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ABSTRACT 
 
Federated learning (FL) has been used for model building across distributed clients. However, 

FL cannot leverage vertically partitioned features to increase the model complexity. In this study, 

we proposed a personalized progressive federated learning (PPFL) model, which is a multi-

model PFL approach that allows the leveraging of vertically partitioned client-specific features. 

The performance of PPFL was evaluated using the Physionet Challenges 2012 dataset. We 

compared the performance of in-hospital mortality and length of stay prediction between our 
model and the FedAvg, FedProx, and local models. The PPFL showed an accuracy of 0.849 and 

AUROC of 0.790 in average in hospital mor-tality prediction, which are the highest scores 

compared to client-specific algorithm. For length-of-stay prediction, PPFL also showed an 

AUROC of 0.808 in average which was the highest among all comparators. 

 

KEYWORDS 
 
Personalized Federated Learning, Vertical Federated Learning, Non-IID data 

 

1. INTRODUCTION 
 

Federated learning (FL) is a collaborative machine-learning approach used for solving data 

problems, such as data leakage, while preserving privacy in distributed environments [1–3]. 
Despite the numerous advantages of FL, such as privacy preservation, fulfillment of data 

requirements, and communication efficacy, it is still limited regarding the availability of 

information from conventional FL designs. FL designs (e.g., horizontal federated learning (HFL) 
and vertical federated learning (VFL)) can be categorized based on the data distribution among 

various parties (i.e., whether data are distributed based on the feature space or sample-ID space) 

[2]. HFL [3–9] can analyze large volumes of data using “identical feature spaces” from multiple 

clients. VFL [10-11] can be built from distributed feature spaces using only “identical sample IDs” 
across different clients. 

 

However, in an HFL scenario, some clients might have specific feature information that is 
generated only within specific clients or is not allowed in a federated manner because of critical 

privacy concerns. For instance, there may be differences in the features collected among hospitals 

participating in federated learning, and these client-specific features may be excluded from the 

HFL scenario. Under a real-world VFL scenario, it is difficult for distributed clients to obtain 
sufficient identical samples to build a machine-learning model. These issues may degrade the 

performance of the model.  

http://airccse.org/cscp.html
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In contrast, the main challenge for FL is the distributed setting of data heterogeneity and non-
independent and identically distributed (non-IID) data from clients [12]. Previous studies [13, 14] 

have demonstrated that a FL model with a FedAvg [3] algorithm might perform poorly using 

statistical data heterogeneity, which slows down FL convergence. 

 
The limitations of FL designs and data heterogeneity have motivated the development of a new 

approach to overcome both problems. In real-world situations, client-specific vertical features can 

be ignored in an HFL design, whereas identical sample IDs are insufficient in a VFL design, and 
data heterogeneity degrades performance. Therefore, we focused on leveraging client-specific 

vertical features while implementing a model that is well adapted to the heterogeneity of data 

across clients in a cross-silo environment. 
 

In this study, we propose a novel approach called personalized progressive federated learning 

(PPFL) combining FL with variants of progressive neural networks [15]. In PPFL, building a 

personalized model allows the learning of client-specific distributions from a globally learned FL 
model by transmitting layer-wise knowledge to different network columns. The proposed model 

learns global knowledge from common feature information and expands the feature space related 

to client-specific vertical features by creating new column networks.  
 

We applied the lateral connection in a progressive neural network [15] to expand the layer-wise 

feature space from a globally pre-trained FL model. Additionally, a pro-gressive neural network 
was proposed to address the forgetting problem [15,16]. Therefore, our model prevents the 

forgetting of previously learned global knowledge during the personalization phase. In this study, 

we experiment and validate the algorithm with real-world medical data.  

 

2. RELATED WORKS 
 

2.1. Federated Learning on Non-IID Data 

 
FL is a machine-learning approach in which multiple clients collaboratively build a learning task 

while considering privacy issues and communication efficacy [3]. FL can be classified into HFL 

and VFL, depending on how the data are distributed among various clients [2]. HFL deals with a 
scenario in which each client has an identical feature space but different sample-ID spaces. 

