
David C. Wyld et al. (Eds): ICDIPV, CBIoT, ICAIT, WIMO, NC, CRYPIS, ITCSE, NLCA, CAIML -2023

pp. 247-262, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.131319

A SIMULATION PROGRAM THAT CONTROLS

ROCKETS USING AI TRAINED WITH

MACHINE LEARNING

Zhenrui Guo

Santa Margarita Catholic High School , 22062 Antonio Pkwy,

Rancho Santa Margarita, CA 92688

ABSTRACT

Launching rockets is a costly and complex task that is prone to a high rate of failure. To help

address these challenges, the need for simulations to help emulate reality when developing

rockets is crucial to making sure the cost overhead stays as low as possible. Our rocket AI seeks

to tackle this challenge through the use of machine learning and a series of emulated phases to

demonstrate an AI’s ability to properly operate a rocket. The primary challenge throughout the

development of the rocket’s AI is the need to introduce and train for unexpected situations,

which is done by training for a generalized variant of the situations in question.

KEYWORDS

Unity ,Machine Learning, Rockets, Simulation

1. INTRODUCTION

With the low rate of success in the Rocket launching industry, trying to make rocket traveling and

landing more convenient and “smart” is an important factor to consider.[2] The issue this creates

is that there is a considerable amount of time and money to properly run. While modern rocketry

is getting cheaper as “SpaceX has estimated a Falcon 9 launch cost of $2,700 per kilogram versus

$20,000 per kilogram,” [3] there is still a significant cost overhead that must be considered when

trying to minimize the cost of development. Therefore it is important to be able to continue

running tests even via a simulated environment to ensure testing continues at a steady pace while

also giving opportunities to identify issues between each of the real-life tests.[5] It also saves

time to install a controller on the rocket, instead a pre-made AI system will be installed on the

rocket to save money and time.[10] The AI system will grow with the Rocket, to develop real-

time usage of the AI system.

1.1. Method Proposal

To properly address this problem, we will want to put together a proof of concept showing how

machine learning can be leveraged to better guide the activities of rockets during their flight. This

is done to further contribute to the creation of new novel methods of implementing control

schemes that will provide rockets with better guidance. The solution itself is broken down into

three separate phases. The first phase covers the landing aspect of the rocket and tackles the

https://airccse.org/csit/V13N13.html
https://doi.org/10.5121/csit.2023.131319

248 Computer Science & Information Technology (CS & IT)

question of how AI can optimize landing behavior so that the rocket will be able to land softly

enough to avoid significant damage.[14] The second has to do with properly orienting the rocket

to face the direction it needs to at a given time. The third phase tackles the traveling aspect where

the rocket must reach a specific goal once in the air from liftoff. This separation of concerns

allows us to hone in on different aspects of the AI system so that each can be sufficiently accurate

in the final ensemble.

2. CHALLENGES

2.1. Challenge A

The most notable challenge, in general, has to be figuring out in what manner the AI should be

trained in the first place. It was hard to train the AI, because if we train the AI so strictly, it can

never achieve success, if we train too loosely, the AI often doesn’t meet our requirements or

goals. Part of this difficulty also stems from the overall design of the environment the agent is

operating under as it can also impact the reliability of the AI and how it goes about succeeding.

2.2. Challenge B

 Another notable challenge is figuring out how to best measure and record relevant metrics. This

ties into the previous challenge as there was also a lot of uncertainty over how much of a reward

or punishment should be given out by the various actions the agent attempts. Set a variable that

best fits or best according to real life. Making sure that the environmental behaviors and

restrictions are aligned with what to expect from the real world by introducing helper reference

objects helps to make sure that the eventual behavior that emerges applies even to real life.

2.3. Challenge C

 The application itself must also be presented in a way that is accessible for the general users to

emphasize the importance of AI in streamlining training processes. One notable way we can seek

out this improvement is to add a separate mode when the human can control their rocket under

similar bounds the AI was subjected to better compare how they match up with the AI in

question. The AI must also be easily viewable to see how the AI is performing at the given task.

