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ABSTRACT 
 
All living things including plants need water to survive, and agriculture is the world’s biggest 

user of water [4]. Unfortunately, in a worst-case scenario, over-watering and drying up cause 

both water waste and the plant’s death [5]. Guided by this problem that is frequently occurring 

around the world, we designed an app to determine if the plant needs to be watered or not by 

capturing pictures of a certain plant and training an AI to compare whether the soil in the pot is 

dry or wet. In this program, we use Raspberry Pi to capture an image of the plant every 10 

seconds, in which the Python code using TensorFlow inside the Raspberry Pi will determine the 

moisture level of the soil [6][7]. The result will be posted to Firebase with a timestamp, and 

lastly, we have a mobile app that can display the result from Firebase to the user. We published 
our application to Apple’s App Store and the Google Play Store, and public installation of the 

app means that it can have more widespread usage. An experiment was performed to determine 

whether the application’s model can accurately determine soil moisture [8]. The results indicate 

that the model is very accurate for the vast majority of soil samples under various lighting 

conditions. 
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1. INTRODUCTION 
 

If you ever noticed your plant is turning yellow, it is possible that your plant is being 
overwatered. Overwatering is one of the most common causes of plant problems [9]. 

Overwatering severely limits the supply of oxygen that roots depend on to function properly, 

meaning that plants do not get enough oxygen to survive. Also, if the soil is heavily drained, it 

will become waterlogged and the roots growing in this soil will die [10]. Furthermore, 
overwatering can lead to broader problems such as the over usage of water. Take California 

farmers as an example. In the year 2021, California’s farmers pumped an additional six to seven 

million acre-feet of water from their wells above what they normally use. This quantity of water 
would cover 10,000 square miles with a foot of water. Problems related to overwatering are 

happening in a lot of parts of the world, from one’s backyard garden to a local farm. So, in what 

ways can people prevent a plant from being overwatered or dried out? 

 
Some people come up with a sensor that can detect the moisture level of soil for the purpose of 

avoiding overwatering. However, these sensors assume that the owner only has a small number 
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of plants, which is not the case. Normally, people with large farms tend to need these sensors 
more because they can’t take care of every plant that well and make sure they are healthy. To 

make sure every part of the soil on the farm is healthy, they will need to buy hundreds and 

thousands of them, which leads to the second issue. A second practical problem is that the sensor 

needs to be taken care of. These sensors detect the moisture level by directly inserting them into 
the soil and waiting for a few minutes then pulling them out. Let's use the case as if you own a 

large plantation and are rich enough to afford to buy many of these sensors. You will need to 

insert them one by one and sit there waiting for the sensor to work. Then, you will need to record 
the mixture level for each area you measure and determine whether a certain area needs to be 

watered or not. Next, you will go around your plantation again to pull each sensor out of the soil, 

and lastly, you need to clean them for them to work again. This process takes both time and 
effort, which are both valuable. Seeing these issues with existing tools, we came up with our 

topic of creating an app that can monitor your plant and notify you when the plant needs to be 

watered, which can avoid both overwatering and drying out of the plant. 

 
The purpose of our application is to predict and provide a real-time moisture level of plants and 

avoid overwatering or withering. To provide an accurate estimate, the application uses many 

steps to make predictions. Firstly, the application gathers the plant’s picture by using a small 
Raspberry Pi camera that the user can operate simply. Secondly, the Raspberry Pi camera sends 

the picture to Raspberry Pi, where our program analyzes and processes the image. Thirdly, 

Raspberry Pi sends the results and analyzed data to Firebase, where our server is built and data is 
stored in [11]. Lastly, Firebase returns the results to the user’s mobile application where the user  

can access the data. However, only following a specific order to process the image in some cases 

won’t always be accurate, instead, we also used a machine learning process to improve the 

application even more. Compared to other moisture sensors, our sensor requires much fewer 
conditions to run accurately, for example, our sensor can take pictures of large amounts of soil 

by simply pointing the camera to it. The sensor analyzes the soil as soon as the user takes the 

picture. While some other moisture detectors requires other more complicated steps like pointing 
a long iron stick, our method has a much simpler and more streamlined process. 