FedAvg [3] is a collaborative machine-learning framework proposed for this HFL scenario. HFL 

approaches cannot utilize vertically partitioned features, which are specifically generated by 

individual clients and are not shared with the HFL frameworks, increasing the model complexity. 
 

VFL deals with a scenario in which each client has a different feature space and identical sample 

ID space. Although secured machine-learning methods [10,32–35] for distributed features have 
been proposed, such methods cannot be used as deep learning approaches. In addition, despite the 

proposal of VFL approaches for deep learning [11,36,37], these methods have a limitation, in 

which every client must learn sufficient “identical sample-IDs” using a deep learning model. 
 

2.2. Federated Learning on Non-IID Data 

 
Data heterogeneity and non-IID data complicate the construction of a global FL model that can 

be applied to individual clients. FedAvg demonstrates a reduced model performance, including 

accuracy, under statistical data heterogeneity [14]. Additionally, the heterogeneity of the data 
slows down and destabilizes the convergence of FedAvg [13]. 
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Previous studies [14,30,38,39] have focused on utilizing the data augmentation method in an FL 
manner to address the weight divergence on non-IID data during the FL process. This method has 

been proposed to smoothen the statistical heterogeneity across distributed clients. However, when 

data augmentation approaches FL, it suffers from privacy leakage because data sharing has not 

been eliminated. Client selection approaches, such as FAVOR [29] used to build the FL model 
from the more homogeneous data distributions, also exist.  

 

Previous studies [31,40–45] proposed a personalized globally trained FL model for 
heterogeneous clients. Meta-learning-based approaches, such as personalized federated average 

(Per-FedAvg) [31], have been proposed to personalize an FL model by finding an optimal 

initialization for local personalization and learning of task-specific local representations based on 
a single global model design through meta-learning [40]. Multi-model personalization based on 

hierarchical clustering [41] was used to train an FL model for each cluster of clients. This 

framework involves training clusters of clients during each round of FL training. PFL approaches 

based on multi-task learning, model interpolation, and transfer learning build a model for each 
individual client through the FL process. The MOCHA algorithm was proposed as a 

personalization method for combining distributed multi-task learning and FL [42]. The model 

interpolation method [43] was proposed to handle the trade-off between a globally learned model 
and locally learned models with an adjustable penalty parameter. Transfer-learning-based 

approaches [44,45] aim to transfer the globally trained knowledge to the local models of 

individual clients through fine-tuning. 
 

3. METHOD 
 

We proposed a PPFL algorithm for conducting client-specific personalized inferences on data 

heterogeneity and non-IID data settings. PPFL also addresses the limited in-formation availability 
of FL design by leveraging not only common features but also client-specific vertical features 

across distributed clients. The proposed process involves two major steps. First, we built a HFL 

on a central server using only the common features from the distributed clients. Second, the pre-
trained horizontal federated model was deployed for each client, learning personalized 

knowledge for client-specific inference task through a PPFL. 

 

 
 

Figure 1: Problem setting and network architecture of the personalized progressive federated model. 
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3.1. Problem Formulation 
 

This study aims to solve the case where the features of each client are common and client-

specific cases exist (Figure 1 A). Before distinguishing common or client-specific vertical 
features of each client, all feature information should be shared among clients. Suppose that an 

individual client 𝑘 has a dataset 𝐷𝑘 ≔ {𝑥𝑖
𝑘 , 𝑠𝑖

𝑘 , 𝑦𝑖
𝑘}

𝑖=1

𝑚(𝑘)

 consisting of 𝑚(𝑘) samples, where the 

client ∈  𝒦 ≔ {1, … , 𝐾}. The 𝑖-th sample of 𝐷𝑘  can be represented using a common feature 

