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ABSTRACT 
 
Popular Internet applications such as web browsing, web video download or variable-rate voice 

suffer from standard Transport Control Protocol (TCP) behaviour because their transmission 

rate and pattern are different from conventional bulk transfer applications. Previous works have 

analysed the interaction of these applications with the congestion control algorithms in TCP 

and proposed Congestion Window Validation (CWV) as a solution. However, this method was 

incomplete and has been shown to present drawbacks. This paper focuses on the ‘newCWV’ 

which was proposed to address these drawbacks. newCWV depicts a practical mechanism to 

estimate the available path capacity and suggests a more appropriate congestion control 

behaviour. These new modifications benefit variable-rate applications that are bursty in nature, 

with shorter transfer durations. In this paper, this algorithm was implemented in the Linux 

TCP/IP stack and tested by experiments, where results indicate that, with newCWV, the 

browsing can get 50% faster in an uncongested network. 
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1. INTRODUCTION 
 

With the development of the Internet, many applications have gained enormous popularity. 

Email, VoIP applications, File sharing etc., each have taken a share of the total Internet traffic, 
but the largest share is currently Web browsing applications with almost 70% of the total traffic 

across the Internet [1]. Web traffic uses TCP and HTTP [2] [3] protocols for request and delivery 

of the web page content. There had already been numerous developments across these protocols 

with a view to improve the performance without proposing any replacement of these standards.  
Many of these updates to TCP focus on the congestion control mechanism as this technique 

define how much data can be transferred from the sender to receiver for an application flow. 

cwnd ensures that the sending rate of a flow is comparatively safe for the other flows that share 
the same bottleneck along the path between the sender and the receiver. But the focus in TCP 

improvements was primarily for bulk file transfers only. These modifications are not suitable for 

HTTP like traffic, which is ‘bursty’ (variable rate traffic with irregular intervals) in nature. This 
problem has been reported earlier and several attempts had also been made to realise a solution 

[4][5] . Unfortunately, these solutions were still conservative and lack proper measurement of the 

available path capacity to set the congestion window (cwnd) – the most important parameter of 
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the congestion control mechanism. This shortcoming limits the performance of bursty 
applications like HTTP.  

 

A newer method has been developed termed as ‘newCWV’ [6]. When sending bursty or rate-

limited traffic, this new method allows a sender to estimate the path capacity more accurately and 
set the cwnd to an appropriate value accordingly. The rationale for newCWV is presented briefly 

and the algorithm is explained elaborately in [6]. But there is a void in validating the arguments 

and also in measuring the expected application performance improvement with this proposal.  
This paper aims to explain the motivation behind developing newCWV in detail and then analyse 

the web traffic transfer durations in order to measure improvements. Particular focus of this paper 

is on the implementation and integration of newCWV into the Linux and run experiments to 
support the theory. Through experiments, this paper shows that, when HTTP-like traffic uses 

‘newCWV’, there is significant gain in performance compared to conventional TCP. Web 

browsing can proceed in approximately 50% faster rate in an uncongested network with the 

newCWV.  
 

Section 2 of this paper explains the bursty behaviour of the HTTP traffic, the basics of TCP 

congestion control and the state of the art to set the background. Then, section 3 explains the 
modification specified in [6]. Section 4 summarises the experiment and presents the results with 

discussion. Finally, section 5 concludes the findings.         

 

2. BACKGROUND 
 
To understand the problem of transporting HTTP-like traffic with unmodified TCP, the behaviour 

of these protocols needs to be examined. This section explores the bursty behaviour of the HTTP 

protocol, the conventional congestion control of TCP and explains the interactions when these are 
used together. 

 

2.1. Nature of HTTP traffic 
 

The HTTP web traffic is naturally bursty in nature. Burstiness could be termed as a property of 

an application where the traffic is generated in a random manner at different rates over its 
running time. This could be characterised as periods of inactivity separated by periods when the 

chunks of data are downloaded. [7] showed that popular HTTP applications such as Web video 

(YouTube), Maps (Google Maps), Remote Control (LogMeIn) all send data in the downstream at 

variable rate with spikes up to 400KB/s, separated by periods with no activity. This burstiness is 
caused by the HTTP request pattern in the client/user application. Besides application behaviour, 

small-scale burstiness can also be caused by TCP.  

