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ABSTRACT 
 
Prediction of the electronic structure of functional materials is essential for the engineering of 
new devices. Conventional electronic structure prediction methods based on density functional 

theory (DFT) suffer from not only high computational cost, but also limited accuracy arising from 

the approximations of the exchange-correlation functional. Surrogate methods based on machine 

learning have garnered much attention as a viable alternative to bypass these limitations, 

especially in the prediction of solid-state band gaps, which motivated this research study. Herein, 

we construct a random forest regression model for band gaps of double perovskite materials, 

using a dataset of 1306 band gaps computed with the GLLBSC (Gritsenko, van Leeuwen, van 

Lenthe, and Baerends solid correlation) functional. Among the 20 physical features employed, we 

find that the bulk modulus, superconductivity temperature, and cation electronegativity exhibit the 

highest importance scores, consistent with the physics of the underlying electronic structure. 

Using the top 10 features, a model accuracy of 85.6% with a root mean square error of 0.64 eV is 

obtained, comparable to previous studies. Our results are significant in the sense that they attest 

to the potential of machine learning regressions for the rapid screening of promising candidate 

functional materials. 
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1. INTRODUCTION 
 

In quantum mechanics, the energy of bound electrons becomes quantized [1], and electrons at the 
ground state can be excited to higher energy levels by absorbing photons with the corresponding 
wavelengths. In solid structures, the superposed electronic states form continuous energy bands. 
In insulators and semiconductors, the band gap is the energy gap across the valence and 
conduction band where electrons are forbidden to occupy. The magnitude of the band gap plays 
an important role in many functional materials, such as transistors, photovoltaics, light-emitting 
diodes, and sensors [2]. For instance, optoelectronic materials are generally wide-band gap 
semiconductors, while thermoelectric materials are narrow-band gap semiconductors [3]. Hence, 

accurate and efficient prediction of band gaps of solid materials is crucial for the design and 
engineering of new devices. 

http://airccse.org/cscp.html
http://airccse.org/csit/V13N01.html
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One of the most widely used electronic structure methods for evaluating band gaps is density 
functional theory (DFT) [4]. In the Kohn-Sham formalism [5], the multielectron wavefunction is 
replaced by fictitious noninteracting states that give rise to the true electron density [6], which 
enables the iterative solution of the single-particle Hamiltonian. However, the exchange-

correlation energy, which contains all the quantum mechanical interactions of the electrons, does 
not have an exact expression in terms of the electron density and as such requires an 
approximation, such as the local density approximation (LDA) [7] or the generalized gradient 
approximation (GGA) [8]. Such approximations have limited accuracy, most notably the 
underestimation of the band gap of semiconductors and insulators [9]. Various approaches have 
been proposed to address this limitation, such as the on-site Hubbard U correction [10], hybrid 
functionals using fractional exact exchange [11], and quasiparticle methods such as the GW 
approximation [12]. However, these methods do not always guarantee an accurate description of 

the system, and they can be much more computationally expensive than conventional DFT [13]. 
 
An alternative strategy for band gap prediction is machine learning. For example, a support 
vector regression model was constructed for inorganic solids using experimentally measured 
band gaps [14], thereby bypassing the limitations of DFT. Another study trained a kernel ridge 
regression model [15] using band gaps computed with the GLLBSC (Gritsenko, van Leeuwen, 
van Len the, and Baerends solid correlation) functional [16], which demonstrated reasonable 

agreement with experimental values. These studies attest to the potential of machine learning 
methods, provided that robust datasets are available for training [17]. The importance of band gap 
prediction of functional materials and the above-mentioned limitation of DFT serves as the 
motivation for this research study, which attests to the potential of machine learning regression 
for band gap prediction. 
 
We employ a dataset of GLLBSC-computed band gaps of 1306 double perovskites in this study. 

Double perovskites (𝐴𝐴′𝐵𝐵′𝑋6) have double the unit cell of single perovskites (𝐴𝐵𝑋3) with 

chemically distinct A/𝐴′ and B/𝐵′ sites [18]. A variety of physical and chemical properties can be 
engineered by doping the cations with species of different valence states or radii [19]. Due to 
their stable crystal structure, unique electromagnetic properties, and high catalytic activities, 
these compounds have much potential as functional materials for environmental protection [20], 
the chemical industry [21], photovoltaics [22], and catalysis [23]. In this regard, optimization and 
engineering in the above-mentioned fields require a proper description of the underlying 
electronic structure of double perovskites [24], which attests to the significance of choosing the 
band gaps of double perovskites as our dataset.  
 