vector with 𝑝 -dimension 𝒙𝑖
𝑘 ≔ {𝑥𝑖

1(𝑘)
, 𝑥𝑖

2(𝑘)
,…, 𝑥𝑖

𝑝(𝑘)
} ; the client’s specific vertical feature 

vector with 𝑞-dimension 𝒔𝑖
𝑘 ≔ {𝑠𝑖

1(𝑘)
, 𝑠𝑖

2(𝑘)
,…, 𝑠𝑖

𝑞(𝑘)
}, and the corresponding target variable 

𝑦𝑖
𝑘. Note that the attributes and dimension 𝑝(𝑘)of the common feature vector 𝒙𝑖

𝑘 are identical for 

all clients 𝑘 ∈  𝒦. However, the attributes and dimension 𝑞(𝑘) of the client’s specific vertical 

feature vector 𝒔𝑖
𝑘 may not be the same for all clients.  

 

3.2. Horizontal Federated Learning 
 

A horizontal federated model learns global knowledge related to common features across 
multiple clients in a federated manner. The proposed model PPFL is generic and can be applied 

to other deep-learning-based approaches and aggregated methods. However, in this study, we 

applied our algorithm to the FedAvg as a base method for building a HFL because it is the most 
well-known and commonly used method.  

 

𝑚 is the total sample size of 𝐾 clients. then, 𝑓𝑖(𝝎) is the loss function of the prediction on 

example (𝒙𝑖 , 𝑦𝑖) where 𝒙𝑖 is common feature vector. Therefore, the objective function is  
 

𝑚𝑖𝑛
𝝎𝑐∈ℝ𝑑

𝐹(𝝎𝑐) ≔  ∑
𝑚𝑘

𝑚
𝐹𝑘(𝝎𝑘)𝐾

𝑘=1 ,  (1) 

         𝑤ℎ𝑒𝑟𝑒 𝐹𝑘(𝝎𝑘) ≔ ∑ 𝑓𝑖(𝝎𝑘)

𝒙𝑖
𝒌∈𝐷𝑘

 

 

3.3. Personalized Progressive Federated Learning 

 

PPFL contains three network columns: HorizontalNet, VerticalNet, and Personalized Net. We 
utilized the concept of lateral connection in progressive neural networks [15], which is proposed 

for leveraging transfer and avoiding catastrophic forgetting in multi-task learning. Figure 1 B 

shows the architecture of the PPFL model. 
 

3.3.1. Horizontal Network 

 

HorizontalNet is a network column that is initialized from the horizontal federated model. The 

internal weight parameters of the HorizontalNet 𝝎𝑐𝑖𝑛𝑡
 were initialized using 𝝎𝒄described in the 

Section 2.2. This network aims to pass generalized knowledge to personalized networks with the 

common feature 𝒙𝒌  as input information. Note that the internal weight matrix 𝝎𝑐𝑖𝑛𝑡
 in 

HorizontalNet, which is not connected with PersonalizedNet, is “frozen” to train. However, the 

lateral weight parameter 𝝎𝑐𝑙𝑎𝑡
, which is connected with PersonalizedNet, can be updated using 

an optimization algorithm. This approach avoids forgetting the generalized knowledge that has 

already been learned. The hidden layers 𝒉𝑙
𝑐in the HorizontalNet column are computed as  

 

𝒉𝑙+1
𝑐 = 𝜎 (𝝎𝑙

𝑐𝑖𝑛𝑡
𝒉𝑙

𝑐 + 𝒃𝑙
𝑐) , 𝑤ℎ𝑒𝑟𝑒     𝒉0

𝑐 = 𝒙𝑘 .        (2) 
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3.3.2. Vertical Network 
 

