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ABSTRACT  
 
Launching rockets is a costly and complex task that is prone to a high rate of failure. To help 

address these challenges, the need for simulations to help emulate reality when developing 

rockets is crucial to making sure the cost overhead stays as low as possible. Our rocket AI seeks 

to tackle this challenge through the use of machine learning and a series of emulated phases to 

demonstrate an AI’s ability to properly operate a rocket. The primary challenge throughout the 

development of the rocket’s AI is the need to introduce and train for unexpected situations, 

which is done by training for a generalized variant of the situations in question. 
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1. INTRODUCTION 
 

With the low rate of success in the Rocket launching industry, trying to make rocket traveling and 

landing more convenient and “smart” is an important factor to consider.[2] The issue this creates 

is that there is a considerable amount of time and money to properly run. While modern rocketry 

is getting cheaper as “SpaceX has estimated a Falcon 9 launch cost of $2,700 per kilogram versus 

$20,000 per kilogram,” [3] there is still a significant cost overhead that must be considered when 

trying to minimize the cost of development. Therefore it is important to be able to continue 

running tests even via a simulated environment to ensure testing continues at a steady pace while 

also giving opportunities to identify issues between each of the real-life tests.[5] It also saves 

time to install a controller on the rocket, instead a pre-made AI system will be installed on the 

rocket to save money and time.[10] The AI system will grow with the Rocket, to develop real-

time usage of the AI system.  

 

1.1. Method Proposal 

 

To properly address this problem, we will want to put together a proof of concept showing how 

machine learning can be leveraged to better guide the activities of rockets during their flight. This 

is done to further contribute to the creation of new novel methods of implementing control 

schemes that will provide rockets with better guidance. The solution itself is broken down into 

three separate phases. The first phase covers the landing aspect of the rocket and tackles the 
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question of how AI can optimize landing behavior so that the rocket will be able to land softly 

enough to avoid significant damage.[14] The second has to do with properly orienting the rocket 

to face the direction it needs to at a given time. The third phase tackles the traveling aspect where 

the rocket must reach a specific goal once in the air from liftoff. This separation of concerns 

allows us to hone in on different aspects of the AI system so that each can be sufficiently accurate 

in the final ensemble. 

 

2. CHALLENGES 
 

2.1. Challenge A 

 

The most notable challenge, in general, has to be figuring out in what manner the AI should be 

trained in the first place. It was hard to train the AI, because if we train the AI so strictly, it can 

never achieve success, if we train too loosely, the AI often doesn’t meet our requirements or 

goals. Part of this difficulty also stems from the overall design of the environment the agent is 

operating under as it can also impact the reliability of the AI and how it goes about succeeding. 

 

2.2. Challenge B 

 

 Another notable challenge is figuring out how to best measure and record relevant metrics. This 

ties into the previous challenge as there was also a lot of uncertainty over how much of a reward 

or punishment should be given out by the various actions the agent attempts. Set a variable that 

best fits or best according to real life. Making sure that the environmental behaviors and 

restrictions are aligned with what to expect from the real world by introducing helper reference 

objects helps to make sure that the eventual behavior that emerges applies even to real life. 

 

2.3. Challenge C 

 

 The application itself must also be presented in a way that is accessible for the general users to 

emphasize the importance of AI in streamlining training processes. One notable way we can seek 

out this improvement is to add a separate mode when the human can control their rocket under 

similar bounds the AI was subjected to better compare how they match up with the AI in 

question. The AI must also be easily viewable to see how the AI is performing at the given task. 
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3. METHOD ANALYSIS 
 

3.1. Diagram 

 

 
 

3.1.1. System Overview 

 

 The program itself starts on the title screen where the user can make various configurations to 

get to the specific scenes that they would want to be at. From the title screen, we are then able to 

progress to the landing, traveling, or orienting scenes to either view or control agents from within 

each phase. The project can be broken down into the User Scene Selection, AI Agent, and User 

Interaction components. Each one of these sets out to showcase the result of the machine learning 

techniques used and how it compared to the control of a regular person. To properly achieve this 

vision, a combination of Unity and Machine Learning packages was used to implement the 

necessary changes. 