Previous studies have shown that random forest regression is well-suited to capturing 
nonlinearity, as seen across the band gap and the extracted physical features such as the highest 
occupied energy level [25]. As such, we construct a random forest regression model for 
predicting the band gap of double perovskite compounds, building upon a previous kernel ridge 
regression study [15]. We find that the bulk modulus, superconductivity temperature, and cation 
electro negativity exhibit the highest importance scores among the 20 physical descriptors 
employed, consistent with the physics of the underlying electronic structure. A model accuracy of 

85.6% with a root mean square error of 0.64 eV is obtained using the top 10 features, comparable 
to previous studies [1]. 
 
The succeeding part of the paper is structured as follows: The literature review is given in section 
2; the research methodology is presented in section 3; section 4 presents the results and 
discussion, including an evaluation of the performance of our model as well as our limitations; 
finally, section 5 gives the concluding remarks of this work. 

 



Computer Science & Information Technology (CS & IT)                                        17 

  

2. LITERATURE REVIEW 
 
This research study focuses on the prediction of the band gaps of double perovskite materials 
using machine learning, as a surrogate method for the conventional prediction yielded by the 
DFT. The limitation of the DFT, notably the lack of expression of the exchange-correlation 
energy, and the potential of machine learning in solving the issue have urged computer scientists 
to try various machine learning models for band gap prediction. This section will review recently 
proposed machine learning models for band gap prediction. 

 

2.1 Tuplewise Graph Neural Networks (TGNN) 
 
Na, G. S. et al. [26] conducted a research study using modified TGNN (Tuplewise Graph Neural 
Networks) to predict the band gap of a crystalline compound. TGNN is designed to automatically 

generate crystal representation using crystal structures and to include the crystal-level properties 
as an input feature. In this study, the prediction of the band gap using TGNN is shown to have 
higher accuracy than the standard DFT. The results of two out of four datasets that the study 
employed are of interest in our research: 1345 organic-inorganic perovskite materials of which 
the targeting band gap is the hybrid screened exchange functional (HSE06) and 2233 materials 
for solar cells with the targeting band gap as GLLBSC-computed band gap. Using the proposed 
TGNN model, the experiment of the former dataset achieved an MAE of 0.045 eV and that of the 
latter dataset achieved an MAE of 0.295 eV. 

 

2.2. Alternating Conditional Expectations (ACE) 
 
ACE (Alternating Conditional Expectations) is a machine learning algorithm designed to find the 
optimal transformation between the two sets of variables, and performs well on small data sets; 
its advantage is that the results are represented in graphic form. The limitation of ACE is that if 

the dependence of the response variable on the predictors is slightly different than the 
transformation that the algorithm estimated, the analytic formulas are very difficult to discover. 
Gladkikh, V. et al. [27] conducted a study exploring the mappings between the band gap and the 
properties of the constituent elements using ACE. The study employs a dataset containing a large 

number of single perovskite materials (𝐴𝐵𝑋3). The best result achieved using ACE has an RMSE 
of 0.836 eV and an MAE of 0.602 eV.  
 

2.3. Kernel Ridge Regression (KRR) 
 
Regonia, P.R. et al. [28] trained a KRR (Kernel Ridge Regression) model for the prediction of the 

optical band gap of zinc oxide (𝑍𝑛𝑂). Kernel ridge regression is a variant of ridge regression that 
is suitable for small datasets and is usually used for the prediction of the band gap of organic 
crystal structures. The model is trained using two empirical features: the experimental time and 

temperature conditions during 𝑍𝑛𝑂 fabrication. Quadratic features are generated to increase the 
model's complexity and prevent the dataset's underfitting. The result presents an RMSE of 0.0849 
eV. 
 