 

The effectiveness of the application can be measured by the accuracy of the application in 

determining the soil moisture of a given sample of soil. Implementing a smaller-scale experiment 
to start with can pave the way to future larger-scale experiments after the necessary adjustments 

to the application have been made. The experiment involves 20 different soil samples, of which 

10 of them are dry and 10 of them are thoroughly watered. Using the application, each sample 
will be analyzed for its soil moisture by taking a picture of it from a top-down angle. Having all 

the pictures taken from the same angle can reduce confounding variables in the experiment. The 

total number of dry soil samples and the number of wet soil samples that were correctly 
identified will be recorded in a table. The goal of this experiment is to ensure that the basic code 

and model within the application work as intended so that more adjustments and expansions can 

safely be made to the application in the future. If almost all of the soil samples are identified 

correctly by the application, the code and model will need no further adjustments in the near 
future, and effort spent on improving the application can be applied to other aspects of the 

application instead. However, if a significant portion of the samples is incorrectly identified by 

the application, then the most urgent change to make would be creating a new model or adjusting 
the current model. By progressing with the application, it can hopefully find practical use in the 

field of agriculture. 

 
The rest of the paper is organized as follows: Section 2 gives the detail on the challenges that we 

met during designing and developing the application and the experiment to test the effectiveness 

of the application; Section 3 focuses on the detail of our solution related to the challenges that 

are mentioned in section 2; Section 4 presents the details about the experiments we did and the 
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related works will be presented in Section 5; lastly, Section 6 provides concluding thoughts 
regarding the project as well as a brief self-reflection to see what could be improved on in the 

near future. 

 

2. CHALLENGES 
 

In order to build the project, a few challenges have been identified as follows. 
 

2.1. Deciding what angle to approach the problem with 

 

The first obstacle with the project was deciding what angle to approach the problem with. 

Providing plants with an improper amount of water to cause overwatering and drying is a 
relevant issue, so a reasonable solution would be offering people a method to measure the 

moisture of a given area of soil. To do this, a sensor could be used to take a picture of the soil.  

Using the picture of the soil, a system would need to determine the soil moisture from the picture 
and return the result to the user in a convenient manner. The simplest solution to do so is 

a mobile application. Most people carry a phone around nowadays, which means that almost 

everyone will be able to easily access the application. The main overall concept behind the 

mobile application is retrieving the soil moisture from the sensor and the back-end code, then 
printing the predicted soil moisture to the screen, which can inform users of the application and 

help them determine whether or not they should keep watering a plant. 

 

2.2. Creating the code that would be used in the application 

 

The next challenge is creating the code that would be used in the application. The purpose of the 
code would be to retrieve a picture of the soil and make a prediction as to whether the plant has 

been properly watered or not. To do so, a sensor that acts as a camera will constantly check what 

it is currently seeing for soil moisture by using a while True loop. By using a while True loop, 

the code ensures that as long as the application is running, the application will constantly run the 
lines of code to update the image every 10 seconds with the most recent image that the sensor 

detects, then loads a new model to run through the updated image with. Another issue with the 

code is that the front-end is made with Thunkable and the back-end is coded using Flutter. 

To combine the two different programming languages, a Flask server is used; the Flask 

server helps HTTP requests move back and forth. Furthermore, Firebase also helps with 

the transferring of image files. 
 

2.3. Figuring out how to experiment with the system 

 

The final obstacle was figuring out how to experiment with the system. The ideal experiment 
would be testing with multiple sensors across a wide area of land for soil moisture. However, the 

application is currently only capable of supporting one sensor at a time, and access to much 

farmland is costly and difficult to acquire. Furthermore, before making such a large-scale 

experiment, determining whether the application is reliable at accurately gauging soil moisture 
on a smaller scale is an important step. Therefore, the experiment that was decided upon was to 

take ten samples of dry soil and ten samples of moisturized soil, use the sensor to observe the 

predicted soil moisture levels from the application for each sample, and record the results on a 
table. If the application was able to accurately identify the soil moisture for the vast majority of 

the soil samples, it could be concluded that the application would make for a reliable product. 
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3. SOLUTION 

 

 
 

Figure 1. Overview of the solution 

 
The system of the application involves a camera, a Raspberry Pi, a Firebase server, and the 

mobile application itself. A Raspberry Pi is a small and low-cost single-board computer that is 

capable of requesting and retrieving pictures from a connected camera. The camera is placed to 

face a soil sample, and the camera takes a picture of the soil and sends it to the Raspberry Pi 
whenever it is instructed to do so. The Raspberry Pi runs Python code that acts as the back-end 

of the mobile application and runs a model to determine whether the soil sample that is captured 

in the picture is dry soil or wet soil, using the image retrieved from the camera as input for the 
model [12]. As Python is a popular and relatively simple language in terms of syntax, there are 

multiple packages to choose from dedicated to artificial intelligence and image classification. 

