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ABSTRACT 
 
Deep Convolutional Neural Networks (CNNs) have achieved human-level performance in edge 
detection. However, there have not been enough studies on how to efficiently utilize the 

parameters of the neural network in edge detection applications. Therefore, the associated 

memory and energy costs remain high. In this paper, inspired by Depthwise Separable 

Convolutions and deformable convolutional networks (Deformable-ConvNet), we aim to 

address current inefficiencies in edge detection applications. To this end, we propose a new 

architecture, which we refer to as Lightweight Edge Detection Network (LEON ). The proposed 

approach is designed to integrate the advantages of the deformable unit and DepthWise 

Separable convolutions architecture to create a lightweight backbone employed for efficient 

feature extraction. As we show, we achieve state-of-the-art accuracy while significantly 

reducing the complexity by carefully choosing proper components for edge detection purposes. 

Our results on BSDS500 and NYUDv2 demonstrate that LEON outperforms the current 

lightweight edge detectors while requiring only 500k parameters. It is worth mentioning that we 
train the network from scratch without using pre- trained weights. 
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1. INTRODUCTION 
 

Edge detection is the process of finding meaningful transitions in an image. This is done by 

detecting discontinuities in texture, colour, brightness, etc. Edges provide boundaries between 
different regions in the image. Detecting these boundaries is the first step in many computer 

vision tasks, such as edge-based face recognition, edge-based target recognition, scene 

understanding, image segmentation, fingerprint matching, license plate detection, object 
proposal, and object detection [1]. 

 

Edge detection is widely used in a variety of applications, including fingerprint recognition in 
mobile devices, well-localized maps of satellite images to suppress noise and produce realistic 

edge maps [2], self-driving vehicles to set the steering wheel angle based on the picture of the 

road [3], and finding pathological objects in medical images [4]. So, it's important to pay close 

attention to making a neural network that works well for the implementation. 
 

The emergence of deep learning techniques has greatly promoted edge detection research over 

the past few years. Traditional approaches to the BSDS500 dataset often achieve a 0.59 ODS F-
measure. DL-based methods, on the other hand, can achieve a 0.828 ODS [5]. Although recently 

proposed architectures achieve high accuracy, they are computationally inefficient. This makes 

developing lightweight networks that reduce the number of parameters while maintaining the 

detection accuracy critical. Figure 1 shows both the detection accuracy and complexity (model 
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size) of several well-known deep learning-based methods. As shown in figure 1, the orange dot 
indicates how well our model matches human perception in terms of accuracy with a few 

parameters. 

 

Many deep learning-based edge detectors use VGGNet (Visual Geometry Group) [6] as their 
feature-based extractor because of its excellent performance. However, VGGNet has a pretty 

extensive backbone and employs a large number of parameters, which makes it appropriate to fit 

more complex tasks such as image segmentation and object recognition. This work is motivated 
by the fact that edge detection is a low-level image-processing task and does not require complex 

networks for feature extraction. 

 
To decrease the number of parameters and floating point operations (FLOPs), we take advantage 

of depthwise separable convolutions [7] which disentangle the spatial and channel interaction that 

is mixed in a regular convolution operation. However, it reduces the performance in comparison 

to conventional convolution. To compensate for the reduced performance, we increase the 
receptive field by carefully choosing proper lightweight components for edge de- tection 

purposes. We explain the details in section 3. 

 

 
 

Figure 1. Comparison of complexity and accuracy performance among various edge detection schemes. 
Our proposed methods (orange). 

 

The rest of this paper is organized as follows. Section 2 reviews related works and their issues. 

The proposed network architecture is described in section 3. Section 4 presents experimental 
results and compares them to the state-of-the-art edge detector networks using (Berkeley 

Segmentation Dataset 500) BSDS500 [8] and NYUDv2 [9] datasets. In section 5, we offer 

concluding remarks and discuss future research directions. 
 

