

David C. Wyld et al. (Eds): CCNET, AIMLA, CICS, IOTBS, NLTM, COIT - 2023

pp. 17-27, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.130402

LEON: LIGHT WEIGHT EDGE

DETECTION NETWORK

Nasrin Akbari and Amirali Baniasadi

Department of Computer Engineering, University of Victoria, Victoria, Canada

ABSTRACT

Deep Convolutional Neural Networks (CNNs) have achieved human-level performance in edge
detection. However, there have not been enough studies on how to efficiently utilize the

parameters of the neural network in edge detection applications. Therefore, the associated

memory and energy costs remain high. In this paper, inspired by Depthwise Separable

Convolutions and deformable convolutional networks (Deformable-ConvNet), we aim to

address current inefficiencies in edge detection applications. To this end, we propose a new

architecture, which we refer to as Lightweight Edge Detection Network (LEON). The proposed

approach is designed to integrate the advantages of the deformable unit and DepthWise

Separable convolutions architecture to create a lightweight backbone employed for efficient

feature extraction. As we show, we achieve state-of-the-art accuracy while significantly

reducing the complexity by carefully choosing proper components for edge detection purposes.

Our results on BSDS500 and NYUDv2 demonstrate that LEON outperforms the current

lightweight edge detectors while requiring only 500k parameters. It is worth mentioning that we
train the network from scratch without using pre- trained weights.

KEYWORDS

Edge detection, lightweight neural network, Receptive field, network pruning

1. INTRODUCTION

Edge detection is the process of finding meaningful transitions in an image. This is done by

detecting discontinuities in texture, colour, brightness, etc. Edges provide boundaries between
different regions in the image. Detecting these boundaries is the first step in many computer

vision tasks, such as edge-based face recognition, edge-based target recognition, scene

understanding, image segmentation, fingerprint matching, license plate detection, object
proposal, and object detection [1].

Edge detection is widely used in a variety of applications, including fingerprint recognition in
mobile devices, well-localized maps of satellite images to suppress noise and produce realistic

edge maps [2], self-driving vehicles to set the steering wheel angle based on the picture of the

road [3], and finding pathological objects in medical images [4]. So, it's important to pay close

attention to making a neural network that works well for the implementation.

The emergence of deep learning techniques has greatly promoted edge detection research over

the past few years. Traditional approaches to the BSDS500 dataset often achieve a 0.59 ODS F-
measure. DL-based methods, on the other hand, can achieve a 0.828 ODS [5]. Although recently

proposed architectures achieve high accuracy, they are computationally inefficient. This makes

developing lightweight networks that reduce the number of parameters while maintaining the

detection accuracy critical. Figure 1 shows both the detection accuracy and complexity (model

http://airccse.org/cscp.html
http://airccse.org/csit/V13N04.html
https://doi.org/10.5121/csit.2023.130402

18 Computer Science & Information Technology (CS & IT)

size) of several well-known deep learning-based methods. As shown in figure 1, the orange dot
indicates how well our model matches human perception in terms of accuracy with a few

parameters.

Many deep learning-based edge detectors use VGGNet (Visual Geometry Group) [6] as their
feature-based extractor because of its excellent performance. However, VGGNet has a pretty

extensive backbone and employs a large number of parameters, which makes it appropriate to fit

more complex tasks such as image segmentation and object recognition. This work is motivated
by the fact that edge detection is a low-level image-processing task and does not require complex

networks for feature extraction.

To decrease the number of parameters and floating point operations (FLOPs), we take advantage

of depthwise separable convolutions [7] which disentangle the spatial and channel interaction that

is mixed in a regular convolution operation. However, it reduces the performance in comparison

to conventional convolution. To compensate for the reduced performance, we increase the
receptive field by carefully choosing proper lightweight components for edge de- tection

purposes. We explain the details in section 3.

Figure 1. Comparison of complexity and accuracy performance among various edge detection schemes.
Our proposed methods (orange).

The rest of this paper is organized as follows. Section 2 reviews related works and their issues.

The proposed network architecture is described in section 3. Section 4 presents experimental
results and compares them to the state-of-the-art edge detector networks using (Berkeley

Segmentation Dataset 500) BSDS500 [8] and NYUDv2 [9] datasets. In section 5, we offer

concluding remarks and discuss future research directions.