Computer Science & Information Technology (CS & IT) 249

3. METHOD ANALYSIS

3.1. Diagram

3.1.1. System Overview

 The program itself starts on the title screen where the user can make various configurations to

get to the specific scenes that they would want to be at. From the title screen, we are then able to

progress to the landing, traveling, or orienting scenes to either view or control agents from within

each phase. The project can be broken down into the User Scene Selection, AI Agent, and User

Interaction components. Each one of these sets out to showcase the result of the machine learning

techniques used and how it compared to the control of a regular person. To properly achieve this

vision, a combination of Unity and Machine Learning packages was used to implement the

necessary changes.

3.2. Component Analysis A

 The first component we will be highlighting is the User Scene Selection component. This

particular element is important in that it determines what information should be presented to the

user from the beginning to make it clear what the user can access and see. The implementation

for this part was done through the initial outlining within Miro before moving it to Unity and its

UI library.

250 Computer Science & Information Technology (CS & IT)

3.2.1. UI Screenshot

Computer Science & Information Technology (CS & IT) 251

3.2.2. Code Sample

252 Computer Science & Information Technology (CS & IT)

3.2.3. Code Explanation

 The code is used to detect the mode in which the scene should be set up, to see if the user put

A.I. or Manual mode, and give a function to buttons in the scene to make them terminals to the

final scene the user is trying to achieve. Through the pressing of buttons, it also sets different

training or manual scene up and switches them as needed. The preferences that are set by the user

are saved in a singleton that is running in the background to make sure the choice is persistent

between scenes while also being able to neatly reset upon reentering the selection screen where

the singleton is located.

3.3. Component B

 The central component tying together the whole project is the AI agents that were trained

throughout this project. Each AI was trained through machine learning to create neural networks

that are specialized for specific tasks. The training for these models was done in Unity using the

UnityML package. The aforementioned tasks themselves were divided into landing, orienting,

and traveling phases. This separation was done to ensure the AI will not have too many things it

is trying to accomplish at once which could ultimately slow down the results we would be

training for.

Computer Science & Information Technology (CS & IT) 253

254 Computer Science & Information Technology (CS & IT)

 When the AI is being trained, there are a series of functions and steps that need to be taken for

the system to work. The machine learning cycle could be summarized as the following:

Observing, Acting, and Evaluating. The first part of this cycle starts with the “OnEpisodeBegin,”

which is where the initial conditions for that specific AI’s attempt are set. This is then followed

by a “CollectObservations” function which takes in relevant information about the world around

it. The Action step of the cycle is then executed by the “OnActionReceived” function which

determines what inputs and actions the rocket should do. In the case of our agents, we are taking

discrete actions which apply to which inputs we are pressing rather than continuous actions since

we are not performing direct manipulations beyond input. Finally, the evaluation step is taken in

the “OnTriggerEnter” function where the rocket in the case touches the ground and we can

determine if the episode was a failure or not. If the rocket succeeds, we give a reward and end the

current episode. If the rocket fails, then we punish it with a negative reward and end the episode

there. In each case, the overall neural network is notified of the result during training to adjust the

weight of future episodes accordingly.

3.4. Component C

 User interaction

The use of simulation environments in understanding humans and A.I. interactions provides a

safe and controlled platform for users to experiment and learn.[15] By immersing themselves in

these simulated environments, users can gain valuable experience and insights into the

differences between human and A.I. behavior.[12] Additionally, the simulation environment can

provide feedback on the performance of the user, allowing them to improve their interaction

strategies.

Computer Science & Information Technology (CS & IT) 255

The “Heuristic” function highlighted above is part of the script that determines where actions

should go in the absence of any AI. The reason for this is that Unity ML agents are programmed

to automatically check if they already have a neural network attached to them or if a training

session is currently ongoing. If neither is true, then it will assume that the user intends to

manually control the agent and will switch over to the heuristic mode. In this mode, we can

directly feed the action buffers based on keypresses to have our agents react as usual without us

having to implement a completely separate control scheme for user control. In this case, the client

is listening for keypresses and feeds the information to the appropriate action buffer so that the

agent’s “OnActionReceived” function knows how to translate the input into the expected action.