3. METHODS 
 

3.1. Random Forest Regression 
 
Random forest regression is a regression method that utilizes multiple decision trees, which are 

constructed by a simple supervised algorithm consisting of a series of if-then-else statements. The 
randomness is manifested through random sampling of data subsets or random selection of 
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features. Multiple uncorrelated decision trees construct a random forest, where all trees are 
granted free growth without any pruning. The random forest algorithm can be employed for both 
classification and regression. For classification, the result is the outcome with the highest turnout 
among all trees; for regression, the forest takes the average of all trees. The steps to generate a 

random forest are as follows (Fig. 1 illustrates a flow chart of the algorithm): 
 
1. From a sample with capacity N, conduct bootstrap sampling K times. The resulting K samples 

are used as the node samples of decision trees. 
2. Choose a constant m smaller than the dataset feature number M.  
3. When splitting each decision tree, select m features from the original M features, choosing 

one feature as the splitting feature of the node. The Gini index is used to calculate the 
information gain and determine the splitting. 

4. Repeat step 2 and step 3 for each node until no splitting can occur, when the next feature is 
used by the parent node in the last splitting. The tree is always left unpruned to ensure free 
growth. 

5. Repeat steps 1-4 to generate a random forest. 
 
A random forest can manage data with a high dimension of features without performing 
dimension reduction or feature selection. This is beneficial for the dataset of this study, which 

involves multiple atomic descriptors of double perovskites. The mutual effects of different 
features and their significance are also quantified. Although random forest regression is 
computationally efficient and accurate when using a large number of generated trees, the risk of 
overfitting still exists for data with a large noise. We perform random forest regression as 
implemented in scikit-learn, using the double_perovskites_gap dataset available in the matminer 
package [29]. Comparing previous literature, which is normally trained using 5 to 10 atomic 
features [30], our result is unique in the sense that we use a total of 20 atomic features to achieve 

a more comprehensive result, of which the dimension is then reduced to 10 features. The selected 
important features are also consistent with the underlying physics, making the results more 
credible. 

 

 
 

Figure 1. Flow chart of random forest regression 

 

3.2.  Features 
 
20 atomic features are obtained from the periodic_table and composition modules of the 

Pymatgen [31] (Python Materials Genomics) package: 
 

Average electronegativity 
Average cation electronegativity 
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Average atomic radius 
Average van der walls radius 
Average Mendeleev number 
Average electrical resistivity 

Average molar volume 
Average thermal conductivity 
Average boiling point 
Average melting point 
Average critical temperature 
Average superconduction temperature 
Average bulk modulus 
Average youngs modulus 

Average Brinell hardness 
Average rigidity modulus 
Average mineral hardness 
Average Vickers hardness 
Average density of solid phase 
Average first ionization energy 

 

The dataset is first converted into a data frame, which is then processed by applying the chemical 
composition of each compound to corresponding classes and functions in the Pymatgen package 
to obtain the 20 features. Compositional averages are taken for atomic features of a given 
compound, whereas molecular features are used directly. Missing values are not counted in the 
calculation of the average. 
 

4. RESULTS AND DISCUSSION 

 

4.1.  Model Selection 
 

Random forest regression has two parameters to be optimized: the number of estimators 

(n_estimator) referring to the number of trees to be built before taking the maximum voting or 
averages of predictions; and the random seed (random_state) for the random generator. Both the 
accuracy and the computational cost of the model increase with the number of estimators [32]. 

The cost scales as 𝑂(𝑛tree ∗ 𝑚try ∗ 𝑛 log(𝑛)), where 𝑛tree is the number of estimators, 𝑚try is 

the number of variables to sample at each node, and 𝑛 is the number of records [33]. As such, an 
optimal number of estimators is needed to ensure a satisfactory model performance. 
 
As shown in Fig. 2, the model accuracy reaches a maximum at around 700 estimators and 
decreases afterward, which is attributed to overfitting. As such, the n_estimator is set to 700. On 
the other hand, the random seed determines the random sampling for the train-test split and may 
subtly affect the accuracy due to the randomization of the training pipeline. An optimal 
random_state value of 14 is selected. 
 

The corresponding parity plot of the model prediction is shown in Fig. 3. Using a test/training 
ratio of 0.25 and all 20 physical descriptors, the model accuracy is 85.1% with a mean absolute 
error (MAE) of 0.47 eV, a root mean squared error (RMSE) of 0.62 eV, which is comparable to 
the RMSE value of 0.5 eV reported in a previous kernel ridge regression study of the same 
dataset. 
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Figure 2. The accuracy of the random forest regression model as a function of (a) the number of estimators 

and (b) the random seed, using all 20 physical descriptors. 