 
[8] showed that TCP self-clocking, combined with network queuing delay (due to packets of the 

same flow or cross traffic) can shape the packet inter-arrivals of a TCP flow resulting in an ON-

OFF pattern. With a view to modelling the inactivity (OFF) periods of the web clients, [9] 
showed that the OFF duration could range from a few seconds to many tens of seconds, with a 

probability of 80% and 10% respectively, which causes burstiness of a TCP connection when 

requesting content from the server. 

 
The cited papers all agree that burstiness has become a common pattern for HTTP traffic. A 

simple experiment was run that captured packets while accessing a webpage from a browser to 

capture this bursty behaviour.  
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Figure 1 shows the resulting burstiness. In this capture, the chunks of data are the results of 
HTTP GET requests made by the client. It is visible that there are considerable inactive periods 

between consecutive bursts. 

 

 
 

Figure 1. Bursty traffic pattern of HTTP web for a single web page 
 

2.2. TCP Congestion Control Mechanisms 
 

After being first standardized in 1981 by the Internet Engineering Task Force (IETF), TCP was 

enriched by a series of developments to face numerous challenges occurring in the underlying 

network. [10]  provided a roadmap that described many of these changes.  
 

A basic operating procedure of TCP is explained in the remainder of this subsection.  

A TCP sender uses a parameter called the congestion window, or ‘cwnd’.  This is initialised to 
the Initial Window (IW) size. It determines the amount of data that can be sent to the receiver 

while before receiving an acknowledgement from the receiver. The value of the cwnd is 

important, as it ultimately dictates the transfer rate and eventually the response time for an HTTP 
connection. TCP uses four congestion control algorithms to set the value of this ‘’cwnd that were 

specified by RFC2001, RFC2581 and RFC5681 [11][12][13]. They are Slow Start, Congestion 

Avoidance, Fast Retransmit and Fast Recovery. 

 
Slow Start: In the Slow Start phase, a TCP sender sends data limited by the cwnd value and 

waits for Acknowledgement (ACK) packet from the receiver. Upon receiving an ACK, the value 

of the cwnd is increased by one segment. So, if a sender sent 4 segments at first (because cwnd = 
4), and then receives 4 ACKs for these segments, then after increasing cwnd for each segment, 

the final cwnd value will be 6, and 6 segments can be sent. As a result of this cumulative 

increase, the cwnd increases using an exponential function. This continues until it reaches the 

Slow Start threshold (ssthresh) or the sender discovers congestion or encounters a loss. 
 

Congestion Avoidance (CA): When the cwnd reaches the ssthresh, a limit is imposed on the 

increase of the cwnd. After this point, the size of the cwnd is only increased by one segment in 
one RTT. For example, if 8 segments are sent altogether, then when the 8 segments are 

acknowledged, the cwnd becomes 4 only. This corresponds to a slower linear growth of cwnd.  
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Fast Retransmit: When a packet is lost, the subsequent packets are received out of order at the 

receiver. When this happens, the receiver sends duplicate ACK packets when each segment is 

received.  All the ACK packets acknowledge the same sequence number. Upon receiving the first 

duplicate ACK, the sender does not immediately take action, but waits to see if this is a re-
ordering issue or a packet loss. When it receives a series of duplicate ACKs equal to the 

DupACK threshold (3 as currently standardised), the sender TCP retransmits the segment, and 

resets the congestion state. 

 
Fast Recovery: When a segment is lost, rather than setting the cwnd to the lowest value and then 
send packets in sequence, it is assumed that a better approach would be to start from an 

intermediate value so that the flow is not badly affected. So, after a lost segment has been 

transmitted, CA is performed instead of Slow Start. The cwnd is set to (ssthresh + DupACK) 

segments. This is to virtually inflate the network. Since DupACKs packets have been received, 
this means these packets have left the network (i.e. had been received successfully). With each 

further DupACK, the cwnd is incremented by one segment. When a new ACK is received, the 

cwnd is reset to ssthresh and CA is resumed. 

