, 0.7, 0.8, 0.9). Although the response indicators are generated based on the 

missing completely at random (MCAR) assumption for simplicity, the FHDI method also holds 
for other response models based on MAR. The Naive estimator is justa simple mean-based 

estimator computed using only observed values. Since the partially observed valuesare used in 

the mean estimation, the two estimators (i.e., FEFI and FHDI) obtained using fractional hot deck 
imputationproduce smaller standard errors than the Naive estimator. 

 
Table 1. Standard errors of three mean estimators confirming the superiority of FHDI. 

 

Estimator 𝐸(𝑦1) 𝐸(𝑦2) 𝐸(𝑦3) 𝐸(𝑦4) 

Naïve (mean-based)  0.135 0.135 0.150 0.138 

FHDI 0.129 0.121 0.137 0.131 

FEFI 0.128 0.121 0.137 0.130 

 

Table 2. Regression coefficient estimates with standard errors (SE). 

 

Estimator Intercept  SE of Intercept Slope SE of Slope 

True 0  0.5  

Naïve (mean-based)  -0.074 0.305 0.588 0.142 

FHDI 0.023 0.111 0.472 0.052 

FEFI 0.035 0.103 0.466 0.048 

 

Table 2 presents the positive impact of FHDI on the subsequent regression model. Table 2 shows 

the regression coefficient estimates with standard error (SE) for the three estimators. Point 

estimates of the FEFI and FHDI estimators are much closer to the true values than the Naive 

estimators. Also, two fractional imputation estimators have smaller standard errors than the naive 
estimator. All R codes to obtain these results are given in [4]. 

 

As shown in Fig. 2, incomplete data may lead to biased decisions by a few % errors or more than 
10%, depending on the data type. Such a small error may have significant scientific, economic, 

and social impacts. [1] showed that FHDI can improve the accuracy of subsequent ML and 

statistical inference, and its positive impact on the root-mean-square-error (RMSE) of ML and 
statistical model can be a few percent to more than 20% depending upon data and ML and 

statistical models (Fig. 2).  

 

The adopted ML methods include artificial neural networks (ANN), support vector machine 
(SVM), and extremely randomized trees (ERT). The adopted advanced statistical model is the 

non-parametric generalized additive model (GAM). These ML and statistical methods are 

popular in broad science and engineering fields. Many ML and statistical packages tend to have 
naïve imputation methods as default, i.e., simply deleting incomplete rows or instances of the 
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input data sets before training ML models. Therefore, the improvement of accuracy of the 
subsequent ML and statistical models, as shown in Fig. 2 holds overarching implications for 

comprehensive data- and ML-driven research. If the data-driven decision allows a slight 

compromise of prediction errors, such simple imputation methods before ML and statistical 

inferences may be acceptable. However, if the decision involves critical influence on society, 
human health, politics, scientific results, and so on, a few percent of loss of accuracy should be 

handled by proper data-curing methods.    

 

 
 

Figure 2. The positive impact of fractional hot-deck imputation (FHDI) on the subsequent ML and 

statistical predictions (adapted from [1]). GAM (generalized additive model), ERT (extremely randomized 

trees), and ANN (artificial neural networks) 

 

2.2. Parallel FHDI (P-FHDI) for Large Data 
 
The serial version FHDI is a general-purpose, assumption-free imputation method for handling 

multivariate missing data by filling each missing item with multiple observed values without 

resorting to artificially created values.The corresponding R package FHDI[4] holds generality 

and efficiency. Still, it is not adequate for tackling large-sized incomplete data due to the 
requirement of excessive memory and long running time. Some of the authorsof this paper [5] 

developed the first version of a parallel FHDI (P-FHDI) program suitable for curing large-sized 

incomplete datasets. Results show a favorable speed-up when the P-FHDI is applied to large 
datasets of millions of instances or 10,000 variables. It should be noted the target data sets are 

either big-n or big-p, not concurrently big-n and big-p. This capability is illustrated in Fig. 3.The 

developed P-FHDI program inherits all the advantages of the serial FHDI and enables a parallel 

variance estimation (i.e., parallelized Jackknife). 
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Figure 3. Types of incomplete data sets: (a) big-n data with large instances; (b) big-p data with high 

dimensionality. (a-b) are tackled by P-FHDI; (c) ultra data, concurrently big-n and big-p. UP-FHDI can 

tackle all types of large to ultra data sets (adapted from [5]). 