The second network column was the VerticalNet column. This network expanded the feature 

space with respect to the client-specific vertical features. The input of VerticalNet is the specific 

vertical feature data of the client 𝒔𝑘 ∈ 𝐷𝑘. The weight parameter 𝝎𝑣𝑖𝑛𝑡
 is the internal weight 

parameter of VerticalNet, which is not connected to PersonalizedNet. The lateral weight 

parameter 𝝎𝑣𝑙𝑎𝑡
 is connected to PersonalizedNet. Both 𝝎𝑣𝑖𝑛𝑡

 and 𝝎𝑣𝑙𝑎𝑡
 can be learned through 

the training step. Thus, the parameter 𝝎𝑣𝑖𝑛𝑡
 and 𝝎𝑣𝑙𝑎𝑡

 learn client-specific vertical feature 

information and transmit their knowledge to PersonalizedNet. The hidden layers 𝒉𝑙
𝑣 with respect 

to the client-specific vertical feature 𝒔𝑘  and internal weight parameter 𝝎𝑣𝑖𝑛𝑡
 are 

 

𝒉𝑙+1
𝑣 = 𝜎 (𝝎𝑙

𝑣𝑖𝑛𝑡
𝒉𝑙

𝑣 + 𝒃𝑙
𝑣) ,     𝑤ℎ𝑒𝑟𝑒 𝒉0

𝑣 = 𝒔𝑘       (3) 

 

3.3.3. Personalized Network 

 

The Personalized Net learn the specific personalized knowledge of the client by acquiring the 

value of 𝒉𝑙
𝑐, 𝒉𝑙

𝑣, and its previous layer as inputs. The computation between network columns is 

made possible through a lateral connection, the parameters of which, 𝝎𝑐𝑙𝑎𝑡
and 𝝎𝑣𝑙𝑎𝑡

, are lateral 

weight parameters. Therefore, 𝝎𝑐𝑙𝑎𝑡
 and 𝝎𝑣𝑙𝑎𝑡

determine the amount of activation of the globally 

learned common feature information and vertical feature information within the client, 

respectively. Its internal parameters 𝝎𝑝 are the internal weight parameters learn more complex 

information to achieve the inference tasks of individual clients. The hidden layers 𝒉𝑙
𝑝

 are 

computed using Equation (4). 
 

𝒉𝑙+1
𝑝 = 𝜎 (𝝎𝑙+1

𝑐𝑙𝑎𝑡
𝒉𝑙+1

𝑐 + 𝝎𝑙+1
𝑣𝑙𝑎𝑡

𝒉𝑙+1
𝑣 + 𝝎𝑙+1

𝑝 𝒉𝑙
𝑝+𝒃𝑙

𝑝) , 𝑤ℎ𝑒𝑟𝑒 𝒉0
𝑝 = 𝟎   (4) 

 

Note that the proposed method can be applied even in the absence of client-specific vertical 

features. In this case, the hidden layer of a personalized progressive network is expressed as  

𝒉𝑙+1
𝑝

= 𝜎 (𝝎𝑙+1
𝑐𝑙𝑎𝑡

𝒉𝑙+1
𝑐 + 𝝎𝑙+1

𝑝
𝒉𝑙

𝑝
+𝒃𝑙

𝑝) ,     𝑤ℎ𝑒𝑟𝑒 𝒉0
𝑝

= 0 (5) 

 
In this process, if there is no client-specific vertical features, it can be personalized except the 

VerticalNet. 

 

3.4. Study Design 

 

We compared PPFL with the models described below. (x) indicates that the model has learned 
only the common feature space, and (x,s) indicates the model has learned both common features 

and client-specific vertical features. 

 FedAvg(x): The FedAvg algorithm with common features. 
 FedProx(x): The FedProx algorithm with common features. 

 PPFL(x): The PPFL learns by leveraging only common features. 

 PPFL(x, s): The PPFL learns by leveraging both common features and client-specific 

vertical features. 
 Local(x): Multi-layer perceptron (MLP) learned only from common feature data of a 

specific client. 

 Local(x, s): MLP learned from both common and vertical feature data of a specific client. 
 