2. RELATED WORK

Over the past few years, a number of edge-detection solutions have been developed. Almost all

edge detection approaches can be generally categorized into three groups, traditional edge
detection, learning-based ones using handcrafted features, and deep learning networks. In the

following paragraphs, we review some techniques that have been developed in recent years.

Intensity and colour gradients were the main focus of early pioneering edge detection methods.

The Sobel [10] operator measures the 2-D spatial gradient of an image, emphasizing regions of

Computer Science & Information Technology (CS & IT) 19

high spatial frequency that correspond to edges. The Canny algorithm [11] is a multistage edge
detector. In this algorithm, the intensity of the gradients is computed by employing a filter based

on the derivative of a Gaussian. The Gaussian filter reduces the impact of image noise.

Subsequently, by removing non-maximum pixels of the gradient magnitude, possible edges are

decreased to 1-pixel curves. Finally, applying the hysteresis threshold to the gradient magnitude,
edge pixels are kept or eliminated. Zero-crossing theory based algorithms are proposed by [12,

13]. Traditional approaches suffer from some limitations, including merely focusing on the

changes of local intensity while failing to recognize and remove the non-edge texture.

The introduction of learning-based edge detectors made it possible to partially overcome

challenges such as texture detection problems in traditional approaches. In this group of
detectors, hand-craft features are initially extracted. Later, classifiers trained using these features

are applied to identify edges. The first data-driven approaches were proposed by Konishi et al.

[14] who used images to learn the probability distributions of responses that correspond to the

two sets of edge filters. In another work [15], random decision forests were applied to show the
structure presented in local image patches. The structured forest uses colour and gradient features

to high-quality output edges.

The aforementioned techniques are developed according to handcrafted features, which mostly

fail to provide high-level information for semantically meaningful edge detection and have a

limited capability of capturing edges at different scales. To address these issues, a number of
CNN-based algorithms with strong learning capabilities have been proposed in recent years. One

of the most influential in DNN-based edge detection is HED[16]. This study uses fully

convolutional neural networks and deeply supervised nets to find the edge probability for every

pixel. HED uses VGGNet [6] for the feature extraction and fuses all the side outputs of VGGNet
features to minimize the weighted cross-entropy loss function. Since then, various extensions

based on HED and VGGNet have been developed, including CED [17], AMHNet [18], RCF

[19], LPCB [20], and BDCN [21].

While CNN is a very successful model, it often requires high computational power and resources.

Hence, the current trend is to design efficient CNN structures that overcome such issues. Fined

[22], dense extreme inception network [23], and TIN[5] have proposed a lightweight architecture
for edge detection. Although these networks are light and fast, they have low detection accuracy.

To achieve a better trade-off between accuracy and efficiency for edge detection, we need to

optimize the architecture and initial parameters of deep learning models so that they consume
fewer resources while maintaining accuracy. In this paper, we build our model by simplifying the

backbone for feature extraction and carefully choosing the proper components. Therefore, we

achieve good edge quality with a much simpler model compared to other studies.

3. LIGHTWEIGHT EDGE DETECTION NETWORK

Inefficiency of the models outlined in the previous section at once. In Figure 2 we present

LEON’s architecture. We trained the network from scratch. Below, we review the components
used by LEON.

3.1. Efficient Backbone

Most deep learning-based edge detectors [17–21] employ VGGNet as their feature extraction

backbone. However, we believe that edge detection is a simple task and does not need to have an
extensive backbone. We reduce the backbone’s complexity while keeping its efficiency by using

lightweight components. To resemble the pyramid structure, we stack up three stages and use a

20 Computer Science & Information Technology (CS & IT)

max-pooling operation for down sampling the features between the stages. The dimension of the
output feature maps decreases as we proceed. As we move forward in the stages, the patterns get

more complex; hence, there are larger combinations of patterns to be captured. Therefore, we

increase the feature channel number (the number of filters) in subsequent stages to capture as

many combinations as possible. Stages 1, 2, and 3 have channel numbers 16, 64, and 256,
respectively. The backbone is made of mainly a combination of deformable and customized

depthwise separable convolutions. To create the fused output, we use standard bilinear

interpolation to up sample the low-resolution features. Then, we concatenate all the stage outputs
together to form the fused output. We next elaborate on the layers and components used by

LEON in detail.

