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ABSTRACT 
 
"The paper introduces certain timely and secure computing approaches that affect data 

intelligence related to methods and tools for real-time information processing. Timely 

solutions are achieved using local premises rather than supporting centralized servers or 

clouds. Computing within the network partly occurs near the physical endpoints, and this is 

where the edge computing paradigm comes in to help. The proposed method of the cloud 

optimization suggests splitting and sharing data between network data centers and local 

computing power. Provision of distinct paths between edge and main cloud for each smart 

device is achieved using separate blockchain which register and store the logical links of 
hierarchical data. Methods for cryptographic key splitting between the edge and the main 

cloud, as well as strong authentication ensuring the shared data confidentiality, integrity, 

availability, and consistency are also given.     
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1. INTRODUCTION 
 
Information systems vary in their primary roles and goals. Especially teal-time information 

systems impose deadlines for producing control responses, as latency in their data generation, 

processing and transfer may cause impermissible failures. For such systems, provision of proper 
transactions depends not only on their logical correctness, but also on operability in the required 

time. Latency makes these systems useless. Few examples of timely computation environments 

are: urgent medical diagnosis; nuclear plants management; traffic control, real-time speech and 

image processing; video surveillance, etc. 
 

Edge computing is especially beneficial to specialized and intelligent devices which are not 

designed to perform hard computational tasks. These devices respond to particular needs in a 
specific way.  

 

Edge computing is preferred over cloud computing in remote locations, where there is limited 
connectivity to the centralized cloud. Operational management of resource-constrained devices 

requires the deployment of rather local and low-latency data centers utilizing technological 

solutions of edge computing in terms of appropriate infrastructure and data intelligence. 
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Traditional cloud technologies do not address timely requirements for data processing. The main 
cloud is commonly used to store and process data that are of a huge volume and are not time-

driven. On the other hand, moving large amounts of sensitive data to the main cloud opens 

backdoors to cyber threats, such as: data leakage, loss or theft especially in shared environments; 

insecure interfaces or APIs, etc., such that promoting prosperous innovations in the field is of a 
greater importance.  

 

The remainder of this paper is organized as follows. Section 2 presents a review of related works 
in the field. Section 3 briefly describes the edge infrastructure and edge computing paradigm. 

Section 4 presents data sharing and intelligence at the edge. A brief Summary of the paper is 

given in Section 5. 
 

2. RELATED WORKS 
 

Cloud computing provides IT resources on demand and permanently optimizes resource 

provisioning [1]. Anyway, timely requirements affect data intelligence related to methods and 
tools for integrating and classifying real-time information collected from IoT smart devices, and, 

as authors in [2,3] state, given the unpredictable nature of the devices, maintaining and securing 

fast and high-quality algorithmic results in the face of uncertainty is still a challenging problem. 
The authors propose to tackle this challenge by applying coding theoretic techniques to provide 

resiliency against noise. 

 

Edge/Fog computing [4] emerges as a novel computing paradigm that harnesses resources in the 
proximity of the IoT devices so that, alongside with the cloud servers, provides services in a 

timely manner. In the work, the authors proposed a weighted cost model to minimize the 

execution time and energy consumption of IoT applications in a computing environment with 
ever-increasing growth of IoT devices, multiple fog/edge servers and cloud servers. The paper 

introduces a new application placement technique based on the Memetic Algorithm to cover 

concurrency of IoT applications. In order to address IoT applications’ heterogeneity, a 
lightweight pre-scheduling algorithm to maximize the number of parallel tasks for concurrent 

execution has been suggested.  

 

The work [5] introduces a survey on multi-access edge computing architecture and proposes an 
elaboration of the cloud computing platform via the deployment of storage and computational 

resources at the edge thus reducing latency of edge devices and utilizing the core network more 

efficiently.  
 

Authors in [6] rightly state that cloud and edge/fog computing are non-interchangeable 

technologies, and they cannot replace one another, but, when combined, they can contribute to 

promoting hierarchical data infrastructure and layered data processing.  
 