We divided the training, validation, and test datasets in the ratio of 6:2:2 for each client. The 
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validation dataset was used to search for hyper parameters using a random-search algorithm. We 
optimized the weight parameters of the models by the Adam optimizer [21]. We utilized the 

cross-entropy loss for the binary classification. We implemented them while providing accuracy 

and an area under the receiver operating characteristic (AUROC) to demonstrate the performance. 

 

3.5. Dataset 
 

The performance of the PPFL model was evaluated on a public EMR dataset called Physionet 
Challenge 2012 [19]. The Physionet Challenge 2012, which was extracted from the MIMIC-II 

database [22], consists of information regarding 8,000 ICU patients. These records contained 36 

time-series features (i.e., laboratory tests, vital signs, and mechanical ventilation) and five 
demographic features, including ICU-type information. In this study, we aggregated ICU 

information for 48 h in an average manner because we did not focus on time-series data. Each 

ICU, with a total of 6,000 samples, was considered an individual client. Coronary care unit 

(CCU), cardiac surgery recovery unit (CSRU), medical ICU (MICU), and surgical ICU (SICU) 
retained 889, 1,219, 2,216, 1,676, and 2,000 ICU stay samples, respectively. The remaining 2,000 

samples were used as external ICUs, configured without client separation. The external ICU was 

not used during the PPFL training. In this dataset, we assumed that the common feature set 
comprised demographic and mechanical ventilation information. In contrast, client-specific 

vertical features comprised vital signs and laboratory tests for all clients. The description of data 

distribution by the ICU for common features of the Physionet Challenge 2012 data set is 
presented in Supplementary Table 1 and 2.  

 

3.6. Experiments 

 
For each client, we compared the performance for both internal and external validations. Internal 

performance was measured using a test set from a local client. For external validation, we used 

external dataset that were set aside when partitioning ICU data. We evaluated the performance of 
binary classifications for the following two cases: in-hospital mortality as a binary class and 

length of stay. 
 

We computed feature importance using the SHAP value computed by Deep SHAP to investigate 
the concept shift after the application of PPFL [24, 25].  

 

All experimental settings were implemented using TensorFlow 2.5.0 [26]. The models were 

trained on a machine equipped with two NVIDIA QUADRO RTX 8000 CUDA 11.0, 128 GB 
memory and one Intel Xeon Platinum 8253 2.2 GHz CPU. 
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Figure 2. Performance evaluation of PPFL compared to FedAvg (x), FedProx (x), Local (x), and Local 

(x,s) in terms of AUROC on external validation. PPFL (x,s) shows the highest score in every task A. 

AUROC comparison for in-hospital mortality prediction task. B. AUROC score comparison for the length 
of stay prediction task. C. AUROC score 

 

4. RESULTS 
 

4.1. Performance of  PPFL 
 

PPFL(x,s) showed the highest performance for every ICU client on external validation. The 

PPFL(x) showed an average of 0.790 AUROC for the in-hospital mortality task and 0.808 
AUROC for the length of the stay task (Figures 2A and 3B, respectively).  Where FedAvg(x) 

and FedProx(x) showed performance (AUROC) by 0.616 and 0.615 in mortality prediction, 

respectively. In addition, PPFL(x,s) higher performance than FedAvg(x) and FedProx(x) both in 

hospital mortality and length of stay prediction. The average AUROC of FedAvg(x) was 0.643 
and 0.643 for FedProx in length of stay prediction. Compared with Local(x,s), PPFL(x,s) show 

that all AUROC performances of PPFL(x,s) outperform in external validations. The average 

AUROC for local(x,s) in external validation was 0.743 in in hospital mortality prediction, and 
0.773 in length of stay prediction. In average, PPFL(x,s) showed higher performance than 

local(x,s) models in external validation (Figure 2A, Figure 2B, Supplementary Table 3). 