 

Recall that Fig. 1 briefly summarizes the key procedures of FHDI. Figs. 4(a-b) shows the two 

parallel schemes adopted for developing P-FHDI. The two distinct schemes are needed since the 

primary global loops for many tasks are "implicit". Thus, a direct divide and conquer scheme is 
not applicable, as parallelization focuses on the separately parallelizable internal tasks without 

breaking the implicit loop. In contrast, some embarrassingly parallelizable tasks, such as 

Jackknife variance estimation, are tackled by the typical divide-and-conquer scheme. To achieve 
load balance during the P-FHDI, the cyclic distribution (Fig. 4c) is selectively chosen to balance 

the work domain among slave processors effectively.  

 
 

 
 

Figure 4. Adopted parallel computing schemes for P-FHDI: (a) Internal parallelization within the 

unbreakable implicit loop; (b) Typical divide and conquer for embarrassingly parallelizable explicit loop; 

(c) Cyclic job distribution over slave processors (dashed box means the computing jobs) (adapted from 
[5]). 

 
[P-FHDI Procedure 1]Parallel Imputation Cell Construction: The determination of initial 
imputation cells may take considerably large iterations for the cell collapsing process to 

guarantee at least two donors for each recipient. The so-called cell collapsing algorithm (i.e., 

when donors are insufficient, merge adjacent imputation cells to make donors [4]) of serial FHDI 
is an implicit process that is non-parallelizable. Considering the inevitable obstacle, we employ 

internal parallelization within the unbreakable implicit iterations.  

 

(c) 
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[P-FHDI Procedure 2] Parallel Joint Cell Probability Using EM Algorithm: The estimation 
of joint cell probability is an implicit and iterative process that does not support simple 

parallelism. The EM iterations run until the joint probability converges. In particular, the EM 

algorithm will terminate if changes in probabilities converge to a specific threshold (e.g., 10E-6). 

 
[P-FHDI Procedure 3] Parallel Imputation: Imputation of the P-FHDI aims at selecting M 

donors for each recipient. The fractional weights for all possible donors assigned to each recipient 
are computed using the probability proportional sampling (PPS) method to select M donors 

randomly. In particular, it sorts all donors by the half-ascending and half-descending order to 

construct successive intervals. 
 

[P-FHDI Procedure 4] Parallel Variance Estimation: The parallelized variance estimation is 

developed for the parallel Jackknife algorithm. A pre-processing function computes the cell 
probability for unique missing patterns recursively. Without the parallel Jackknife method, 

variance estimation of big-n or big-p data sets will be intractably expensive.  

 
Systematic validations of P-FHDI were conducted with big-n or big-p data sets by [5]. To 

validate the P-FHDI, [5] adopted a variety of data sets (Table 3), including continuous, 
categorical, and hybrid data with instances up to millions and variables = 10,000. Both synthetic 

and practical data are used to confirm the general applicability of the P-FHDI.  

 
Table 3. Some of the adopted datasets for validation of the P-FHDI. U(instances, variables, 

 missing rate). Adapted from [5]. 

 
Data Set Type Variable Types Dimensions and missing rate 

Synthetic Continuous U(1000000, 4, 0.25) 

Practical (Air Quality) Hybrid (Contin. and Categ.) U(41757, 4, 0.1) 

Practical (Nursery) Categorical U(12960, 5, 0.3) 

Synthetic Continuous U(1000, 10000, 0.3) 

 
The first validation focuses on the scalability of the P-FHDI with large instance data (big-n). Fig. 