2. RELATED WORK 
 

Over the past few years, a number of edge-detection solutions have been developed. Almost all 

edge detection approaches can be generally categorized into three groups, traditional edge 
detection, learning-based ones using handcrafted features, and deep learning networks. In the 

following paragraphs, we review some techniques that have been developed in recent years. 

 
Intensity and colour gradients were the main focus of early pioneering edge detection methods. 

The Sobel [10] operator measures the 2-D spatial gradient of an image, emphasizing regions of 
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high spatial frequency that correspond to edges. The Canny algorithm [11] is a multistage edge 
detector. In this algorithm, the intensity of the gradients is computed by employing a filter based 

on the derivative of a Gaussian. The Gaussian filter reduces the impact of image noise. 

Subsequently, by removing non-maximum pixels of the gradient magnitude, possible edges are 

decreased to 1-pixel curves. Finally, applying the hysteresis threshold to the gradient magnitude, 
edge pixels are kept or eliminated. Zero-crossing theory based algorithms are proposed by [12, 

13]. Traditional approaches suffer from some limitations, including merely focusing on the 

changes of local intensity while failing to recognize and remove the non-edge texture. 
 

The introduction of learning-based edge detectors made it possible to partially overcome 

challenges such as texture detection problems in traditional approaches. In this group of 
detectors, hand-craft features are initially extracted. Later, classifiers trained using these features 

are applied to identify edges. The first data-driven approaches were proposed by Konishi et al. 

[14] who used images to learn the probability distributions of responses that correspond to the 

two sets of edge filters. In another work [15], random decision forests were applied to show the 
structure presented in local image patches. The structured forest uses colour and gradient features 

to high-quality output edges. 

 
The aforementioned techniques are developed according to handcrafted features, which mostly 

fail to provide high-level information for semantically meaningful edge detection and have a 

limited capability of capturing edges at different scales. To address these issues, a number of 
CNN-based algorithms with strong learning capabilities have been proposed in recent years. One 

of the most influential in DNN-based edge detection is HED[16]. This study uses fully 

convolutional neural networks and deeply supervised nets to find the edge probability for every 

pixel. HED uses VGGNet [6] for the feature extraction and fuses all the side outputs of VGGNet 
features to minimize the weighted cross-entropy loss function. Since then, various extensions 

based on HED and VGGNet have been developed, including CED [17], AMHNet [18], RCF 

[19], LPCB [20], and BDCN [21]. 
 

While CNN is a very successful model, it often requires high computational power and resources. 

Hence, the current trend is to design efficient CNN structures that overcome such issues. Fined 

[22], dense extreme inception network [23], and TIN[5] have proposed a lightweight architecture 
for edge detection. Although these networks are light and fast, they have low detection accuracy. 

To achieve a better trade-off between accuracy and efficiency for edge detection, we need to 

optimize the architecture and initial parameters of deep learning models so that they consume 
fewer resources while maintaining accuracy. In this paper, we build our model by simplifying the 

backbone for feature extraction and carefully choosing the proper components. Therefore, we 

achieve good edge quality with a much simpler model compared to other studies. 
 

3. LIGHTWEIGHT EDGE DETECTION NETWORK 
 

Inefficiency of the models outlined in the previous section at once. In Figure 2 we present 

LEON’s architecture. We trained the network from scratch. Below, we review the components 
used by LEON. 

 

3.1. Efficient Backbone 
 

Most deep learning-based edge detectors [17–21] employ VGGNet as their feature extraction 

backbone. However, we believe that edge detection is a simple task and does not need to have an 
extensive backbone. We reduce the backbone’s complexity while keeping its efficiency by using 

lightweight components. To resemble the pyramid structure, we stack up three stages and use a 
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max-pooling operation for down sampling the features between the stages. The dimension of the 
output feature maps decreases as we proceed. As we move forward in the stages, the patterns get 

more complex; hence, there are larger combinations of patterns to be captured. Therefore, we 

increase the feature channel number (the number of filters) in subsequent stages to capture as 

many combinations as possible. Stages 1, 2, and 3 have channel numbers 16, 64, and 256, 
respectively. The backbone is made of mainly a combination of deformable and customized 

depthwise separable convolutions. To create the fused output, we use standard bilinear 

interpolation to up sample the low-resolution features. Then, we concatenate all the stage outputs 
together to form the fused output. We next elaborate on the layers and components used by 

LEON in detail. 