After the model finishes processing the image, the results are sent to the Firebase server. Finally, 
the results are retrieved from the server and printed in the mobile application. The front-end of 

the application is created with Thunkable, which is a platform that prides itself on its simplicity 

and allows the building of mobile applications with little to no code; rather, Thunkable users can 

drag and drop any components of the user interface that they desire. Within the application, the 
information that is projected to the screen is the classification of either wet soil or dry soil, the 

percentage of confidence from the model, and the image that was taken from the camera. 
 

Python was selected to be the code for the back-end; it is not only easy to work with due to its 

relatively simple syntax but also convenient to achieve specific features due to the myriad of 
packages that are available. To create the back-end of the application, the Python code was 

separated into four separate Python files. The first Python file is for the application itself. Within 

this file, the cv2 file is used to perform video capture [14]. Then, a while True loop is made to 
indicate that the code within this loop should continue to run as long as the application is active 

and running. Variables collect what is currently being read from the camera, and the timestamp 

is collected as well by using Python’s time package. Every 10 seconds, the old timestamp will be 
replaced with the new, current timestamp, and a new image will be retrieved. Using the path of 

the new image, the predict method from the classifier file is called. The predict method makes 

use of three other methods; one of them loads a model, the second one loads the labels, and the 

final one loads the image. Using the package TensorFlow, a model is loaded in and allocated 
tensors [13]. Then, the input and output tensors are retrieved and returned within the method to 

load a tflite model. For the method that loads labels, the path to the labels is opened and read, 

then compiled into a list and returned. The final method to load the image uses an image path 
and specifies that the target size of the image should be 224 pixels by 224 pixels. The loaded 

image is then converted to an array, has a batch created for it, and then is returned. The predict 

method loads the model, loads the label, and loads the image in that order. After the input tensor 

is set, the inference is run by calling the invoke method on the model, then the prediction is 
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retrieved by retrieving the tensor and taking the one with the highest confidence. 
 

Thunkable is used as the front-end, and the application is divided into two separate screens. The 

first screen simply has a logo object that acts as an introductory splash screen. The second screen 

is the main screen that reveals all of the needed information to the user. There are four 
components on this screen, which are the soil label, the time last updated in seconds, the 

confidence label, and the captured image by the camera. The soil label states whether the soil 

sample was determined to be a “Wet Soil Pot” or a “Dry Soil Pot”. The confidence label states  
how confident the model was in its prediction as a percentage. The Firebase real-time database is 

indicated within Thunkable as an invisible component, which is how the components on the 

second screen are able to retrieve the necessary information. 
 

 
 

 
 

Figure 2. Pictures of the Python back-end code 

 

 
 

Figure 3. Pictures of the mobile application 
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4. EXPERIMENT 

 
An experiment was performed specifically to test the accuracy of the model in correctly 

identifying the moisture of soil in a given soil sample. Ten wet soil samples and ten dry soil 

samples were gathered, making twenty different soil samples in total. To reduce confounding 

variables regarding the samples themselves, each sample used approximately the sample amount 
of soil, and each wet soil sample was watered with approximately the same amount of water. 

Then, the sensor in the application system was used to take pictures of the soil from a top-down 

angle, in which taking the pictures of all the samples from the same angle further reduces 
confounding variables by keeping each sample as consistent as possible. After all the samples 

have been tested for their soil moisture, the number of correctly identified samples is recorded in 

a table. 
 

  
 

Figure 4. Table of experiment 1 
 
 

 
  

Figure 5. Application prediction accuracy 

 

The application scored highly on its accuracy of both dry soil samples and wet soil samples. The 

experiment indicated that the application has a 100% success rate when it came to identifying 
wet soil samples. However, the application only scored a 90% success rate when testing dry soil 

samples, in which one of the soil samples was identified incorrectly as a wet soil sample. A 

possible explanation as to why one of the dry samples was identified incorrectly was because of 
inconsistent lighting throughout the duration of the experiment. The samples were tested 

outdoors, and the sun changes position and casts different amounts of light on the soil samples 

throughout the day. From the samples that were tested, the wet samples were noticeably darker 

than the dry samples. Because consistent lighting was not managed in the experiment, 
inaccuracies may be caused by the model not being well-trained enough at identifying samples 

under different levels of lighting. 