 

Selective ACK (SACK): SACK acknowledges reception of out of sequence packets. This 

helps avoid retransmission of already received packets.  Using SACK, the receiver appends a 

TCP option in the DupACK header that contains a range of non-contiguous data that have been 

received. This allows the sender to resend only the packets that were missing from the flow. 
Support for SACK is negotiated at the beginning of a TCP connection; it can be used if both ends 

support the SACK option. [14]  showed that NewReno with SACK enabled, requires fewer 

packet transmissions in the First Recovery phase, reduces unnecessary duplicate transmission and 

avoids waiting time.   
     

2.3. TCP Variants 
 

Different variants of TCP have evolved using combinations of these algorithms and with 
modifications to control the data flow and to improve response to network congestion. When a 

loss is detected, the TCP sender takes measures to control the flow of further packets by reducing 

the sending rate.  Different TCP variants such as Tahoe, Reno, NewReno, which act differently in 
response to detected congestion. 

  

Tahoe used Slow Start, Congestion Avoidance and Fast Retransmit. A problem with Tahoe is that 
restarted from the initial cwnd value after each packet loss. This resulted in lower throughput.  To 

deal with this, Reno implemented Fast Recovery.  This effectively recovered a of single packet 

loss within a window. If two or more packets were dropped in the same window, the sender was 

forced to timeout and restart in Slow Start. To overcome this problem, NewReno uses a modified 
Fast Retransmission phase based on the research [15][16]. This starts when a packet is lost and 

ends when a Full ACK is received, which means that all the packets transmitted between the lost 

packet and the last packet have been successfully received. However, if there are multiple packet-
drops, then the sender will acknowledge a packet that has a lower sequence number than the last 

transmitted packet. This is a Partial ACK, and in this case, the lost packet is retransmitted 

immediately without waiting for receiving duplicate ACKs. This avoids a possible timeout. This 
ensures better performance than Reno, but may need to restart after a timeout if many packets are 

dropped from the same window.  
 
When there are multiple losses, SACK provides better performance by enabling the receiver to 

inform the sender when there are multiple packet losses. A SACK block indicates a contiguous 

block of data that has been successfully received. The segment just before the first block and the 
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gap between any two consecutive blocks denote lost segments (more accurately, these are 
segments for which there is no acknowledgment). When the sender receives a SACK option, it 

can find out which segments may be lost and retransmits them. SACK is widely implemented in 

the current Internet, usually in combination with NewReno [10]. Therefore NewReno with SACK 

is considered as the standard congestion control for TCP.  

 
 
Figure 2 shows the cwnd evolution for different variants with a 50ms path delay. It can be noticed 

in this figure that after some variation during the early stage (about 3s), all the variants reach a 

steady state with a similar behaviour. At time 1s, all variants start in the Slow Start phase and 
increase the cwnd exponentially until ssthresh is reached or after it suffers a loss. When this 

happens, Tahoe reduces its cwnd to an initial value (IW) and resumes in Slow Start. Once it 

reaches ssthresh, the sender enters the CA phase (linear increase of cwnd). Other variants enter 

Fast Retransmission and Fast Recovery phase, where the cwnd progresses almost linearly. 
 

 
 

Figure 2.  Congestion Window evolution with time during the simulation 

 

Whenever packet loss occurs (at 1.8s, 5s and 8.5s for Tahoe) Tahoe enters the Fast Retransmit 

phase and retransmits the lost packet. The cwnd is set to the restart window (RW) (normally 1 
segment) and continues in the Slow Start phase.  

 

NewReno and SACK enter the Fast Recovery stage (at 1.8s for the first loss) where the ssthresh 

is set to a new value that is half the size of the unacknowledged data and then cwnd is set to 
ssthresh. At 2s, to more losses cause NewReno to fail to recover and eventually the sender is 

forced to enter the Slow Start phase. SACK was successful in recovering and eventually followed 

the CA until it faced another loss. Later, during the simulation, NewReno successfully recovered 

using Fast Retransmit and Fast Recovery. Then it moves to the CA phase. 