 

 
 

Figure 2. LEON architecture 

 

  
 

Figure 3. Convt1 block - Convt2 block 

 

3.1.1. Deformable convolution 
 

Geometric transformation and variations widely existing in natural images make feature ex- 

traction tasks challenging. Standard convolution kernels have a fixed structure and have 
limitations in capturing geometric transformations. Deformable convolutions can address this 

issue efficiently. This type of convolution has the ability to change its kernel shape and the 

parameters within it to adapt to the image content. This adds 2D offset kernels to the regular 

sampling location in the standard convolution, which enables the network to have different 
receptive fields according to the scale of the objects. These 2D offset kernels are learnable from 

the preceding feature maps using additional convolutional layers and can be trained end-to-end 

using normal back propagation functions. We simply add this module at the end of each stage to 
keep our network light in terms of parameters and computation. We can strengthen our features 

this way before transferring them to the next stage [24]. 
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3.1.2. Depthwise Separable Convolution 
 

Conventional convolution performs the channels and spatial-wise computation in one step, while 

Depthwise Separable Convolution reduces the number of parameters by splitting the computation 

into two steps: 1) depthwise convolution, which applies a single convolutional filter per input 
channel, and 2) pointwise convolution, which creates a linear combination of the output of the 

depthwise convolution [7]. This approach, however, degrades accuracy. To address this problem, 

we reinforce the features by using additional side blocks while keeping the number of parameters 
as low as possible. We use RELU activation after each pointwise convolution to add non-linearity 

to the model for making complex decisions (Figure 3 - Convt1). To increase the accuracy of the 

model while keeping the number of parameters low, we modified Convt1 to Convt2 by adding 
pointwise convolution, which uses only a 1 × 1 kernel to iterate through every single point 

between two RELU activations. In addition, to overcome the overfitting problem, after each 

RELU activation, we employ a batch normalization technique as a regularizer. 

 

3.2. Efficient Side Structure 
 

3.2.1. Maxout Layer 
 

At each stage, before transferring the inputs to the side output layers (from left to right), we do a 
Maxout operation instead of the standard concatenation block. Maxout activation can reduce the 

number of parameters significantly in comparison to the classical dense blocks. Instead of 

stacking the output of previous layers at each stage on top of each other, we only keep the 

maximum value at each position by inducing competition between feature maps and accelerating 
network convergence.  

 

3.2.2. Dilated Residual Convolution Module 
 

To enhance the extracted features by depth-wise separable convolution in the backbone, we 

connect every feature extraction layer to the dilated convolution module adopted in [5]. We use 

different dilation sizes to capture different levels of receptive fields in the image. The first 
dilation is 4, followed by 8, 12, and 16, and all the layers have 32 filters. After pixel-wise 

aggregation, we use hierarchical residual-like connections to improve the multi-scale 

representation ability at a more granular level. This block can be plugged into the state-of-the-art 
backbone without any effort. Figure 4 shows the design of the DDR module. 
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Figure 4. Visual Representation of dilated residual convolution module 
 

3.2.3. Convolutional Block Attention Module (Cbam) 
 

We use a lightweight spatial and channel attention module after the dilated residual convolution 

block to focus on the relevant features while diminishing the other parts [26]. The spatial 

attention extracts the inter-spatial relationships of features to find "where"’ is an informative part 
of the image. To calculate this, we first apply average pooling and max pooling, which 

summarize the average presence of features and the most activated presence of a feature, 

respectively. Then, we use a convolution layer in addition to the concatenated feature descriptor 
to create a spatial attention map that specifies where to highlight or suppress features. [26]. 