Figure 2. LEON architecture

Figure 3. Convt1 block - Convt2 block

3.1.1. Deformable convolution

Geometric transformation and variations widely existing in natural images make feature ex-

traction tasks challenging. Standard convolution kernels have a fixed structure and have
limitations in capturing geometric transformations. Deformable convolutions can address this

issue efficiently. This type of convolution has the ability to change its kernel shape and the

parameters within it to adapt to the image content. This adds 2D offset kernels to the regular

sampling location in the standard convolution, which enables the network to have different
receptive fields according to the scale of the objects. These 2D offset kernels are learnable from

the preceding feature maps using additional convolutional layers and can be trained end-to-end

using normal back propagation functions. We simply add this module at the end of each stage to
keep our network light in terms of parameters and computation. We can strengthen our features

this way before transferring them to the next stage [24].

Computer Science & Information Technology (CS & IT) 21

3.1.2. Depthwise Separable Convolution

Conventional convolution performs the channels and spatial-wise computation in one step, while

Depthwise Separable Convolution reduces the number of parameters by splitting the computation

into two steps: 1) depthwise convolution, which applies a single convolutional filter per input
channel, and 2) pointwise convolution, which creates a linear combination of the output of the

depthwise convolution [7]. This approach, however, degrades accuracy. To address this problem,

we reinforce the features by using additional side blocks while keeping the number of parameters
as low as possible. We use RELU activation after each pointwise convolution to add non-linearity

to the model for making complex decisions (Figure 3 - Convt1). To increase the accuracy of the

model while keeping the number of parameters low, we modified Convt1 to Convt2 by adding
pointwise convolution, which uses only a 1 × 1 kernel to iterate through every single point

between two RELU activations. In addition, to overcome the overfitting problem, after each

RELU activation, we employ a batch normalization technique as a regularizer.

3.2. Efficient Side Structure

3.2.1. Maxout Layer

At each stage, before transferring the inputs to the side output layers (from left to right), we do a
Maxout operation instead of the standard concatenation block. Maxout activation can reduce the

number of parameters significantly in comparison to the classical dense blocks. Instead of

stacking the output of previous layers at each stage on top of each other, we only keep the

maximum value at each position by inducing competition between feature maps and accelerating
network convergence.

3.2.2. Dilated Residual Convolution Module

To enhance the extracted features by depth-wise separable convolution in the backbone, we

connect every feature extraction layer to the dilated convolution module adopted in [5]. We use

different dilation sizes to capture different levels of receptive fields in the image. The first
dilation is 4, followed by 8, 12, and 16, and all the layers have 32 filters. After pixel-wise

aggregation, we use hierarchical residual-like connections to improve the multi-scale

representation ability at a more granular level. This block can be plugged into the state-of-the-art
backbone without any effort. Figure 4 shows the design of the DDR module.

22 Computer Science & Information Technology (CS & IT)

Figure 4. Visual Representation of dilated residual convolution module

3.2.3. Convolutional Block Attention Module (Cbam)

We use a lightweight spatial and channel attention module after the dilated residual convolution

block to focus on the relevant features while diminishing the other parts [26]. The spatial

attention extracts the inter-spatial relationships of features to find "where"’ is an informative part
of the image. To calculate this, we first apply average pooling and max pooling, which

summarize the average presence of features and the most activated presence of a feature,

respectively. Then, we use a convolution layer in addition to the concatenated feature descriptor
to create a spatial attention map that specifies where to highlight or suppress features. [26].

The channel attention block redistributes the channel's feature responses to give higher

importance to specific channels over others. In order to compute the channel attention, we
squeeze the spatial dimension of the input feature map. [26].

3.3. Loss Function

In an image, the edge and non-edge pixel data are not equally distributed. CNN models can

achieve pretty high accuracy just by predicting the majority class, but they fail to capture the
minority class. Unfortunately, this accuracy is misleading. To address this problem, we adopt the

weighted cross-entropy loss function proposed in [19].

To train the network, we match all the stages and fused outputs to the ground truth. The following
equation compares each pixel of each image to its label as.