Comparing the average AUROC of PPFL(x,s) to Local(x,s) in Figure 2C and Figure 2D, our 
model showed higher performance in in hospital mortality task. However, in length of stay 

prediction, the SICU showed 0.865, which was higher than the average AUROC performance 

than PPFL(x,s). Overall, PPFL(x,s) showed the highest AUROC compared to other local 

model(x,s) in average (Figure 2C, Figure 2D). Figures 4 shows the contributions of common and 
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vertical features for all clients in predicting in-hospital mortality. Within common features, age 
and mechanical ventilation (MechVent) features had the highest shape value in all clients (age 

was 0.5 or more in all clients and MechVent was 0.3 or more in three clients). Among the 

verticalfeatures, the Glasgow Coma Scale (GCS) had the highest shape value for all clients (0.025 

orhigher for all clients). Mechanical ventilation still had a high ranking for CCU and SICU. We 
also compared FedAvg(x) to PPFL(x,s) to evaluate whether leveraging client specific features 

shows high performance. PPFL(x,s) showed higher performance than FedAvg (x) (Supplementary 

Table 4). For the MICU, the SHAP value for MechVent was not lower than those of the other 
clients. However, in terms of vertical features, vital signs, such as GCS, blood urea nitrogen, 

fraction of inspired oxygen, heart rate, and absolute blood pressure, have higher SHAP values 

than those for mechanical ventilation. 
 

4.2. Analysis of Concept Drift  

 
Figure 3 shows the contributions of common and vertical features for all clients in predicting in-

hospital mortality. Within common features, age and mechanical ventilation (MechVent) features 

had the highest shape value in all clients, in that order (age was 0.5 or more in all clients and 
MechVent was 0.3 or more in 3 clients). Among the vertical features, the Glasgow Coma Scale 

(GCS) had the highest shape value for all clients (0.025 or higher for all clients). Mechanical 

ventilation still had a high ranking for CCU and SICU.  

 

 
 

Figure 3.Mean absolute SHAP values of common and vertical features in predicting in-hospital mortality. 

4A. SHAP values in common features. 4B. top 10 highest SHAP value features with vertical features. 

 

5. DISCUSSION 
 
The usage of federated learning in analyzing distributed medical data is a well-known research 

topic [17,27]. Therefore, research on federated learning that can potentially protect data privacy 

has been conducted in various medical fields [28]. However, most current studies consider 
learning common features among clients. In this study, we proposed a personalized progressive 

federated learning (PPFL) algorithm for heterogeneously distributed clients that expands the 

feature space for client-specific vertical features. This study is the first federated learning study 

that considers common features and client-specific vertical features by applying progressive 
learning. PPFL shows a robust performance compared to other algorithms based on the 

comparison of PPFL with existing federated learning models and local models in various settings.  

 



Computer Science & Information Technology (CS & IT)                       73 

 

Compared to FedAvg, which is suitable for a horizontally partitioned data environment [3–9], 
PPFL is a novel federated learning framework that leverages the idea of progressive learning to 

perform learning in both horizontally and vertically partitioned environments. PPFL can utilize 

more features and samples than other models (Figure 2, Supplementary Table 3), resulting in 

better performance compared to existing local and federated learning models. For example, 
FedAvg and FedProx have a limited feature space because only the common features from 

multiple clients are input into the model in terms of its structure. The local model uses only the 

sample of each client; thus, the number of samples is inevitably smaller than that of the PPFL 
input dataset. PPFL demonstrated a higher performance than the existing model by inputting all 

the collected features and samples of multi-clients.  

 
The effectiveness of the proposed model is the greatest for clients who are significantly different 

from the overall data distribution since CSRU has the most different label distribution from an 

external client and the most severe class imbalance.   