5(a) shows the desired speed-up with big-n data curing by P-FHDI. While fixing the large 

instance (n=1M), the impact of missing rates on the parallel performance of P-FHDI is 

investigated. Fig. 5(b) confirms the stable scalability of P-FHDI with varying missing rates of a 
fixed big-n data set. The following validation focuses on the parallel performance of the big-p 

data curing with P-FHDI. Fig. 6 shows a promising performance of the big-p data curing 

(p=10,000). 
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Figure 5. (a) Scalability of P-FHDI for Big-n Data Curing: Impact of the number of instances n on speed-

ups of the entire P-FHDI (i.e., imputation and variance estimation) with datasets U(n; 4; 0.25) meaning 

four variables, 25% missing rate, and varying n; (b) Scalability of P-FHDI with Varying Missing Rate: 

Impact of the missing rate 𝜂 on speed-ups of the entire P-FHDI (i.e., imputation and variance estimation) 

with datasets U(1M; 4; 𝜂): 1 million instances and four variables by varying 𝜂 [adapted from [5]]. 
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Figure 6. Initial Performance Test of P-FHDI for Big-p data curing: P-FHDI cured an extremely high-
dimensional dataset U(1,000; 10,000; 0.3): 1,000 instances and 10,000 variables with 30% missingness. 

We adopt three selected variables with Fan and Lv (2018) [21] 's sure independence screening based on the 

big-p algorithm. (Adapted from [5]). 

 

2.3. Ultra Large Data-Oriented Parallel FHDI (UP-FHDI) 
 

P-FHDI is the first parallel version of FHDI that can cure big-n or big-p data sets separately. But, 

if the dataset is ultra-large, i.e., concurrently big-n and big-p, we need to have special parallel 
algorithms and ultra-data handling schemes. Like P-FHDI, UP-FHDI leverages parallelism for 

essential four steps of fractional hot-deck imputation theory: (1) parallel imputation cell 

construction, (2) parallel expectation maximization, (3) parallel imputation; (4) parallel variance 
estimation. While P-FHDI handles all the data on memory available, the sheer size and volume of 

ultra data require a new specialized data handling scheme and associated parallelism. As briefly 

described in Fig. 7, UP-FHDI adopts the OOOPS system [22] for optimal IO workload balance 

with local hard drives of the HPC environment. All the essential steps of UP-FHDI are 
parallelized so that it can easily handle ultra-data. Thus, as long as local storage is large enough, 

UP-FHDI has no limit on the number of instances and high dimensionality. 

 

 
 

Figure 7. UP-FHDI's parallel file system on multiple writers and readers and the OOOPS optimally 

throttles the IO workload of ultra-large data (marked by solid green circles). Adapted from [23] 
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Another important advancement of UP-FHDI is the specialized variance estimation technique for 
ultra-large data curing. It is the linearized variation estimation technique. After performing 

imputation, estimating the imputed results' uncertainty is important. The well-known Jackknife 

variance estimation method is commonly used in the previous version of P-FHDI and serial 

version FHDI. However, the Jackknife method is unsuitable for ultra-data curing as the 
computation and memory cost increase exponentially with the number of instances and 

dimensions. Thus, UP-FHDI implements the efficient linearized variance estimation technique 

(detailed formulations are presented in [23]). When the number of instances is large, the 
linearized variance estimation technique reliably replaces the Jackknife estimation method (see 

Fig.8). Also, Fig. 8 confirms that as the number of instances increases, the difference between 

Jackknife and Linearized methods becomes small enough. Fig. 8 uses the absolute difference of 
standard errors (ADSE),which is defined as 

 

𝐴𝐷𝑆𝐸 ≡
1

𝑝
∑|(𝑆𝐸̂𝑙𝑖𝑛𝑒𝑎𝑟,𝑙 − 𝑆𝐸̂𝐽𝑎𝑐𝑘,𝑙)/𝑆𝐸̂𝐽𝑎𝑐𝑘,𝑙|

𝑝

𝑙=1

 

 

where 𝑆𝐸̂𝐽𝑎𝑐𝑘,𝑙 and𝑆𝐸̂𝐽𝑎𝑐𝑘,𝑙 are the standard error of the mean estimator of the l-th variable using 

the Jackknife and linearized variance estimation methods, respectively. 
 

 
 

Figure 8. Impact of the increasing instances on the absolute difference of standard error (ADSE). 

(Adapted from [23]). 
 