 

2.4. TCP CWV 
 

Standard TCP congestion control required that when an application is idle for a period greater 
than the Retransmission Timeout (RTO), the cwnd is reset to a small value. So, the next burst of 

data requires the sender to re-enter the Slow Start phase from this small value. Several RTTs may 
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be consumed before the previous sending rate is again achieved. This approach is too 
conservative, in that it fails to use available capacity. For a bursty application, this scenario is 

quite common where each burst is separated by an idle period. As a result, the application 

performance suffers from this conservative behaviour of TCP.   

 
Figure 3 explains the situation as a diagram. After RTO, the cwnd (red bold solid line) drops to 

the RW. Then it takes long time to grow back for the next burst. So, the net burst is unnecessarily 

delayed while the path capacity might have been enough to transmit the burst in shorter RTTs.   
  

 
 

Figure 3. Reducing the cwnd to a low value of RW makes it overly conservative for idle period 

 

 
 

Figure 4. Increasing the cwnd during the application limited period makes it invalid 

 
On the other hand, during an application-limited period, a Standard TCP sender continues to 

grow the cwnd for every received acknowledged packet (ACK), allowing the cwnd to reach an 
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arbitrarily large value. However, in this case the packet probes along the transmission path are 
sent at a lower rate than permitted by cwnd, so the reception of an ACK does not actually provide 

evidence that the network path was able to sustain the transmission rate reflected by the current 

cwnd. The cwnd is called ‘invalid’.  

Figure 4 explains such a scenario. The actual path capacity which may be significantly lower than 
the cwnd, can be mistaken. 

 

If an application with an invalid cwnd were to suddenly increase its transmission rate, the sender 
would be allowed to immediately inject a significant volume of additional traffic into the 

network. This could lead to severe network congestion, potentially harming other flows that share 

a common bottleneck. 
 

TCP Congestion Window Validation (TCP-CWV), was first specified in RFC 2861 [4], was 

proposed as an experimental standard by the IETF. The intention was to find a remedy for the 

problems imposed by TCP when used by a bursty application. TCP-CWV changed how cwnd is 
updated and is to be used during an idle or application-limited period. 

 

TCP-CWV modified the congestion control algorithm of standard TCP during an application-
limited period when the cwnd had not been fully utilised for a period larger than an RTO.  

During an idle period, which is greater than one RTO, TCP-CWV reduced cwnd by half for every 

RTO period. This is equivalent to exponentially decaying cwnd during the idle period compared 
to reducing the cwnd in a single step with standard TCP. This is common traffic pattern for 

bursty applications to have an idle period in the order of seconds – which could be larger than a 

few RTOs worth of time. As a result, TCP-CWV ultimately reduces to RW and causes problem 

like standard TCP.   
 

Another recommendation of CWV was to set the cwnd according to (w_used+cwnd)/2 for each 

RTO period that does not utilise the full cwnd, where w_used is the maximum amount that has 
been used since the sender was last network-limited/cwnd-limited. This avoids a growth of cwnd 

to an invalid value; it can cause the cwnd to reduce to a value that is close to the current 

application rate.  

 
This results in two problems:  

First, the cwnd should reflect the network capacity for a flow and control the amount of data that 

the network could sustain. However, CWV tends to set the cwnd according to the traffic pattern 
and application rate - only seeking to be conservative in use of network capacity. As a result, the 

cwnd is set to a lower value that is more conservative than when using standard TCP, which 

would have allowed larger bursts.  
 

Secondly, CWV used w_used, the amount of data that has been sent by the application, but not 

yet acknowledged.  In an application-limited period where the application is not using the 

allowed path capacity, w_used is does not reveal the available capacity. According to this 
approach, the cwnd is set to a value that is determined by the application’s sending rate in the last 

RTO period (last few RTTs), rather than the network capacity. This impacts the application 

performance where the subsequent bursts are to be rate-limited and would take longer to 
complete. So, this should not be regarded as the available path capacity for the TCP flow that is 

recoded in the cwnd.   

 
In summary, when TCP-CWV was specified in 2000, it identified a need to change the way TCP 

responded for bursty applications but failed to offer a complete solution.  
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3. TCP NEWCWV: MODIFICATION FOR HTTP-LIKE TRAFFIC 
 

When newCWV was standardised in 2015, it introduced a variable called ‘pipeACK’ that was 

used to measure the acknowledged size of the network pipe. The pipeACK variable is considered 
as a safe bound for the capacity available to the sender since this represents the actual amount of 

data that was successfully transmitted in an RTT from the sender to the receiver. This variable 

can be computed by measuring the volume of data that have been acknowledged by the receiver 
within the last RTT.  