In [7], authors interpret fog/edge computing-based IoT to be the future infrastructure on IoT 

development and an important computing paradigm in realizing the intelligent cyber-physical 
world.  

 

Authors of the paper [8] highlighted typical security issues in edge architecture. Besides, they 
explored security algorithms acceptable for governing IoT data privacy taking into account the 

resource-constraint nature of the devices. Particularly, elliptic curve based cryptographic 

solutions were selected as most appropriate. 

 
Understanding and implementing edge computing implies consideration of traditional computing 

paradigms [9], exploration of which can orientate the developers in selecting and combining 
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relevant approaches. Besides the well-known methodologies in computing, trusty systems’ 
development requires embedding confidential computing [10, 11] which preserves the data 

confidentiality not only in the rest and in transfer, but also in use. Shielding the sensitive data, 

also the whole set of applied programming techniques from the rest of the entire system, makes 

the data being processed to become accessible solely to authorized programming codes.  
 

3. EDGE COMPUTING INFRASTRUCTURE 
 

Edge computing architecture is still three-tier network. The very basic level in this hierarchy 
outlines the edge level network, where network devices and sensors reside. The second layer 

deploys the edge data centers which perform the operational management of individual groups of 

edge devices. Classification of devices prior to inclusion to some group supervised by an 

individual mini data center should be performed according to their mission and level of 
intelligence. At this level, data collected from sensors will be analysed and categorized before 

sending to the main cloud for further processing.  The main cloud server is on the top of the 

hierarchy.  
 

The segmented architecture of the entire network enables splitting the overall workload while 

leaving some portion of data processing at the basic layer of the network, closer to the devices. 
Note that edge computing shouldn’t be confused with autonomous computations and data 

processing embedded in edge devices. Figure 1 illustrates the edge computing infrastructure. 

 

 
 

Figure 1.  Edge computing architecture. 

 

Edge computing stands at the intersection of 5G, artificial intelligence (AI) and digital 

transformation (DT).  
 

3.1. Edge Computing Paradigm 
 
In edge computing, data are collected, processed and analysed hierarchically at different layers on 

the network according to a predefined role distribution scheme, still near the source where they 

are generated. Thus, besides data collection, the edge level may implement timely intelligent 
tasks, such as: 
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 data aggregation, classification and validation,  

 peer-to-peer communication among regrouped devices (if needed), 

 visualization,  

 data filtering,  

 distribution, dissemination and replication, 

 data mapping and reducing, 

 caching, chaining, backup,  

 data and cryptographic key splitting, etc. 
 

Edge architecture eliminates the necessity of allocating individual bandwidth for each device on 

the main cloud. This significantly optimizes the overall computing power available on the entire 
network by executing some tasks at the edge level. Introducing the additional layer will solve a 

series of issues by adopting the so-called data minimization principle, according to which the 

amount of data being sent to the main cloud should be minimized while keeping the whole chain 

of the data under control. The main cloud still plays its own role in big data analysis, business 
logic maintenance and data warehousing.  

 

4. DATA INTELLIGENCE AT THE EDGE 
 
In the edge architecture, mass of data generated and transferred by IoT devices are accumulated 

at the edge level, raw and unanalysed. As digital transformation becomes increasingly ubiquitous, 

more and more sophisticated solutions (appreciable) are being engineered and embedded to 

reinforce edge computing.  
 

The paper focuses on operating deliberative AI agents and introduces a selective approach for 

intelligent supervision of real-time AI systems regrouped according to their intellectual mission. 
For this scenario, relevant expert systems each designated to respond to specific queries is 

recommended to be deployed on the main cloud site, where historical experience in terms of the 

knowledgebase is stored and gets updated, also the overall data analytics is conducted.  

 
Generally, data intelligence refers to analytical tools and methods used to not only derive 

information from the collected data, but also to support machine intelligence, such as: deduction 

and semantic reasoning.  
 

In this sense, edge computing, when implemented for timely management of self-organized 

collaborative computing agents, can deploy mini data centers for information accumulation, 
reasoning and exchange.  