 

3.2. Component Analysis A 

 

 The first component we will be highlighting is the User Scene Selection component. This 

particular element is important in that it determines what information should be presented to the 

user from the beginning to make it clear what the user can access and see. The implementation 

for this part was done through the initial outlining within Miro before moving it to Unity and its 

UI library. 
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3.2.1. UI Screenshot 
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3.2.2. Code Sample 
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3.2.3. Code Explanation  

 

 The code is used to detect the mode in which the scene should be set up, to see if the user put 

A.I. or Manual mode, and give a function to buttons in the scene to make them terminals to the 

final scene the user is trying to achieve. Through the pressing of buttons, it also sets different 

training or manual scene up and switches them as needed. The preferences that are set by the user 

are saved in a singleton that is running in the background to make sure the choice is persistent 

between scenes while also being able to neatly reset upon reentering the selection screen where 

the singleton is located. 

 

3.3. Component B  

 

 The central component tying together the whole project is the AI agents that were trained 

throughout this project. Each AI was trained through machine learning to create neural networks 

that are specialized for specific tasks. The training for these models was done in Unity using the 

UnityML package. The aforementioned tasks themselves were divided into landing, orienting, 

and traveling phases. This separation was done to ensure the AI will not have too many things it 

is trying to accomplish at once which could ultimately slow down the results we would be 

training for. 
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 When the AI is being trained, there are a series of functions and steps that need to be taken for 

the system to work. The machine learning cycle could be summarized as the following: 

Observing, Acting, and Evaluating. The first part of this cycle starts with the “OnEpisodeBegin,” 

which is where the initial conditions for that specific AI’s attempt are set. This is then followed 

by a “CollectObservations” function which takes in relevant information about the world around 

it. The Action step of the cycle is then executed by the “OnActionReceived” function which 

determines what inputs and actions the rocket should do. In the case of our agents, we are taking 

discrete actions which apply to which inputs we are pressing rather than continuous actions since 

we are not performing direct manipulations beyond input. Finally, the evaluation step is taken in 

the “OnTriggerEnter” function where the rocket in the case touches the ground and we can 

determine if the episode was a failure or not. If the rocket succeeds, we give a reward and end the 

current episode. If the rocket fails, then we punish it with a negative reward and end the episode 

there. In each case, the overall neural network is notified of the result during training to adjust the 

weight of future episodes accordingly. 

 

3.4. Component C  

 

 User interaction 

The use of simulation environments in understanding humans and A.I. interactions provides a 

safe and controlled platform for users to experiment and learn.[15] By immersing themselves in 

these simulated environments, users can gain valuable experience and insights into the 

differences between human and A.I. behavior.[12] Additionally, the simulation environment can 

provide feedback on the performance of the user, allowing them to improve their interaction 

strategies. 
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The “Heuristic” function highlighted above is part of the script that determines where actions 

should go in the absence of any AI. The reason for this is that Unity ML agents are programmed 

to automatically check if they already have a neural network attached to them or if a training 

session is currently ongoing. If neither is true, then it will assume that the user intends to 

manually control the agent and will switch over to the heuristic mode. In this mode, we can 

directly feed the action buffers based on keypresses to have our agents react as usual without us 

having to implement a completely separate control scheme for user control. In this case, the client 

is listening for keypresses and feeds the information to the appropriate action buffer so that the 

agent’s “OnActionReceived” function knows how to translate the input into the expected action. 

 

4. EXPERIMENTS 
 

4.1. Experiment A 

 

 The main potential blind spot we will want to address is the overall accuracy of the rocket’s AI. 

The reason this is important is because the efficacy of the AI hinges on it being able to perform 

tasks as close to perfection as possible. While it has yet to reach that degree of performance, 

tracking its current abilities will shine a light on existing weaknesses. 