 

 
 

Figure 3. Parity plot of the predicted vs. GLLBSC-computed band gaps, obtained using all 20 physical 

descriptors and a test/training ratio of 25/75. The parity line is shown in red. 

 

4.2. Feature Selection 
 

The feature importance plot is shown in Fig. 4. The top three features with the highest 
importance scores are average bulk modulus, superconductivity temperature, and cation 
electronegativity: 
 
1) Bulk modulus quantifies the elastic property of a solid or fluid under pressure, 
specifically its resistance to compression [34]. Microscopically, bulk modulus depends on the 
compressibility of atoms, which affects the extent of the overlap of valence atomic orbitals, and 

therefore the band gap of the material [35]. 
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Figure 4. Feature importance of all 20 physical descriptors, obtained from a test/training ratio of 25/75. 

 
2) Superconductivity is the state of matter with no electrical resistance and magnetic 
penetrability [36]. Given that the magnitude of the band gap determines the electrical 
conductivity, a material with a relatively small band gap is expected to more easily achieve a 
superconducting state [37]. 
3) Electronegativity quantifies the ability of an atom to attract an electron pair in a chemical 
bond [38]. The cation electronegativity here refers to the electronegativity difference between the 
oxygen anions and the metal cations. A larger elemental electronegativity difference leads to a 

larger degree of electron localization around the more electronegative element, which makes it 
harder for electrons to leap to the conduction band [39]. 
 
The low importance scores of some features, such as average electrical resistivity and molar 
volume, indicate that the dataset contains a large amount of noise, which necessitates feature 
selection. Table 1 summarizes the model performance using different numbers of top features. 
The performance remains optimal up to the top 10 features, which yields an accuracy of 85.6% 

with an RMSE of 0.64 eV. Given the marginal difference in accuracy using 20, 15, and 10 top 
features, the remainder of the study employs the top 10 features only. 
 

Table 1. The model performance obtained using different numbers of features with the highest feature 

importance scores (MAE = mean absolute error; RMSE = root mean squared error;  

NRMSE = normalized RMSE). 

 
Number of top features 20 15 10 5 3 1 

Accuracy (%) 85.1 85.5 85.6 82.3 82.4 65.2 

MAE (eV) 0.47 0.46 0.46 0.56 0.57 1.12 

RMSE (eV) 0.62 0.62 0.64 0.79 0.81 1.43 

NRMSE 0.08 0.07 0.08 0.10 0.10 0.17 
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The corresponding importance scores and parity plots are shown in Figs. 5 & 6, respectively. The 
model constructed using the top 10 features exhibits the least deviation of the data points from 
the parity line. Moreover, the models overall tend to show a larger underestimation for larger 
band gap values, which can potentially be attributed to the limited accuracy of the GLLBSC 

functional itself [40]. 
 

 
 

Figure 5. Feature importance scores for models constructed using a number of features with the highest 

importance scores. 

 

4.3. Testing and Training Set partition 
 
Table 2 summarizes the model performance as a function of the different test-to-training set 
partitions, ranging from 10/90 to 75/25. As expected, the test set accuracy decreases with the 
number of training set data points. The corresponding parity plots in Fig. 7 also demonstrate a 
larger extent of deviation from the parity line as the proportion of the training set decreases. 
Based on these results, we validate that the test/training ratio of 25/75 is sufficient in providing 
satisfactory accuracy (85.6%) and reasonable RMSE (0.64 eV). 

 
Table 2. Model performance obtained with different test-to-training set partitions. 

 
Test/training set ratio 10/90 20/80 25/75 40/60 50/50 75/25 

Number of test set data points 131 262 327 523 653 980 

Number of training set data points 1175 1044 979 783 653 326 

Test set accuracy (%) 87.9 86.8 85.6 82.6 82.5 76.2 

MAE (eV) 0.41 0.45 0.46 0.5 0.53 0.67 

RMSE (eV) 0.57 0.63 0.64 0.7 0.74 0.88 

NRMSE 0.07 0.08 0.08 0.08 0.09 0.11 
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Figure 6. Parity plots of the predicted vs. GLLBSC-computed band gaps obtained using different numbers 

of features with the highest importance scores. The parity line is shown in red. 