 
For example, semantic graph models for agent machinery and the system abstract architecture 
may assume development of mathematical structures of the following shape [12]: 

 

MS = {E, S, Node, KBP, WU, Ac, Ag, Fb}, 
Where 

 

  E is the set of environmental states 

  S is the set of states of the agent 

  Node is a vertex on the semantic graph. The nodes assume accumulating knowledge, history and 

evolving operational capabilities of the agents  

   KBP is the knowledge base pool which collects and assimilates the derived information 

   WU is the so-called wisdom unit which decides on the best strategy of utilizing the knowledge 

while interacting with other agents relevant to the scope of interaction 



Computer Science & Information Technology (CS & IT)                                        139 

  Ac is the set of actions which are selected in accordance with the current decisions made 

  Ag is the agent which in its strict mathematical formulation is a chain of mappings 

  Fb is the feedback which is activated upon completion of every execution of actions. 

 

Here, computation is performed over relevant pieces of information having two qualities: value 

and weight. The deductive logic is constructed on the strict logical arguments reinforced with the 

specified rules of inferences over premises and conclusions. Activation within the network 
depends on the weights. Reasoning based on zero, first, second and even higher order logic [13] 

assumes involvement of non-supervised machine learning methods and techniques implementing 

facts, relations and rules.  

 
For example, to support declarative statements having either of two outcomes; true or false, zero-

order (propositional) logic may be constructed as follows: 

 
Algebraic structures 

 

group = 'grp'    # (G, ), a non-empty set with a single operation 
# Define facts and properties of the algebraic group 

fact(group, closure)       # means:  ∀ a, b ∈ G → a b ∈ G 

fact(group, associative)  # means: ∀ a, b, c ∈ G → a  (b ° c)=( a ° b )  c 

fact(group, unit)             # means: ∀ a ∈ G →a  e = e  a =a   

fact(group, inverse)       # means: ∀ a ∈ G →a  a -1= e, etc.  

  

First-order logic (a.k.a first order predicate logic) is an extension of the propositional logic and 
involves quantifiers; Boolean representations to recognize variables and constants, and relations 

which cannot be classified as true or false. Notions used in first-order logic constructs are:  

 
 variables (x, y, z, …), 

 constant magnitudes (SIZE, FILE_PATH, etc.), 

 predicates (isEven, isPrime, ...), 

 functions (fit, linReg, ...), 
 operators and connectives (logical, bitwise, ….), etc. 

 

A nice example of the first order formula, given a nonempty domain D and a nonempty range R, 
is the definition of functions as a specific type of binary relations involving an existential 

quantifier. 

∀x ∈ D → ∃! y ∈ R: y = f(x). 
 
First order logic is widely used to construct number-theoretical statements over atomic 

expressions of type x = y, x + y=z and x × y=z, x, y, z ∈ N, equipped with the propositional 

operations ∧, ¬, ∨, → and the quantifiers ∀x and ∃x.  

 

With second-order logic we can make machine more intelligent: having variables x, y, z,… from 

the first order logic, we involve properties X, Y, Z,… and quantifiers ∀X…, ∃X… to express 

binary relations among pairs of numbers. Having done this, second and higher order logic may be 

constructed over generalized identities using quantifiers of existential and universal type, such as: 

∀, ∃, ∃! 

 

For example, the followings are absolutely closed second-order formulas [13], 

 

∀X1…. Xm ∀x1…xn (ω1= ω2), 
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∀X1…. Xk∃Xk+1…. Xm ∀x1…xn (ω1= ω2), 
 
where ω1, ω2 are words written in functional variables X1…. Xm, and in the objective variables 

x1…xn, are called ∀ (∀) identity and ∀∃ (∀) identity, respectively.  

 
Second-order quantification, commonly used in machine intelligence, can be successfully applied 

in solving reachability on large decision trees. For example, DerivedNode(a, b) denoting that a is 

a child node of b cannot be implemented solely in the first-order logic. 
 

Knowledge representation in AI agents combines objects, relations, and functions via a 

symbolized reasoning.  Here, instructions are partitioned into well-defined subjects and 

predicates with a strict restriction: predicates refer to single subjects. 
F.e., given an original sentence: The vehicle should decrease the speed, the corresponding 

predicate logic will be of the form: decrease (vehicle, speed). 