 

4.1.1. Design  

 

To test the AI to identify weaknesses, we will be recording 100 episodes of the AI trying to 

perform the task and calculating its success rate relative to the number of episodes tested. We will 

start with a control group that consists of the current AI iteration and the environment they were 

trained in. There will then be a series of experimental groups that each change one part of their 

respective environment to see how the AI fares. The changes made will depend on the phase 

being tested and are outlined like so: 
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Landing: 

-random starting velocity 

Orientation: 

-random target location 

-random angular velocity 

Traveling: 

-spawn the rocket in a position higher than the platform (random starting velocities if applicable) 

 

4.1.2. Data and Visualization 
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4.1.3. Analysis 

 

When we were testing the landing phase’s performance, there was a noticeable 17% dip in the 

success rate when introducing random starting velocities. This can be attributed to the fact that 

this factor was not trained for in the creation of the model. With that being said, both agent 

configurations performed relatively well at 90% and 73% respectively; the reason that the 

random velocity variant didn’t have a bigger loss in performance is that the model was trained for 

random starting heights, which is related enough to random starting velocity to have an impact on 

how the rocket reacts as it nears the platform. 

 

When testing for the orientation phase, the performance of the experimental variants was lower 

than that of the control. The introduction of a random variable that it was not trained for 

introduced new difficulties that the agent was not expecting. The biggest drop in performance 

relative to the control occurred when both random targets and random angular velocity were 

combined. The reason for this is that in situations where the target is already near the orientation 

of the rocket, but has much too high of an angular velocity, the agent does not necessarily have 

enough time to adjust and avoid penalties. When the variables are isolated, an important note is 

that the random target location has a bigger impact given that the model was only trained 

assuming targets were above it. 

 

As for the traveling phase, the data exhibits the same issue as the landing phase in the 

experimental runs suffered compared to the control. This is because the higher starting positions 

of the agents in the variant gave the rockets less time for horizontal adjustments needed to 

correctly reach the goal. The result of this shortcoming is that rockets that start closer are prone to 

overshooting the goal and flying way above track as they tried to overcorrect themselves. 

 

4.2. Experiment 2  

 

 Another more extended blind spot worth exploring is the agent’s ability to travel between more 

than one goal. This is mainly because space travel can have a wide array of differing conditions, 

especially when it comes to gravity. Therefore it is important to observe how the rocket would 

fare under such conditions. 

 

To effectively test the agent’s ability to navigate between multiple goals, we will be testing the 

AI’s success rate across different environment configurations to identify what layouts the rocket 

is good at handling and what environments are most difficult for the AI. To maintain consistency, 

we will be keeping the same goal positions and starting points so that they do not influence 

results. The environment specifications are as follows: 

 

Environment A: Earth gravity 

Environment B: moon gravity 

Environment C: ”heavier than Earth” gravity (1.25x) 

The rest of the environments themselves remain the same to isolate the gravity variable. In each 

run, the rocket starts above the same platform and is tasked to travel towards a goal that is also 

the same across every environment for a given run. Once they reach the goal, they must then 

orient themselves upward before landing safely on the platform below. 
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All three of the environments that we simulated had a generally decent performance considering 

the tasks that they were assigned, with each achieving a greater than 50% success rate. With that 

being said, the moon gravity scenarios performed the worst in comparison to the others. This may 

be in large part due to the lower gravity resulting in a shorter travel time as less force is required 

to reach higher velocities. This in turn means that there is less time for the rocket to make 

adjustments and so increases the risk of it overshooting the goal and causing a failed run. To 

support this notion, the rocket exhibited the highest success rate in the 1.25x Earth Gravity 

scenario which has the largest gravitational force needed to be overcome during our testing. With 

that being said, the relative success of the agents, in general, shows that it allows the user to 

simulate not just an environment that is similar to planet Earth but also can fit into other 

environments that contain a planet or celestial body that has a different mass or radius from 

Earth. To improve the performance in lower gravity environments, one method we could pursue 

down the line is to train with a proper deceleration mechanism as right now too much of the 

rocket’s movement is impacted by the gravity of the environment it is present in. Giving finer 

control both for users and the AI will allow for more granular control when traveling through 

space. 