The channel attention block redistributes the channel's feature responses to give higher 

importance to specific channels over others. In order to compute the channel attention, we 
squeeze the spatial dimension of the input feature map. [26]. 

 

3.3. Loss Function 
 

In an image, the edge and non-edge pixel data are not equally distributed. CNN models can 

achieve pretty high accuracy just by predicting the majority class, but they fail to capture the 
minority class. Unfortunately, this accuracy is misleading. To address this problem, we adopt the 

weighted cross-entropy loss function proposed in [19]. 

 

To train the network, we match all the stages and fused outputs to the ground truth. The following 
equation compares each pixel of each image to its label as. 
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X, P(X), Y, W, and η, respectively, denote features extracted from the CNN network, the output 

of the standard sigmoid function, the ground truth edge probability, all the parameters that will be 

learned in the CNN network, and the percentage of non-edge and edge pixels. The hyper-

parameter is used to balance the number of positive and negative samples. Because each image is 
being labelled by multiple annotators, and humans vary in cognition, the predefined threshold is 

used to distinguish between edge and non-edge pixels in the edge probability map. If a pixel is 

marked by fewer than η of the annotators, then it is considered a non-edge pixel. To generalize 
the loss function to all the pixels inside the image (I), at each stage (k) and fuse layer, the 

following loss function is used: 

 

 
 

4. EXPERIMENTS AND DISCUSSIONS 
 

4.1.1. Implementation Details 
 

We use PyTorch for implementation and initialize the stages of our backbone networks with 

Gaussian distribution with zero-mean and standard deviation of 0.01. The learning rate starts 
from 0.01 and then is updated using a linear scaling factor, multiplying 0.1 for every two epochs. 

The optimizer is stochastic gradient descent, and the training process terminates at eight epochs. 

We conduct all the experiments on a single GPU, NVIDIA GeForce 2080Ti, with 11G memory. 
 

4.1.2. Dataset 
 

In order to have a fair comparison to other published works in tables 1 and 2, we evaluate our 
proposed network on the same Berkeley Segmentation (BSDS500) [8] and NYUDv2 [9] Dataset . 

BSDS500 consists of 200 training, 100 validation, and 200 test images. We combine the 200 

training images with 100 validation images to create a training set. We adopt the data 
augmentation technique similar to RCF [19]. In addition, similar to RCF, we also added the 

PASCAL VOC [27] dataset and its flipped images into our training set. 

The NYUD dataset is composed of 1449 densely labelled pairs of aligned RGB and depth images 

(HHA). This dataset consists of video sequences from various indoor scenes captured by the 
Microsoft Kinect’s RGB and Depth cameras. It is divided into 381 training, 414 validation, and 

654 testing images. Similar to RCF [19], we rotate the images and corresponding annotations to 4 

different angles (0, 90, 180, and 270 degrees) and flip them at each angle. 
 

4.1.3. Performance Metrics 
 
Note that the share of edge pixels in each image is around 10%, whereas the share of non-edge 

pixels is 90%. Therefore, even when a model fails to predict any edges, its accuracy is still 90%. 

As such, accuracy is a poor measure for evaluating imbalanced problems such as edge detection. 

Therefore, we use F-Score for the evaluation of our model. The F-score combines the precision 
and recall of the model, where it reaches its best value at one and its worst score at 0. 

 

Recall = TruePositives / (TruePositives + FalseNega- tives) 
                                 

Precision= TruePositives / (TruePositives + FalsePosi- tives) 
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F-Measure = (2 * Precision * Recall) / (Precision + Recall) and 
 

We need a threshold to binarize the output of the CNN network to make it comparable to the 

ground truth, which is also binarized. There are two ways to compute the optimal threshold  

corresponding to the F-score. 
 

• Optimal Dataset Scale: Iterates over all possible thresholds and sets one threshold for the 

entire dataset. The threshold that gives the best F-score for the dataset is used to calculate 
ODS score. 

• Optimal Image Scale: Finds the best threshold and corresponding F-score for each image. 

The OIS F-score is calculated by averaging all of the F-scores for all images. 
 