 

The pipeACK is used to determine if the sender has validated the cwnd. The sender enters the 
non-validated phase when:  

 

  

 

newCWV also defined a new phase. A sender was allowed to use the cwnd for a period (5 
minutes), called the Non-Validated Period (NVP).  During the NVP, the cwnd is preserved. The 

reason for storing the cwnd for several minutes because it is the default server timeout for TCP 

connection. 

 
In summary, newCWV brought stability for both phases of rate-limiting period and application 

limiting period for HTTP like traffic. An algorithm was proposed and implemented in the Linux 

Kernel module, which was used to verify the effectiveness of this modification in the next 
section. 

 

4. EXPERIMENT, RESULTS & DISCUSSION 
 

This section first describes the network emulation used to explore the behaviour of newCWV. 
Then presents the findings in different scenarios with possible explanations for such behaviour.   

 

4.1. Experimental Setup 
 

A network emulation method was chosen to conduct the experiments because this enables a real 

implementation of network protocols to be tested in a controlled environment. The test bed used a 
dumbbell topology representing a single network path bottleneck (refer to  

Figure 5).  

 
Client 1 and Server 1 were used to benchmark the newCWV behaviour for the main traffic (either 

HTTP web or HTTP streaming content). Another server (client 2, server 2) was used to inject 

cross traffic (in this case a large file transfer using FTP) into a shared network bottleneck. All 
servers ran Linux kernel versions 3.12, and the clients were running 3.8 or greater. 
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Figure 5. Experiment topology: the bottleneck router imposed a fixed bandwidth and delay between the 

client and server 

 

Server 1 acts as a web server or streaming server that used standard TCP (NewReno with SACK).  

It was installed with the newCWV Loadable Kernel Modules (LKM) for Linux, the traffic 
generators and iproute2 utilities (to enabling pacing when required) allowing this to be chosen at 

the start of each experiment. 

 
The experiments are run across a range of time intervals that represent values that range between 

HTTP response bursts (idle periods) and for HTTP response sizes larger than a particular value 

(Burst size after idle). The results obtained from multiple iterations of these experiments are 

averaged to measure the completion time of the HTTP/TCP connections for different 
combinations of idle periods and burst sizes.  

 

The comparison plots, shown in the results section, present the improvement in burst transfer 

time (less time required for transmission) when newCWV is used compared to using a standard 

TCP (NewReno with SACK). The performance gain in transfer time (% improvement) is 

calculated by taking an average of the transfer gain over all bursts. The transfer gain was 
calculated by the following formula, where time taken in NewReno/SACK is Tr and time taken 

for a burst with newCWV is Tc: 

 

 Gain (in percentage)   =  ( Tr – Tc ) / Tr   x  100 

 

The gain can be positive where the burst is transmitted faster or negative when a particular HTTP 

response takes longer to transmit due to loss. A positive average of all these values indicates an 
overall gain in performance – the higher the value, the better. 

 

The table below (Table 1) summarizes the experiment parameters: 
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Table 1: Experiment Parameters 

 

Parameter 

 

Value 

TCP Initial Window (IW) 3 Segments 

Ssthresh sharing NO 

Bottleneck Bandwidth 2 Mbps 

Delay / RTT 200 ms 

HTTP Generator Tmix tool 

Linux Kernel 3.12 

No of HTTP connections 3151 

Total Data analysed 7.68 GB 

Average Transfer rate 700 kbps 

Iterations with same parameters 5 

 

4.2. Comparing performance over an uncongested path 
 

To understand the effect of newCWV in a non-congested scenario, experiments were run with no 
bandwidth limit at the bottleneck router; only a link delay of 200 ms was applied. There was no 

cross-traffic and no rate limit was applied. Figure 6 below presents the performance improvement 

of newCWV compared to NewReno, plotted burst sizes vs. different idle periods. 