 
For all internal validations of the clients, except for the in-hospital mortality task for some clients, 

HorizontalNet(x), learned through FedAvg, exhibits a degraded performance compared to that 

with Local(x). Previous studies have confirmed that FL performance may decrease when the 
distribution among clients is heterogeneous [13,14]. Additionally, the data we tested was 

statistically significant heterogeneous across clients (Supplementary Table 1). We found that the 

hospital stay of SICU patients was significantly longer than that of other ICU patients 
(Supplementary Table 1). Moreover, we found that the performance of the local(x) model using 

only local data was higher than our proposed ppfl(x,s) (Figure 2D). This indicates that extreme 

data heterogeneity in FL can lead to lower performance than that of local models. However, we 

emphasize that our model still outperforms FedAvg and FedProx, and the performance difference 
with the local model (SICU) is negligible. 

 

Although client-specific vertical features contain more information, our proposed model is 
effective in terms of robustness. This shows that PPFL is robust to the global knowledge 

forgetting problem in the personalization process of the FL models.  

 

6. LIMITATIONS 
 

Our study has several limitations. First, there is little difference in the computing time and 

resources when verifying the PPFL in the same network bandwidth. However, additional research 

on the computation time and resources between physically distant networks is required for multi-
client from multi-country studies. Second, this PPFL algorithm was written assuming that 

information on the features of multiple clients is shared; however, information about common 

and vertical features of each client may not be provided in the real world. Research on an 

automatic feature selection process based on the characteristics of input data among the features 
of multiple clients is essential. Third, Yang et al. (2019) reported that there is a possibility of 

indirect privacy leakage to raw federated learning systems [2]. We plan to further our studies in 

strengthening PPFL from these issues. Fourth, although only MLP modules based on linear layer 
have been applied to the PPFL framework in this study, we will also apply them to other neural 

network structures such as sequential-based layers in future studies. 

 
 

 

 

 
 

 



74         Computer Science & Information Technology (CS & IT) 

7. CONCLUSION 
 
We proposed the PPFL algorithm to personalize federated algorithms for heterogeneously 

distributed clients and expand the feature space for client-specific vertical feature information. 

Moreover, we investigated the performance improvement and robustness of our proposed model 

using real-world EHR data and validated the usefulness of the model. Our model showed higher 
performance than FedAvg and FedProx. We plan to further our studies in improving the PPFL 

compared to other models in FL. 
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SUPPLEMENTARY 
 

Table 1. Description of data distribution by icu for common variables of 

Physionet Challenge 2012 data set. 

 
 CCU 

(n=889) 

CSRU 

(n=1,219) 

MICU 

(n=2,216) 

SICU 

(n=1,676) 

ExternalICU 

(n=2,000) 

P-

Value

* 

Age  69.4(14.6) 67.6(13.1) 63.5(18.1) 60.3(19.3) 64.1(12.2) <0.0

01 

Gender Female 357(40.2) 453(35.8) 1075 (50.1) 706(41.6) 241(45.2) <0.0

01 

 Male 531(59.8) 812(64.2) 1070 (49.9) 992(58.4) 292(54.8)  

Height  170.6(17.8) 169.9(10.5) 168.3(19.7) 170.1(17.3) 169.3(23.2) <0.0

01 

Weight  80.7(21.8) 87.4(20.0) 82.3(27.2) 83.0(25.8) 81.9(23.3) <0.0

01 

In-hospitaldeath Alive 773(87.0) 1205 (95.2) 1724 (80.3) 1457 (85.8) 453(85.0) <0.0

01 

 Death 115(13.0) 61(4.8) 423(19.7) 242(14.2) 80(15.0)  

Length of stay <7days 396(44.6) 455(35.9) 801(37.3) 453(26.7) 189(35.5) <0.0

01 

 >7days 492(55.4) 811(64.1) 1346 (62.7) 1246 (73.3) 344(64.5)  

 

*One-way analysis ofvariance (ANOVA) for continuous features;χ2-test for categorical features. 

 
Table 2.Performance evaluation of PPFL compared to FedAvg, Local (using common features), Local 

(using common and specific features) in internal and external validation. 