Table 4 summarizes the practical data sets used for testing the basic performance of the 

developed UP-FHDI, which emphasizes the generality of the data categories and disciplines of 
the data. Throughout the initial performance test, the computational gain of the linearized 

variance estimation is excellent. As shown in Fig. 9, the linearized variance estimation techniques 

cost only 2%-7% of the Jackknife estimation scheme. Thus, the linearized variance estimation is 
confirmed to be a successful substitute to the Jackknife method for ultra-large incomplete data 

imputation. To ensure the imputation accuracy of UP-FHDI, we compare the mean-based naïve 

imputation method against the UP-FHDI. Parts of four practical data sets of Table 4 are randomly 
removed and imputed by the mean-based naïve imputation and the UP-FHDI. As shown in Fig. 

10, UP-FHDI outperforms the naïve imputation method by a factor of 2~5. Since such a mean-

based naïve imputation is still prevalent in "big" data research communities and popular ML 

programs, these results underpin the significance of the UP-FHDI for ML and data science. 
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Table 4. Practical data sets used for the initial performance tests of UP-FHDI. 

 

 

 
 

Figure9. Comparison of the total run time of the linearized and Jackknife variance estimation methods with 

four practical large data sets. The linearized variance estimation substantially outperforms the Jackknife 

method (Adapted from [23]). 
 

 
 

Figure 10. Comparison of UP-FHDI and Naïve (mean-based) method. The mean absolute error is 

calculated at the randomly deleted cells with original values(Adapted from [23]). 
 

We compare the performance of UP-FHDI and baseline imputation methods, including naive 
imputation and the recently proposed Generative Adversarial Imputation Network (GAIN) (see 

Fig. 11). The naive imputation adopts a simple mean estimator computed using observed values. 

GAIN is a GAN-based framework that employs an imputer network to handle the missing data 
[28]. Experiments show that GAIN outperforms many state-of-the-art imputation techniques, and 

the summary of key theories of GAIN is presented in [23]. This study adopts the default settings 

to build the GAIN model. Considering the stochastic nature of GAIN, we conduct ten 

experiments for each dataset and average the performance measures. Using large real-world 
datasets (Earthquake, Bridge Strain, Travel Time, and CT Slices), UP-FHDI performs well 

Dataset name Number of 

Instances (n) 

Number of 

Variables (p) 

Discipline 

CT [24] 53500 380 Medicine 

p53 [25] 31159 5408 Genetics 

Travel [26] 23772 50 Transportation 

Swarm [27] 24016 2400 Biology 
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comparable to GAIN regarding RMSE results. Note that the default-setting GAIN aborted when 
applied to Swarm, p53, and Radar. It appears that GAIN may require specific extensions for 

large/ultra data curing. 

 

 
 

Figure 11. Positive impact and superior performance of UP-FHDI: Superior accuracy and stability of UP-

FHDI compared to naive and GAIN (generative adversarial imputation nets), adapted from [23]. Diverse 

five large data sets of (instances n, the number of variables p) are used. With high-dimensional (big-p) data 

sets (Swarm, p53, Radar), default-setting GAIN aborted imputation during running, whereas UP-FHDI 

successfully imputed them with consistently high accuracy. 

 

3. CONCLUSIONS 
 

This review paper summarizes how the fractional hot-deck imputation (FHDI) method has 

evolved from a serial version to ultra-large data. FHDI has notable advantages compared to 
existing imputation methods since it does not require domain-specific and/or statistical 

assumptions. FHDI can thus become a general-purpose, assumption-free data-curing program for 

general users in science and engineering and beyond. By inheriting FHDI's generality and 
efficiency, several parallel computing algorithms enabled FHDI to become ultra data-oriented 

parallel FHDI (UP-FHDI). UP-FHDI can cure concurrently big-n and big-p (called "ultra") data 

with favorable scalability and accuracy. A specialized variance estimation technique also 
provides uncertainty measures of the UP-FHDI. Diverse validations with synthetic and practical 

data sets confirm that UP-FHDI outperforms naïve imputation methods as well as advanced 

imputation methods such as GAIN. Uncertainty estimation is also made possible with the 

developed special variance estimation scheme for UP-FHDI. FHDI and UP-FHDI also confirm 
that their cured data can improve the accuracy of the subsequent ML and statistical predictions. 

All data and programs are made publicly available via the relevant papers. The continued 

evolution of FHDI will help promote data- and ML-driven innovations and high-precision 
decision-making in broad science, engineering, and beyond.    
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