4.1.4. Comparison with State-of-the-Arts 

 

On the BSDS500 dataset: We compare our methods in terms of F-score and number of 
parameters to prior edge detection approaches, including both traditional ones and recently 

proposed CNN-based models. According to Table 1 and Figure 5, we notice that our baseline 

model, while using a significantly lower number of parameters, can even achieve outstanding 
results (ODS of 0.792 and OIS of 0.805) which are equal or better than most recent lightweight 

CNN models such as BDCN2, TIN1,TIN2, FINED3-Inf and FINED3-Train [22]. 

 
Table 1.  Comparison to other methods on BSDS500 dataset. 

 

Method ODS OIS  #P (million ) 

Canny  0.611 0.676 - 

OEF 0.746 0.77 - 

gPb-UCM 0.72 0.755 - 

SE 0.743 0.763 - 

AMHNET  0.798 0.829 22 
BDP-Net  0.808 0.828 18.7 

FCL-Net  0.826 845 16.5 M 

BAN  0.81 0.827 15.6 

LPCB  0.815 0.834 15.7 

BMRN  0.828 0.81 +14.8 

RCF  0.806 0.823 14.8 

HED 0.788 0.808 14.7 

COB  0.793 0.82 28.8 

RHN  0.817 0.833 11.5 

CED  0.815 0.834 21.4 

DeepEdge 0.753 0.772 - 

DeepContour 0.757 0.776 0.38 

BDCN 0.82 0.838 16.3 

BDCN2  0.766 0.787 0.48 

BDCN3  0.796 0.817 2.26 

BDCN4  0.812 0.83 8.69 

TIN1  0.749 0.772 0.08 

TIN2 0.772 0.792 0.24 

FINED3-Inf  0.788 0.804 1.08 

FINED3-Train  0.79 0.808 1.43 

Our model 0.792 0.805 0.506 
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Figure 5. Precision-Recall curves of our models and some competitors on BSDS500 dataset 

. 

On the NYUD dataset: The comparison results on the NYUD dataset are illustrated in Table 2, 

and the precision- recall curves are depicted in Figure 6. For testing the model on NYUD, we use 

network settings similar to that used for BSDS500. Some studies use two separate models to train 

RGB images and HHA feature images of NYUD and report the evaluation metrics on the average 
for the outputs of the models. Our network is only tested on RGB images, so in order to evaluate 

results fairly, we contrasted our model’s output with those of models that were only tested on 

RGB. 
 

Table 2.  Comparison with other methods on NYUD dataset. 

 

Method ODS OIS #P (million ) 

OEF 0.651 0.667 _ 

gPb-UCM  0.632 0.661 _ 

SE 0.695 0.708 _ 

SE+NG+ 0.706 0.734 _ 

AMHNET 0.744 0.758 22 

BDCN 0.748 0.763 16.3 
LPCB  0.739 0.754 15.7 

RCF  0.743 0.757 14.8 

BMRN 0.759 0.776 +14.8 

HED  0.72 0.734 14.7 

Our Model 0.725 0.738 0.5 

 

 
 

Figure 6. Precision-Recall curves of our models and some competitors on the NYUD dataset. 
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5. CONCLUSIONS 
 
Edge detection has numerous practical applications in the real world; hence, we must design an 

efficient architecture for its implementation. Most existing deep neural networks for edge 

detection tasks use transfer learning from pre-trained models such as VGG16, which have a large 

number of parameters and are trained for high-level tasks. However, edge detection has a simple 
set of features and does not require a large number of convolutional layers for feature extraction. 

Therefore, in this research, we introduced a new architecture that is both lightweight and has 

state-of-the-art performance. Our network makes full use of customized depthwise separable and 
deformable convolutions to carry out edge detection. Besides, we use lightweight components to 

increase the receptive field of our model to produce high-quality edges. Our network architecture 

is extendable and can potentially be employed for use in other vision tasks such as salient object 
detection and semantic segmentation. 
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