Computer Science & Information Technology (CS & IT) 23

X, P(X), Y, W, and η, respectively, denote features extracted from the CNN network, the output

of the standard sigmoid function, the ground truth edge probability, all the parameters that will be

learned in the CNN network, and the percentage of non-edge and edge pixels. The hyper-

parameter is used to balance the number of positive and negative samples. Because each image is
being labelled by multiple annotators, and humans vary in cognition, the predefined threshold is

used to distinguish between edge and non-edge pixels in the edge probability map. If a pixel is

marked by fewer than η of the annotators, then it is considered a non-edge pixel. To generalize
the loss function to all the pixels inside the image (I), at each stage (k) and fuse layer, the

following loss function is used:

4. EXPERIMENTS AND DISCUSSIONS

4.1.1. Implementation Details

We use PyTorch for implementation and initialize the stages of our backbone networks with

Gaussian distribution with zero-mean and standard deviation of 0.01. The learning rate starts
from 0.01 and then is updated using a linear scaling factor, multiplying 0.1 for every two epochs.

The optimizer is stochastic gradient descent, and the training process terminates at eight epochs.

We conduct all the experiments on a single GPU, NVIDIA GeForce 2080Ti, with 11G memory.

4.1.2. Dataset

In order to have a fair comparison to other published works in tables 1 and 2, we evaluate our
proposed network on the same Berkeley Segmentation (BSDS500) [8] and NYUDv2 [9] Dataset .

BSDS500 consists of 200 training, 100 validation, and 200 test images. We combine the 200

training images with 100 validation images to create a training set. We adopt the data
augmentation technique similar to RCF [19]. In addition, similar to RCF, we also added the

PASCAL VOC [27] dataset and its flipped images into our training set.

The NYUD dataset is composed of 1449 densely labelled pairs of aligned RGB and depth images

(HHA). This dataset consists of video sequences from various indoor scenes captured by the
Microsoft Kinect’s RGB and Depth cameras. It is divided into 381 training, 414 validation, and

654 testing images. Similar to RCF [19], we rotate the images and corresponding annotations to 4

different angles (0, 90, 180, and 270 degrees) and flip them at each angle.

4.1.3. Performance Metrics

Note that the share of edge pixels in each image is around 10%, whereas the share of non-edge

pixels is 90%. Therefore, even when a model fails to predict any edges, its accuracy is still 90%.

As such, accuracy is a poor measure for evaluating imbalanced problems such as edge detection.

Therefore, we use F-Score for the evaluation of our model. The F-score combines the precision
and recall of the model, where it reaches its best value at one and its worst score at 0.

Recall = TruePositives / (TruePositives + FalseNega- tives)

Precision= TruePositives / (TruePositives + FalsePosi- tives)

24 Computer Science & Information Technology (CS & IT)

F-Measure = (2 * Precision * Recall) / (Precision + Recall) and

We need a threshold to binarize the output of the CNN network to make it comparable to the

ground truth, which is also binarized. There are two ways to compute the optimal threshold

corresponding to the F-score.

• Optimal Dataset Scale: Iterates over all possible thresholds and sets one threshold for the

entire dataset. The threshold that gives the best F-score for the dataset is used to calculate
ODS score.

• Optimal Image Scale: Finds the best threshold and corresponding F-score for each image.

The OIS F-score is calculated by averaging all of the F-scores for all images.

4.1.4. Comparison with State-of-the-Arts

On the BSDS500 dataset: We compare our methods in terms of F-score and number of
parameters to prior edge detection approaches, including both traditional ones and recently

proposed CNN-based models. According to Table 1 and Figure 5, we notice that our baseline

model, while using a significantly lower number of parameters, can even achieve outstanding
results (ODS of 0.792 and OIS of 0.805) which are equal or better than most recent lightweight

CNN models such as BDCN2, TIN1,TIN2, FINED3-Inf and FINED3-Train [22].

Table 1. Comparison to other methods on BSDS500 dataset.