 
The experiment was designed to test the model within the application for its accuracy in 

identifying the moisture in samples of soil, and the results of the experiment would indicate 

whether the model needs improvement and whether more efforts should be focused on 
improving the model or improving other aspects of the application. According to the results of 

the experiment, the model appears to do well at determining the moisture of both wet and dry 

soil samples. This falls within expectations, as the model has already undergone much training 

with various soil samples and was expected to perform fairly well. As previously mentioned, 
something that was intentionally left as a possible confounding variable is the lighting in the 
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pictures of each sample. In a real-life agricultural setting, the lighting of the soil when detected 
by sensors would not always stay the same, and the application would need to be tested for its 

ability to handle different levels of lighting as a result.  

 

5. RELATED WORK 
 
A related work describes different methods that are used to evaluate the moisture of soil, which 

vary depending on the application or setting that it is used. Therefore, a concept was proposed so 

that different approaches could be combined into a single integrated system that could be 
potentially used as a multipurpose solution [1]. This work is similar to the related work in that 

the primary focal point is analyzing the moisture of the soil. However, the related work goes into 

depth on various methods that could be used to quantify the moisture of the soil. On the other 
hand, this work emphasizes the creation of an application to easily gauge whether the soil is 

properly watered or not. 

 

In another related work, different types of sensors are compared regarding their ability to 
accurately measure soil moisture. Between the TDR-based sensor that made use of the travel 

time of an electromagnetic pulse to propagate along sensor rods and the 10HS sensor that 

worked through capacitance, it was concluded that both types of sensors had their shortcomings 
and neither one definitively outperformed the other [2]. The related work and this work share the 

similarity of determining soil moisture. However, while the related work compares how effective 

different sensors are at evaluating soil moisture, this work focuses on incorporating a sensor into 

an application. 
 

A third related work experiments on the application of using soil moisture in a drip irrigation 

automation system that was primarily composed of a base station unit, a valve unit, and a sensor 
unit. The system was tested on an 8-decare area with dwarf cherry trees, and it was observed that 

the system was low-cost and reliable and could have practical agricultural use [3]. Both this work 

and the related work were similar in that the goal was to create an application using sensors to 
detect soil moisture that would hopefully have practical use in agriculture. However, the related 

work involves performing a large scale experiment on a wide area of land while this work aims 

to test the accuracy of the sensors instead. 

 

6. CONCLUSIONS 
 

The method that has been implemented to resolve the issue of improperly watering plants is a 

mobile application that can tell its users whether a sample of soil is wet or dry. Recognizing that 
the soil is dry encourages the users to water their plants, and recognizing that the soil is wet can 

inform the users that there is no need to water their plants for the time being. By using this 

application, people can prevent overwatering the plants and accidentally killing them; on the 
other hand, they can also potentially be alerted to the fact that the plants may not be getting 

enough water. The application was tested in an experiment in which ten dry soil samples and ten 

wet soil samples were used to take pictures for the application. The samples were taken outside 

at various times during the day, which ensured that the soil sample pictures were taken at 
different lighting levels. The number of times that the application correctly determines the 

moisture of the soil was recorded in a table separately based on whether the tested soil sample 

was a wet or dry sample. According to the results, the application’s model is very proficient at 
determining the soil moisture. Because the lighting levels were different across each picture, the 

model has proven to be somewhat robust across multiple lighting conditions. However, the 

single inaccuracy of the model from the experiment indicates that while it is not an urgent issue, 

the model in the application still has room for improvement. 
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One of the most significant current limiting factors in the application is its ability to use multiple 
sensors. Currently, only one sensor at a time can be used with the application. However, in a 

more realistic agricultural setting in which more farmland would have to be analyzed for its soil 

moisture, the application may be impractical to use [15]. To keep the application relevant within 

the agricultural field, more time and effort would need to be spent to allow the application to take 
in multiple sensors at a time and do so in a manner that still keeps the user interface clean and 

easy to navigate. 

 
Something that could be done is adjusting the sensor page to contain information from multiple 

sensors. As the current sensor page shows what is being seen by the sensor, the page 

would likely have to be scrollable so that the user will be able to see a live feed from multiple 
sensors in  one place. 
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