 
The improvement is visible in this figure (Figure 6). A newCWV sender transfers a burst in 37-

62% less time than NewReno. Larger improvements are achieved for the higher burst sizes, as 

expected; about 10% more improvement is achieved for bursts of 80KB (60%) than 5KB bursts 
(50%). While standard TCP reduces its cwnd after an idle period, newCWV retains a larger cwnd 

and is able to transfer the burst in less time, saving several RTTs – an approximate average of 

50% improvement suggests newCWV requires half the RTTs compared to NewReno. 
 

.  

 
Figure 6. Performance Improvement of HTTP traffic shown when newCWV is used instead of NewReno 

over different burst sizes and idle periods. 
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Another interesting fact is that for a same size of burst, for example a 40 KB burst, would 
encounter almost 20% more improvement in performance when the idle period is larger. So, it 

shows that for real-life web browsing traffic, even if the idle period is high newCWV will support 

more traffic than the conventional TCP.   

 
In short, for an uncongested scenario (as may be expected in a LAN), newCWV shows improved 

performance over standard TCP. 

 

4.3. Comparing performance in a congested path 
 

To test the effectiveness of newCWV in an Internet context, a bottleneck of 2 Mbps was set with 
a finite router buffer (30 KB). The path MTU was 1500 B, which ensured a maximum of 20 

segments to be queued in the buffer. The newCWV protocol still shows improvement over 

standard TCP, which now varies from 10-35% over the idle period – burst size domain (shown in 
Figure 7).   

 

While in the previous scenario, there were no other traffic, the performance improved more for 
higher burst sizes. However, in this congested scenario, the trend is somewhat opposite: Higher 

burst sizes offer less improvement. In the case of the idle period comparison, the similarity 

remains, where a larger idle period increases the improvement as in the previous non-congested 

scenario. 
 

For bursts larger than 5 KB (larger than an IW of 4 KB), it takes about 25-33% less time on 

average for a transfer with an idle period. A larger improvement is demonstrated around 35% 
with newCWV, but the advantage diminishes for larger burst sizes (for 40 KB or 80 KB), 

because it encounters higher loss. The newCWV sender is prone to a higher loss rate for larger 

bursts. These bursts can appear either at the beginning of the TCP connection or after an idle 
period.  

Figure 8 confirms that the number of losses is higher when using newCWV. 
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Figure 7.  HTTP performance improvement in percentage is shown in a congested scenario when newCWV 
is used instead of NewReno over different burst sizes and idle periods. 

 

 
 

Figure 8. Loss plot comparing NewReno and newCWV; newCWV suffers more loss on average than 

standard TCP. 

 

A newCWV sender allows larger bursts into the network for a large HTTP response. With a finite 

network buffer this will increase the probability of (burst) loss and queuing delay for this flow 
and other flows that share a common bottleneck (e.g., higher packet loss and jitter for concurrent 

real-time applications).  

 

Total losses: 
newCWV = 3219 
NewReno = 2504 
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Although newCWV continues to show better performance in delivering bursts faster in a 
congested scenario, higher burst losses for larger bursts may degrade the overall average 

improvement in burst transfer times that could have been possible for HTTP flows. 

 

4.4. Effect of other application on HTTP with newCWV 
 

At first, the HTTP workload was run with newCWV without pacing. Table 2 shows that, for 
HTTP responses with a size of 5KB or more, there was an improvement in transfer times of 18-

20%, although it is low compared to the previous cases without any cross traffic.  

 
For large responses, such as 80 KB or more, the performance of newCWV reduces compared to 

standard TCP. The newCWV sender was observed to take about 10-15% more time to complete 

the bursts than NewReno. The large level of packet loss (and therefore delay) caused by large 
bursts being injected into the network eliminated the benefit of newCWV. This indicates that 

some burst mitigation technique is desirable. 

 
Table 2. Performance Improvement in Percentages when HTTP runs with newCWV against NewReno. A 

negative value means performance degradation. 