 

 
 

Figure 7. Parity plots of the predicted vs. GLLBSC-computed band gaps obtained using different test-to-

training set partitions. The parity line is shown in red. 
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4.4.  Model Performances 
 
Table 3 summarizes the result of previous studies. The best performance yields in KRR by P. R. 

Regonia et al. [28] with an RMSE of 0.09. Our random forest regression model is comparable to 
linear regression and XBGoost by G. S. Na et al. [26] and has a lower MAE than ACE and ET by 
V. Gladkikh et al. [27]. 
 

Table 3. Results of the models for band gap prediction (TGNN = tuplewise graph neural networks; 

XGBoost = extreme gradient boosting; ACE = alternating conditional expectations; ET = extremely 

randomized trees; KRR = kernel ridge regression; ANN = alternating conditional expectations; GBR = 

gradient boosting regression). 

 
Model Study Material 

type 

Number 

of 

materials 

Band gap Accuracy 

(%) 

MAE 

(eV) 

RMSE 

(eV) 

Random 

forest 

J. Zhang et al.  Double 

perovskites 

1306 GLLBSC 85.6 0.46 0.64 

TGNN G. S. Na et al. 

[26] 

Materials 

for solar 

cells 

2233 GLLBSC - 0.30 - 

Linear 

regression 

G. S. Na et al. 

[26] 

Materials 

for solar 

cells 

2233 GLLBSC  

- 

0.44 - 

XGBoost G. S. Na et al. 

[26] 

Materials 

for solar 

cells 

2233 GLLBSC - 0.44 - 

ACE V. Gladkikh 
et al. [27] 

Single 
perovskites 

- HSE - 0.60 0.84 

ET V. Gladkikh 
et al. [27] 

Single 

perovskites 

- HSE - 0.54 0.75 

KRR P. R. 
Regonia et 
al. [28] 

ZnO 

quantum 

dots 

- Optical 

band gap 

98.0 - 0.09 

ANN P. R. 
Regonia et 
al. [28] 

ZnO 

quantum 

dots 

- Optical 

band gap 

97.8 - 0.09 

GBR M. Guo et al. 

[8] 

Binary 

compounds 

4096 DFT-

calculated 

band gap 

 

81.0 

- 0.26 

 

4.5. Limitations and Recommendations 
 

This study is limited by the relatively small sample size. We use 1306 data to generate all the 
results, which may reduce the power of the study and cause a large margin of error. Future 
research studies can focus on using larger datasets, which we suppose will improve the model 

fitting. In this study, the missing values are filled by the mean value of that feature. This 
preprocessing step can be taken more carefully by trying various means to deal with the missing 
values. Another limitation of the study is that we lack a more interpretable understanding of 

random forest regression in statistical learning theory. A single decision tree is interpretable 
because it follows several decision steps, whereas a forest lacks this step-by-step interpretability. 
Hence, using interpretability tools such as the RF Visualization Toolkits [41] to generate a 
“Decision Path View” may help to understand the forest. This is essential since the feature’s 
importance is related to the underlying physics.  
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5. CONCLUSION 
 
Despite the widespread use of first-principles methods based on density functional theory (DFT) 
in materials science, it remains computationally costly and limited in its accuracy due to the 
approximation of the exchange-correlation functional. In this regard, machine learning presents a 
viable alternative for the rapid prediction of materials’ electronic properties while retaining 
reasonable fidelity to DFT. This study has implemented random forest regression for the 
prediction of the band gap of double perovskite compounds employing a dataset of 1306 

GLLBSC-computed band gaps. Among the 20 physical descriptors, average bulk modulus, 
superconductivity temperature, and cation electronegativity exhibited the highest importance 
scores, which provide a physically interpretable description in terms of the underlying electronic 
structure. Optimal model performance is obtained with the top 10 features and a test/training 
partition of 25/75, yielding a model accuracy of 85.6% and RMSE of 0.64 eV comparable to 
previous studies. Our results highlight the potential of machine learning regression for rapid and 
physically interpretable prediction of the electronic properties of functional materials. 
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