Method ODS OIS #P (million)

Canny 0.611 0.676 -

OEF 0.746 0.77 -

gPb-UCM 0.72 0.755 -

SE 0.743 0.763 -

AMHNET 0.798 0.829 22
BDP-Net 0.808 0.828 18.7

FCL-Net 0.826 845 16.5 M

BAN 0.81 0.827 15.6

LPCB 0.815 0.834 15.7

BMRN 0.828 0.81 +14.8

RCF 0.806 0.823 14.8

HED 0.788 0.808 14.7

COB 0.793 0.82 28.8

RHN 0.817 0.833 11.5

CED 0.815 0.834 21.4

DeepEdge 0.753 0.772 -

DeepContour 0.757 0.776 0.38

BDCN 0.82 0.838 16.3

BDCN2 0.766 0.787 0.48

BDCN3 0.796 0.817 2.26

BDCN4 0.812 0.83 8.69

TIN1 0.749 0.772 0.08

TIN2 0.772 0.792 0.24

FINED3-Inf 0.788 0.804 1.08

FINED3-Train 0.79 0.808 1.43

Our model 0.792 0.805 0.506

Computer Science & Information Technology (CS & IT) 25

Figure 5. Precision-Recall curves of our models and some competitors on BSDS500 dataset

.

On the NYUD dataset: The comparison results on the NYUD dataset are illustrated in Table 2,

and the precision- recall curves are depicted in Figure 6. For testing the model on NYUD, we use

network settings similar to that used for BSDS500. Some studies use two separate models to train

RGB images and HHA feature images of NYUD and report the evaluation metrics on the average
for the outputs of the models. Our network is only tested on RGB images, so in order to evaluate

results fairly, we contrasted our model’s output with those of models that were only tested on

RGB.

Table 2. Comparison with other methods on NYUD dataset.

Method ODS OIS #P (million)

OEF 0.651 0.667 _

gPb-UCM 0.632 0.661 _

SE 0.695 0.708 _

SE+NG+ 0.706 0.734 _

AMHNET 0.744 0.758 22

BDCN 0.748 0.763 16.3
LPCB 0.739 0.754 15.7

RCF 0.743 0.757 14.8

BMRN 0.759 0.776 +14.8

HED 0.72 0.734 14.7

Our Model 0.725 0.738 0.5

Figure 6. Precision-Recall curves of our models and some competitors on the NYUD dataset.

26 Computer Science & Information Technology (CS & IT)

5. CONCLUSIONS

Edge detection has numerous practical applications in the real world; hence, we must design an

efficient architecture for its implementation. Most existing deep neural networks for edge

detection tasks use transfer learning from pre-trained models such as VGG16, which have a large

number of parameters and are trained for high-level tasks. However, edge detection has a simple
set of features and does not require a large number of convolutional layers for feature extraction.

Therefore, in this research, we introduced a new architecture that is both lightweight and has

state-of-the-art performance. Our network makes full use of customized depthwise separable and
deformable convolutions to carry out edge detection. Besides, we use lightweight components to

increase the receptive field of our model to produce high-quality edges. Our network architecture

is extendable and can potentially be employed for use in other vision tasks such as salient object
detection and semantic segmentation.

REFERENCES

[1] Victor Wiley and Thomas Lucas. “Computer vision and image processing: a paper review.

International Journal of Artificial Intelligence Research”, 2(1):29–36, 2018.

[2] Ronald J Holyer and Sarah H Peckinpaugh. Edge detection applied to satellite imagery of the oceans.

IEEE transactions on geoscience and remote sensing, 27(1):46–56, 1989.

[3] Abhishek Gupta, Alagan Anpalagan, Ling Guan, and Ahmed Shaharyar Khwaja. Deep learning for

object detection and scene perception in self-driving cars: Survey, challenges, and open issues. Array,

10:100057, 2021.

[4] Wei-Chun Lin and Jing-Wein Wang. Edge detection in medical images with quasi high-pass filter

based on local statistics. Biomedical Signal Processing and Control, 39:294–302, 2018.
[5] Jan Kristanto Wibisono and Hsueh-Ming Hang. Traditional method inspired deep neural network for

edge detection. In 2020 IEEE International Conference on Image Processing (ICIP), pages 678–682.

IEEE, 2020.

[6] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image

recognition. arXiv preprint arXiv:1409.1556, 2014.

[7] Yunhui Guo, Yandong Li, Liqiang Wang, and Tajana Rosing. Depthwise convolution is all you need

for learning multiple visual domains. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 33, pages 8368–8375, 2019.