 
In hospital mortality 

Client Client-specific vertical features 

1 

CCU 

DiasAB

P 

PaO2 pH SysABP Lactate HR SaO2 Bilirubin ALP Platelets 

2 

CSRU 

Na Albumin PaO2 FiO2 SaO2 Urine pH Lactate Creatinin

e 

SysABP 

3 

MICU 

PaCO2 Temp Na K PaO2 Creatini

ne 

HCT SysABP Bilirubin pH 

4 

SICU 

pH HCT MAP SysABP Albumin Mg Platelets DiasABP K FiO2 
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Table 3.Performance evaluation of PPFL compared to FedAvg, Local (using common features), Local 

(using common and specific features) in internal and external validation. 

 

  In hospital mortality  Length of stay ( >7) 

  Local  External  Local  External 

Client Model Accuracy AUROC  Accuracy AUROC  Accuracy AUROC  Accuracy AUROC 

 FedAvg (x) 0.857 0.671  0.818 0.616  0.650 0.690  0.710 0.643 

 PPFL(x) 0.862 0.773  0.860 0.640  0.862 0.715  0.860 0.671 

1.CCU PPFL(x,s) 0.879 0.827  0.845 0.803  0.871 0.853  0.862 0.861 

 Local(x) 0.860 0.657  0.823 0.598  0.852 0.803  0.839 0.636 

 Local(x,s) 0.871 0.810  0.835 0.781  0.864 0.822  0.847 0.792 

 FedAvg (x) 0.951 0.614  0.818 0.616  0.535 0.661  0.710 0.643 

 PPFL(x) 0.937 0.643  0.814 0.617  0.923 0.690  0.816 0.625 

2.CSRU PPFL(x,s) 0.954 0.873  0.836 0.762  0.954 0.833  0.856 0.719 

 Local(x) 0.952 0.635  0.818 0.576  0.927 0.691  0.851 0.596 

 Local(x,s) 0.926 0.824  0.818 0.671  0.931 0.714  0.860 0.710 

 FedAvg (x) 0.809 0.616  0.818 0.616  0.640 0.593  0.710 0.643 

 PPFL(x) 0.812 0.643  0.820 0.655  0.815 0.643  0.860 0.703 

3.MICU PPFL(x,s) 0.815 0.715  0.847 0.789  0.864 0.695  0.868 0.779 
 Local(x) 0.809 0.631  0.818 0.604  0.805 0.619  0.860 0.619 

 Local(x,s) 0.818 0.709  0.841 0.765  0.805 0.690  0.852 0.722 

 FedAvg (x) 0.833 0.659  0.818 0.616  0.643 0.617  0.710 0.643 

 PPFL(x) 0.855 0.672  0.860 0.648  0.851 0.689  0.860 0.659 

4.SICU PPFL(x,s) 0.860 0.835  0.867 0.807  0.856 0.853  0.864 0.873 

 Local(x) 0.803 0.665  0.818 0.622  0.741 0.692  0.858 0.657 

 Local(x,s) 0.846 0.792  0.862 0.764  0.851 0.796  0.871 0.865 

 
Table 4. Internal and external validation of using client-specific features in each client. 

 
In hospital mortality 

Client Model 

Internal  External  

Accuracy AUROC  Accuracy AUROC 

CCU 
FedAvg (x) 0.857 0.671  0.818 0.616 

PPFL (x,s) 0.871 0.838  0.862 0.723 

CSRU 
FedAvg (x) 0.951 0.614  0.818 0.616 

PPFL (x,s) 0.954 0.847  0.861 0.760 

MICU 
FedAvg (x) 0.809 0.616  0.818 0.616 

PPFL (x,s) 0.805 0.774  0.860 0.745 

SICU 
FedAvg (x) 0.833 0.659  0.818 0.616 

PPFL (x,s) 0.860 0.781  0.865 0.772 
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