 

Burst Size (KB) Idle Periods 

 1 s 3 s 5 s 7 s 10 s 15 s 

5 17.9 % 18.3 % 18.4 % 18.9 % 19.1 % 19.5 % 

10 10.2 % 10.6 % 10.7 % 11.2 % 11.4 % 11.7 % 

20 6.7 % 6.7 % 6.9 % 7.1 % 7.3 % 7.3 % 

40 4.2 % 4.4 % 4.4 % 4.6 % 4.9 % 5.2 % 

80 -10.2 % - 12.5 % - 13.4% - 13.9 % - 15.1 % - 15.3 % 

 

In summary, when using a very congested bottleneck shared with other applications, newCWV 
needs to be combined with pacing – sending the burst in regular intervals – to ensure a 

performance improvement. Otherwise, it can lead to significant loss and induce delay to the 

applications using the bottleneck. 
 

To assess the effect of newCWV, an FTP application (running NewReno) shared the bottleneck 

with a HTTP workload using different algorithms: NewReno, newCWV and paced newCWV. 
 

Figure 9, shows that for the whole period of the experiment (about an hour), the FTP application 

competed with the HTTP traffic for a share of the capacity of the 2 Mbps bottleneck. Fluctuations 

in FTP throughput were observed as it shared the bottleneck with the variable rate HTTP web 
traffic. FTP did not suffer from starvation when the other TCP was using newCWV.  

The curves for newCWV follow the curve for NewReno with hardly any differences. Though 

newCWV seems to be more aggressive after an idle period than standard TCP (NewReno), which 

helps a bursty sender application, it was reacting to congestion appropriately sharing the 
bottleneck with another long-lived TCP flow. This depicts the friendliness of newCWV with 

other TCP application like FTP. 

 
In summary, newCWV demonstrated improved performance for HTTP traffic in both a congested 

and uncongested scenario. It is recommended that newCWV is used in combination with pacing, 

to smooth out the burst and hence also to reduce losses. newCWV is also fair in a sense that it 

does not poses significant threat (aggressiveness or starvation) to other co-existing TCP flows. 
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Figure 9. FTP cross-traffic throughput; no significant differences in background application performance 

while the HTTP traffic was running different algorithms. 

 

4.5. Discussion  
 

Since newCWV can avoid suboptimal performance, by defining a new way to use the cwnd and 

ssthresh during a rate-limited interval and specifies how to update these parameters after 
congestion has been detected. The mechanism defined in RFC 7661 is considered safe to use 

even when cwnd is greater than the receive window [17], because it validates the cwnd based on 

the amount of data acknowledged by the network in an RTT, which implicitly accounts for the 
allowed receive window. 

 

The paper evaluated a working version of this algorithm in Linux. Since newCWV was published 

as an experimental specification in the RFC-series as RFC 7661, it has been implemented in 
some production endpoint TCP stacks. It is referenced in the latest IETF QUIC [18] transport 

specification: QUIC Loss Detection and Congestion Control, (RFC 9002). It is also referenced in 

a range of other IETF specifications, that includes Self-Clocked Rate Adaptation for Multimedia 
(RFC 8298), Model-Based Metrics for Bulk Transport Capacity (RFC 8337), TCP Control Block 

Interdependence (RFC 9040) and Operational Considerations for Streaming Media (RFC 9317). 

 

5. CONCLUSION 
 
Web-based traffic is the dominant type of traffic in today’s Internet. As web uses HTTP/2, that 

uses TCP as underlying protocol, it is very important to study the transport behaviour to ensure 

the browsing can be made faster. A set of problems have been identified by earlier research 
works when bursty HTTP application use traditional TCP congestion control. Although some 

solutions had been proposed, they were limited and did not properly address the key 

requirements. newCWV seeks to address the congestion control problems and is implementable.  
This paper found that the newCWV mechanism is useful for applications with variable rates in 

both rate-limited periods and idle periods. newCWV can lead HTTP based traffic to completion 

in a 50% faster manner, which means web browsing will be much more faster, web based video 
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streaming would be some more smoother etc. Moreover, it does not induce any harm to other 
network traffic sharing a common bottleneck.  

 

The great impact of using newCWV is that application designers do not have to worry about the 

underling transport support for bursty applications, since the transport can accommodate a wide 
range of traffic variation. This gives application developers more freedom when developing new 

applications and can encourage the development of next generation Internet applications. For 

future work, it would be interesting to see the performance comparison with current TCP and 
QUIC implementations and to consider a variety of other network conditions.  
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