 

5. METHODOLOGY  

 

5.1. Methodology A  

 

Ashish Gupta discusses the use of reinforcement learning to “solve the “Lunar Lander” 

Environment in OpenAI gym by training a Deep Q-Network(DQN) agent”. [4] It includes 

experience replay and epsilon-greedy exploration, and specific hyperparameters were selected for 

model training. After 600 training episodes, the agent became fully trained and landed the lander 

successfully every time. The article also includes a reward values figure per experience during 

training, where blue lines denote the reward for each training episode and the orange line 

represents the rolling mean of the last 100 episodes. In terms of limitation, the most notable one 

is the fact that the environment is two-dimensional rather than three-dimensional, which our 

solution seeks to tackle. 
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5.2. Methodology B  

 

Cathy Wu and her students are addressing a somewhat different problem as they are trying to 

improve algorithms that are meant to solve the last-mile delivery problem. The main point of 

overlap with our subject is the focus on reaching a final destination combined with the fact that 

their “solver algorithms work by breaking up the problem of delivery into smaller subproblems to 

solve — say, 200 subproblems for routing vehicles between 2,000 cities.” [6] This approach of 

breaking down the overall problem is similar to how we needed to break down the various points 

of a rocket’s journey into separate phases to make training easier to conduct. One particular 

aspect of their AI approach that is very effective is how despite “a neural network trained on the 

‘medium-quality’ subproblem solutions available as the input data ‘would typically give medium-

quality results… [they] were able to leverage the medium-quality solutions to achieve high-

quality results’” [6] at a rate much faster than prior methods. 

 

5.3. Methodology C  

 

Yann Berthelot leveraged machine learning to train an AI to properly get a plane to take off. To 

achieve this, he took a wide variety of variables to represent thrust, lift/drag coefficients, drag, 

lift, and fuel consumption to more accurately portray the environment state.[7] This scenario is 

created and run using Python/TensorForce where agents are rewarded or punished based on how 

they perform in the environment in terms of objective and time. Their solution was very effective 

and outperformed even actual pilots within the simulation boundaries provided. This solution was 

achieved by tuning a variety of hyperparameters, among which was the exploration parameter, 

which “is the probability that a random action will be taken instead of the action decided by the 

agent’s policy.”[8] Their approach was very thorough and provided us with more ideas and 

information to further improve our approaches. There are, however, some limitations with the 

solution that was provided, the principal of which is the fact that there might be some variable 

like air resistance in the real world which may not be accounted for.[11] This is a challenge that 

even our project faces which introduces further complications and complexity to the project. 

Another limitation present is that the emulated scenario is in two dimensions, something that we 

go beyond in our three-dimensional environments.[13] 

 

6. CONCLUSIONS  
 

6.1. Limitations and Improvements  

 

 Limitations: -It does not account for every edge case 

 

For the landing and orienting part of the project, the movement is very limited to linear 

movement, and rotating around the same point. This falls into the issue of scenarios that are “too 

ideal” to be useful for real-life scenarios as it does not account for enough environmental factors. 

After that, if it is in a real environment, in case of emergency, the manual mode is quite difficult 

for humans to take exact control of. This is mainly a limitation of the medium as a regular 

computer keyboard does not make a sufficient substitute for actual rocket controls. 

 

-Not enough variance in some of the scenarios 
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For example, there is a lack of air resistance, Earth-accurate gravity, collision with other celestial 

bodies, and a lack of distance between the rocket and the goal. All of these factors lead to 

inaccuracies when compared to the real world, so to account for this we will need to update the 

scale of distance followed by more AI training. 

 

-The distance the rockets are traveling within is quite small 

 

The distance is short because the environment is very easy for the AI to find the goal, and it also 

limits the AI to discover in a longer distance and to cover a larger area. This was done under the 

current stage of the project to allow for visual clarity as working in a larger scale environment 

can make things harder to see. 

 

To Fix: - Overall improvement in accuracy 

We also just generally need to further improve the accuracy of our AI, which can be 

accomplished with more training periods, hyperparameter adjustments, and an increasingly 

randomized environment. 