4. EXPERIMENTS

4.1. Experiment A

 The main potential blind spot we will want to address is the overall accuracy of the rocket’s AI.

The reason this is important is because the efficacy of the AI hinges on it being able to perform

tasks as close to perfection as possible. While it has yet to reach that degree of performance,

tracking its current abilities will shine a light on existing weaknesses.

4.1.1. Design

To test the AI to identify weaknesses, we will be recording 100 episodes of the AI trying to

perform the task and calculating its success rate relative to the number of episodes tested. We will

start with a control group that consists of the current AI iteration and the environment they were

trained in. There will then be a series of experimental groups that each change one part of their

respective environment to see how the AI fares. The changes made will depend on the phase

being tested and are outlined like so:

256 Computer Science & Information Technology (CS & IT)

Landing:

-random starting velocity

Orientation:

-random target location

-random angular velocity

Traveling:

-spawn the rocket in a position higher than the platform (random starting velocities if applicable)

4.1.2. Data and Visualization

Computer Science & Information Technology (CS & IT) 257

4.1.3. Analysis

When we were testing the landing phase’s performance, there was a noticeable 17% dip in the

success rate when introducing random starting velocities. This can be attributed to the fact that

this factor was not trained for in the creation of the model. With that being said, both agent

configurations performed relatively well at 90% and 73% respectively; the reason that the

random velocity variant didn’t have a bigger loss in performance is that the model was trained for

random starting heights, which is related enough to random starting velocity to have an impact on

how the rocket reacts as it nears the platform.

When testing for the orientation phase, the performance of the experimental variants was lower

than that of the control. The introduction of a random variable that it was not trained for

introduced new difficulties that the agent was not expecting. The biggest drop in performance

relative to the control occurred when both random targets and random angular velocity were

combined. The reason for this is that in situations where the target is already near the orientation

of the rocket, but has much too high of an angular velocity, the agent does not necessarily have

enough time to adjust and avoid penalties. When the variables are isolated, an important note is

that the random target location has a bigger impact given that the model was only trained

assuming targets were above it.

As for the traveling phase, the data exhibits the same issue as the landing phase in the

experimental runs suffered compared to the control. This is because the higher starting positions

of the agents in the variant gave the rockets less time for horizontal adjustments needed to

correctly reach the goal. The result of this shortcoming is that rockets that start closer are prone to

overshooting the goal and flying way above track as they tried to overcorrect themselves.

4.2. Experiment 2

 Another more extended blind spot worth exploring is the agent’s ability to travel between more

than one goal. This is mainly because space travel can have a wide array of differing conditions,

especially when it comes to gravity. Therefore it is important to observe how the rocket would

fare under such conditions.

To effectively test the agent’s ability to navigate between multiple goals, we will be testing the

AI’s success rate across different environment configurations to identify what layouts the rocket

is good at handling and what environments are most difficult for the AI. To maintain consistency,

we will be keeping the same goal positions and starting points so that they do not influence

results. The environment specifications are as follows:

Environment A: Earth gravity

Environment B: moon gravity

Environment C: ”heavier than Earth” gravity (1.25x)

The rest of the environments themselves remain the same to isolate the gravity variable. In each

run, the rocket starts above the same platform and is tasked to travel towards a goal that is also

the same across every environment for a given run. Once they reach the goal, they must then

orient themselves upward before landing safely on the platform below.

258 Computer Science & Information Technology (CS & IT)

All three of the environments that we simulated had a generally decent performance considering

the tasks that they were assigned, with each achieving a greater than 50% success rate. With that

being said, the moon gravity scenarios performed the worst in comparison to the others. This may

be in large part due to the lower gravity resulting in a shorter travel time as less force is required

to reach higher velocities. This in turn means that there is less time for the rocket to make

adjustments and so increases the risk of it overshooting the goal and causing a failed run. To

support this notion, the rocket exhibited the highest success rate in the 1.25x Earth Gravity

scenario which has the largest gravitational force needed to be overcome during our testing. With

that being said, the relative success of the agents, in general, shows that it allows the user to

simulate not just an environment that is similar to planet Earth but also can fit into other

environments that contain a planet or celestial body that has a different mass or radius from

Earth. To improve the performance in lower gravity environments, one method we could pursue

down the line is to train with a proper deceleration mechanism as right now too much of the

rocket’s movement is impacted by the gravity of the environment it is present in. Giving finer

control both for users and the AI will allow for more granular control when traveling through

space.