[8] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and

hierarchical image segmentation. IEEE transactions on pattern analysis and machine intelligence,

33(5):898–916, 2010.

[9] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. Indoor segmentation and support
inference from rgbd images. In European conference on computer vision, pages 746–760. Springer,

2012.

[10] O Rebecca Vincent, Olusegun Folorunso, et al. A descriptive algorithm for sobel image edge

detection. In Proceedings of informing science & IT education conference (InSITE), volume 40,

pages 97–107, 2009.

[11] Renjie Song, Ziqi Zhang, and Haiyang Liu. Edge connection based canny edge detection algorithm.

Pattern Recognition and Image Analysis, 27(4):740–747, 2017.

[12] Rajiv Mehrotra and Shiming Zhan. A computational approach to zero-crossing-based two-

dimensional edge detection. Graphical Models and Image Processing, 58(1):1–17, 1996.

[13] James J. Clark. Authenticating edges produced by zero-crossing algorithms. IEEE Trans- actions on

Pattern Analysis and Machine Intelligence, 11(1):43–57, 1989.
[14] Scott Konishi, Alan L. Yuille, James M. Coughlan, and Song Chun Zhu. Statistical edge detection:

Learning and evaluating edge cues. IEEE Transactions on Pattern Analysis and Machine Intelligence,

25(1):57–74, 2003.

[15] Piotr Dollár and C Lawrence Zitnick. Fast edge detection using structured forests. IEEE transactions

on pattern analysis and machine intelligence, 37(8):1558–1570, 2014.

[16] Saining Xie and Zhuowen Tu. Holistically-nested edge detection. In Proceedings of the IEEE

international conference on computer vision, pages 1395–1403, 2015.

Computer Science & Information Technology (CS & IT) 27

[17] Yupei Wang, Xin Zhao, and Kaiqi Huang. Deep crisp boundaries. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 3892–3900, 2017.

[18] Dan Xu, Wanli Ouyang, Xavier Alameda-Pineda, Elisa Ricci, Xiaogang Wang, and Nicu Sebe.

Learning deep structured multi-scale features using attention-gated crfs for contour prediction.

Advances in neural information processing systems, 30, 2017.
[19] Yun Liu, Ming-Ming Cheng, Xiaowei Hu, Kai Wang, and Xiang Bai. Richer convolutional features

for edge detection. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 3000–3009, 2017.

[20] Ruoxi Deng, Chunhua Shen, Shengjun Liu, Huibing Wang, and Xinru Liu. Learning to predict crisp

boundaries. In Proceedings of the European Conference on Computer Vision (ECCV), pages 562–

578, 2018.

[21] Jianzhong He, Shiliang Zhang, Ming Yang, Yanhu Shan, and Tiejun Huang. Bi-directional cascade

network for perceptual edge detection. In Proceedings of the IEEE/CVF Confer- ence on Computer

Vision and Pattern Recognition, pages 3828–3837, 2019.

[22] Jan Kristanto Wibisono and Hsueh-Ming Hang. Fined: Fast inference network for edge detection.

arXiv preprint arXiv:2012.08392, 2020.

[23] Xavier Soria Poma, Edgar Riba, and Angel Sappa. Dense extreme inception network: Towards a
robust cnn model for edge detection. In Proceedings of the IEEE/CVF Winter Conference on

Applications of Computer Vision, pages 1923–1932, 2020.

[24] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable

convolutional networks. In Proceedings of the IEEE international conference on computer vision,

pages 764–773, 2017.

[25] Leonie Henschel, Sailesh Conjeti, Santiago Estrada, Kersten Diers, Bruce Fischl, and Mar- tin Reuter.

Fastsurfer-a fast and accurate deep learning based neuroimaging pipeline. Neu- roImage, 219:117012,

2020.

[26] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So Kweon. Cbam: Convolutional block

attention module. In Proceedings of the European conference on computer vision (ECCV), pages 3–

19, 2018.
[27] Roozbeh Mottaghi, Xianjie Chen, Xiaobai Liu, Nam-Gyu Cho, Seong-Whan Lee, Sanja Fi- dler,

Raquel Urtasun, and Alan Yuille. The role of context for object detection and semantic segmentation

in the wild. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages

891–898, 2014.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

	Edge detection, lightweight neural network, Receptive field, network pruning