 

- Improvements to the camera system 

Creates a camera that follows the rocket and creates pov for the rockets, more cameras in general 

to limit blind spots around the rockets. Improvements in this part of the project will also unlock 

our ability to use larger scale environments as the issue of visual clarity is not as much of an issue 

should we improve on this front. 

 

6.2. Concluding Remarks  

 

 To further improve on the baseline project, retraining the AI in a more dynamic 3D environment 

with more refined processes will be necessary to get closer to a proper autonomous rocket 

navigation system. We will want to train for additional uncertainties such as drag, variable 

gravities, and the presence of other celestial bodies aside from planets. 

 

7. SUMMARIES 

 

7.1. Experiment Recap 

 

In the first experiment, the main focus was on introducing randomness similar to a real 

environment. When it comes to simulating real scenarios, the ability to control and react to 

unexpected changes in the environment becomes significant, such as crashes, external forces, or a 

mistake while operating. With that being said, if the rocket is trained for a certain scenario, it also 

creates a better general performance for the rocket in all environments, increasing its ability to do 

more difficult tasks in the future. Therefore the focus is not so much on if the success rate of the 

experimental groups is higher than their controls, but rather to what degree the agents can 

minimize the loss in performance.[9] The experiment was run with 100 episodes per 

configuration to determine respective success rates. For example, in the orientation phase tests, 

there was a bigger dip when introducing a random target location as opposed to a random starting 

velocity, which exposes the need to train the agents with more varied target locations to patch the 

weakness. 
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For the second experiment, the main focus was on the agent’s ability to navigate between 

multiple goals in a set course, with one variable being the strength of gravity in the given 

scenario. The environment’s gravities are separated as follows: Earth gravity, moon gravity, and 

“heavier than Earth” gravity. The rocket starts from the same position and is tasked with each 

goal before finally landing on a platform. While each environment yielded a success rate greater 

than 50%, the moon gravity scenario performed noticeably worse due to shorter travel time 

allowing for fewer adjustments. Meanwhile, the opposite was true in the case of the “1.25” 

variant. Overall, the experiment demonstrates that the agent can simulate different environments, 

but suggests improvement through the implementation of a deceleration mechanism for finer 

control. 

 

7.2. Methodology Comparison 

 

When exploring the different solutions and implementations created by others to solve the 

challenge of AI piloting vehicles, the methodologies we explored accomplished various 

important aspects.[1] Ashish Gupta’s implementation of the lunar lander’s landing sequence took 

the general workflow for machine learning and created an agent that was able to perform a 

successful landing given the bounds of the provided environment. Ashish was able to achieve 

nearly perfect results even when injecting chaotic starting conditions as the lander had different 

rotations and velocities at the start of every episode.[4] That being said, the main shortcoming of 

Ashish’s implementation is that it is working under a two-dimensional environment, which we 

are seeking to improve upon by working under a three-dimensional environment. 

 

The next methodology we explored was Cathy Wu’s investigation and work on improving 

algorithm performance for solving the last-mile delivery problem.[6] Cathy’s method of breaking 

down the overall problem into a series of easier-to-solve subproblems allowed for the solver 

algorithms to not only find results faster but to also generate high-quality results from medium-

quality inputs. While the results are very promising, the main limitation is that there wasn’t a 

tangible product that we could directly compare within the context of rocketry, but we were 

nonetheless able to benefit from the lessons provided. 

 

The final methodology we explored was Yann Berthelot’s implementation of an AI that can 

successfully pilot a plane off of the runway.[8] In much the same way as Ashish, a specific 

environment was created to facilitate testing, but does so with a lot of attention given to relevant 

factors in physics that may affect results. He also optimized a variety of hyperparameters such as 

the exploration parameter to reach the eventual result.[4] Nevertheless, there still was the 

limitation of two dimensions and an absence of other environmental factors such as weather and 

drag. Our project seeks to better match adversarial conditions by simulating our scenarios in a 

three-dimensional environment. 
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