5. METHODOLOGY

5.1. Methodology A

Ashish Gupta discusses the use of reinforcement learning to “solve the “Lunar Lander”

Environment in OpenAI gym by training a Deep Q-Network(DQN) agent”. [4] It includes

experience replay and epsilon-greedy exploration, and specific hyperparameters were selected for

model training. After 600 training episodes, the agent became fully trained and landed the lander

successfully every time. The article also includes a reward values figure per experience during

training, where blue lines denote the reward for each training episode and the orange line

represents the rolling mean of the last 100 episodes. In terms of limitation, the most notable one

is the fact that the environment is two-dimensional rather than three-dimensional, which our

solution seeks to tackle.

Computer Science & Information Technology (CS & IT) 259

5.2. Methodology B

Cathy Wu and her students are addressing a somewhat different problem as they are trying to

improve algorithms that are meant to solve the last-mile delivery problem. The main point of

overlap with our subject is the focus on reaching a final destination combined with the fact that

their “solver algorithms work by breaking up the problem of delivery into smaller subproblems to

solve — say, 200 subproblems for routing vehicles between 2,000 cities.” [6] This approach of

breaking down the overall problem is similar to how we needed to break down the various points

of a rocket’s journey into separate phases to make training easier to conduct. One particular

aspect of their AI approach that is very effective is how despite “a neural network trained on the

‘medium-quality’ subproblem solutions available as the input data ‘would typically give medium-

quality results… [they] were able to leverage the medium-quality solutions to achieve high-

quality results’” [6] at a rate much faster than prior methods.

5.3. Methodology C

Yann Berthelot leveraged machine learning to train an AI to properly get a plane to take off. To

achieve this, he took a wide variety of variables to represent thrust, lift/drag coefficients, drag,

lift, and fuel consumption to more accurately portray the environment state.[7] This scenario is

created and run using Python/TensorForce where agents are rewarded or punished based on how

they perform in the environment in terms of objective and time. Their solution was very effective

and outperformed even actual pilots within the simulation boundaries provided. This solution was

achieved by tuning a variety of hyperparameters, among which was the exploration parameter,

which “is the probability that a random action will be taken instead of the action decided by the

agent’s policy.”[8] Their approach was very thorough and provided us with more ideas and

information to further improve our approaches. There are, however, some limitations with the

solution that was provided, the principal of which is the fact that there might be some variable

like air resistance in the real world which may not be accounted for.[11] This is a challenge that

even our project faces which introduces further complications and complexity to the project.

Another limitation present is that the emulated scenario is in two dimensions, something that we

go beyond in our three-dimensional environments.[13]

6. CONCLUSIONS

6.1. Limitations and Improvements

 Limitations: -It does not account for every edge case

For the landing and orienting part of the project, the movement is very limited to linear

movement, and rotating around the same point. This falls into the issue of scenarios that are “too

ideal” to be useful for real-life scenarios as it does not account for enough environmental factors.

After that, if it is in a real environment, in case of emergency, the manual mode is quite difficult

for humans to take exact control of. This is mainly a limitation of the medium as a regular

computer keyboard does not make a sufficient substitute for actual rocket controls.

-Not enough variance in some of the scenarios

260 Computer Science & Information Technology (CS & IT)

For example, there is a lack of air resistance, Earth-accurate gravity, collision with other celestial

bodies, and a lack of distance between the rocket and the goal. All of these factors lead to

inaccuracies when compared to the real world, so to account for this we will need to update the

scale of distance followed by more AI training.

-The distance the rockets are traveling within is quite small

The distance is short because the environment is very easy for the AI to find the goal, and it also

limits the AI to discover in a longer distance and to cover a larger area. This was done under the

current stage of the project to allow for visual clarity as working in a larger scale environment

can make things harder to see.

To Fix: - Overall improvement in accuracy

We also just generally need to further improve the accuracy of our AI, which can be

accomplished with more training periods, hyperparameter adjustments, and an increasingly

randomized environment.

- Improvements to the camera system

Creates a camera that follows the rocket and creates pov for the rockets, more cameras in general

to limit blind spots around the rockets. Improvements in this part of the project will also unlock

our ability to use larger scale environments as the issue of visual clarity is not as much of an issue

should we improve on this front.

6.2. Concluding Remarks

 To further improve on the baseline project, retraining the AI in a more dynamic 3D environment

with more refined processes will be necessary to get closer to a proper autonomous rocket

navigation system. We will want to train for additional uncertainties such as drag, variable

gravities, and the presence of other celestial bodies aside from planets.

7. SUMMARIES

7.1. Experiment Recap

In the first experiment, the main focus was on introducing randomness similar to a real

environment. When it comes to simulating real scenarios, the ability to control and react to

unexpected changes in the environment becomes significant, such as crashes, external forces, or a

mistake while operating. With that being said, if the rocket is trained for a certain scenario, it also

creates a better general performance for the rocket in all environments, increasing its ability to do

more difficult tasks in the future. Therefore the focus is not so much on if the success rate of the

experimental groups is higher than their controls, but rather to what degree the agents can

minimize the loss in performance.[9] The experiment was run with 100 episodes per

configuration to determine respective success rates. For example, in the orientation phase tests,

there was a bigger dip when introducing a random target location as opposed to a random starting

velocity, which exposes the need to train the agents with more varied target locations to patch the

weakness.

Computer Science & Information Technology (CS & IT) 261

For the second experiment, the main focus was on the agent’s ability to navigate between

multiple goals in a set course, with one variable being the strength of gravity in the given

scenario. The environment’s gravities are separated as follows: Earth gravity, moon gravity, and

“heavier than Earth” gravity. The rocket starts from the same position and is tasked with each

goal before finally landing on a platform. While each environment yielded a success rate greater

than 50%, the moon gravity scenario performed noticeably worse due to shorter travel time

allowing for fewer adjustments. Meanwhile, the opposite was true in the case of the “1.25”

variant. Overall, the experiment demonstrates that the agent can simulate different environments,

but suggests improvement through the implementation of a deceleration mechanism for finer

control.

7.2. Methodology Comparison

When exploring the different solutions and implementations created by others to solve the

challenge of AI piloting vehicles, the methodologies we explored accomplished various

important aspects.[1] Ashish Gupta’s implementation of the lunar lander’s landing sequence took

the general workflow for machine learning and created an agent that was able to perform a

successful landing given the bounds of the provided environment. Ashish was able to achieve

nearly perfect results even when injecting chaotic starting conditions as the lander had different

rotations and velocities at the start of every episode.[4] That being said, the main shortcoming of

Ashish’s implementation is that it is working under a two-dimensional environment, which we

are seeking to improve upon by working under a three-dimensional environment.

The next methodology we explored was Cathy Wu’s investigation and work on improving

algorithm performance for solving the last-mile delivery problem.[6] Cathy’s method of breaking

down the overall problem into a series of easier-to-solve subproblems allowed for the solver

algorithms to not only find results faster but to also generate high-quality results from medium-

quality inputs. While the results are very promising, the main limitation is that there wasn’t a

tangible product that we could directly compare within the context of rocketry, but we were

nonetheless able to benefit from the lessons provided.

The final methodology we explored was Yann Berthelot’s implementation of an AI that can

successfully pilot a plane off of the runway.[8] In much the same way as Ashish, a specific

environment was created to facilitate testing, but does so with a lot of attention given to relevant

factors in physics that may affect results. He also optimized a variety of hyperparameters such as

the exploration parameter to reach the eventual result.[4] Nevertheless, there still was the

limitation of two dimensions and an absence of other environmental factors such as weather and

drag. Our project seeks to better match adversarial conditions by simulating our scenarios in a

three-dimensional environment.

REFERENCES

[1] Örs, A. O. (2020, December 3). The Role of Machine Learning in Autonomous Vehicles. Electronic

Design. https://www.electronicdesign.com/markets/automotive/article/21147200/nxp-

semiconductors-the-role-of-machine-learning-in-autonomous-vehicles

[2] Harwood, W. (2023, April 20). SpaceX Starship rocket launch ends in midair explosion minutes after

liftoff. CBS News. Retrieved from https://www.cbsnews.com/texas/news/spacex-starship-launch-

explosion-video/

262 Computer Science & Information Technology (CS & IT)

[3] Moynihan, P., & Ustinov, E. (2022). Bending the cost curve. Aerospace America. Retrieved from

https://aerospaceamerica.aiaa.org/features/bending-the-cost-curve/

[4] Ashish, G. (2020, August 28). AI learning to land a rocket: Reinforcement learning. Towards Data

Science. https://towardsdatascience.com/ai-learning-to-land-a-rocket-reinforcement-learning-

84d61f97d055

[5] Günther Waxenegger-Wilfing, Kai Dresia, Jan Deeken, Michael Oschwald (2021). Machine Learning

Methods for the Design and Operation of Liquid Rocket Engines -- Research Activities at the DLR

Institute of Space Propulsion. arXiv. Advance online publication. https://arxiv.org/abs/2102.07109

[6] Ham, B. (2021, December 10). Machine learning speeds up vehicle routing. MIT News.

https://news.mit.edu/2021/machine-learning-speeds-vehicle-routing-1210

[7] Berthelot, Y. (2020, April 26). How I taught a plane to fly using RL. Towards Data Science.

https://towardsdatascience.com/how-i-taught-a-plane-to-fly-using-rl-c170a152b771

[8] Berthelot, Y. (2020, August 25). AI learns to fly: Part 2 — Create your custom RL environment and

train an agent. Towards Data Science. https://medium.com/towards-data-science/ai-learns-to-fly-part-

2-create-your-custom-rl-environment-and-train-an-agent-b56bbd334c76

[9] Kuutti, S., Fallah, S., Barber, P., Jin, Y., & Bowden, R. (2019, December 23). A Survey of Deep

Learning Applications to Autonomous Vehicle Control. arXiv. https://arxiv.org/pdf/1912.10773.pdf

[10] Author links open overlay panelAndreas Theissler a, a, b, c, d, Highlights•Machine learning subfields

overview relevant for automotive predictive maintenance•The aim is to make the field accessible to

maintenance or machine learning experts•Machine learning-enabled predictive maintenance for

automotive systems paper s, & AbstractRecent developments in maintenance modeling fuelled by

data-based approaches such as machine learning (ML). (2021, June 24). Predictive maintenance

enabled by machine learning: Use cases and challenges in the automotive industry. Reliability

Engineering & System Safety.

https://www.sciencedirect.com/science/article/pii/S0951832021003835

[11] Schwabacher , M. (n.d.). Machine Learning for Rocket Propulsion Health Monitoring -

ResearchGate.

https://www.researchgate.net/publication/246740095_Machine_Learning_for_Rocket_Propulsion_He

alth_Monitoring

[12] Shao, K., Tang, Z., Zhu, Y., Li, N., & Zhao, D. (2019, December 26). A survey of deep

reinforcement learning in video games - arxiv.org. arXiv. https://arxiv.org/pdf/1912.10944.pdf

[13] Salameh, H., Wu, M., & Ulrich, C. M. (2020, May 15). (PDF) training a game AI with machine

learning - researchgate.

https://www.researchgate.net/publication/341655155_Training_a_Game_AI_with_Machine_Learnin

g

[14] Reid, E. (2023, May 10). Supercharging search with Generative AI. Google.

https://blog.google/products/search/generative-ai-search/

[15] Zheng, Y. (2019, September 10). Reinforcement learning and video games. arXiv.org.

https://arxiv.org/abs/1909.04751

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