Here, vehicle is subject, decrease is a predicate and speed is the value defined by the predicate.  
 

Reinforcement learning can be applied to train deductive agents situated in an environment to 

simulate collaboration and information full exchange among peers, as follows: 
 

env = env () 

wisdom=wisdom () # suggests the best strategy to react 

skill=skill () # inherit skills 
for agent in env. agent_iter (): 

     success_story=[]      #empty logical sentence 

     observation, info = env. snapshot () 
    action = policy (agent, observation, wisdom) 

    info_ dissemination (other_agents, info, gossiping) 

    success= env. step (action, success_story) 

    if success:  
       reward=true 

       skill. increment () 

       wisdom. accumulate (action, success-story) 
     

Mini data centers endowed with local strategy patterns each operating separate groups of 

intelligent devices with similar intelligence will react to stimuli faster and according to specific 
needs. Urgent medical diagnosis, traffic control, borders’ security and other timely computations 

utilizing machine intelligence can certainly benefit from the edge computing, meanwhile 

historical data and relevant expert knowledge will reside on the traditional cloud being queried on 

demand.  
 

This way, edge computing promotes deployment of specialized data centers to operate classified 

IoT devices rather than embedding unified clouds for serving the needs of heterogeneous sources 
of information. 

 

4.1. Data Splitting and Sharing 
 

Data splitting is the act of partitioning available data into portions according to some well-

defined criteria. Generally, splitting is done to perform pre-processing prior to model 
construction, and may contribute to:  

 

 parallel computations 

 segmentation and pattern recognition  
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 cross-validation, where one portion of the data is used to run a specific computation and 
the other to evaluate the results 

 secret splitting and threshold scheme construction, like: Shamir, Blakely, or other algebra 

based 

 hierarchical computing. 
 

Edge computing paradigm can benefit from this methodology by applying unsupervised learning 

for classifying the data being stored and processed on different layers on the entire network.    
Graph partitioning algorithms and equivalence relations from discrete mathematics can stand for 

excellent basics for implementing data splitting and resource regrouping at the edge. Spectral 

clustering and Louvain Clustering are other mechanisms for splitting and evaluating the data 
models. 

 

The following should be ensured prior splitting the data into disjoint segments: 

 
a)  data distribution is always the same, or 

b)  data distribution changes over time. 

 
In the simplest implementation, edge data splitting paradigm assumes: 

 

a) leaving and processing timely data at the edge level, and 
b) transferring the historical data, also skills (successful or unsuccessful stories) gained 

through intelligent actions to the main cloud. Here, both successful and unsuccessful 

stories will be assimilated by the expert system and contribute to the overall wisdom.  

 
Data sharing is the process of making the same data accessible to a number of users or 

applications based on the one-to-many principle of association.  

 
Note that data within a device are under the sole control and are of a required physical and cyber 

security. In this sense, the edge level must ensure the confidentiality and integrity of data being 

shared or exchanged in order to exclude exposing data to unauthorized access. 

 
In edge computing, some portions of data are shared with the main cloud for a deeper and 

probably latent analysis. The edge level may even split and share cryptographic keys, tokens and 

other cyber identifiers in order to keep trace of the shared data between computational and 
storage levels. The hierarchical nature of the edge computing paradigm points out a series of 

sensitive aspects that should be addressed. Particularly, while splitting is done within a specific 

edge data point and under the local control, sharing data parts results in transferring them, and 
this is when solely GDPR compliant solutions have to be embedded in order to ensure zero-trust 

based identification and strong authentication of the shares. The volume of intelligible data that 

needs to be shared should be minimized. Here, the data minimization refers to encrypting data 

thus making their content inaccessible for non-authorized access. As a result, the amount of 
available and intelligible data consequently decreases and resides in the scope of confidential 

computing.  

 

4.2. Edge Data Privacy and Identity Management 
 

Privacy at the edge is of a great importance and implies preserving data confidentiality, integrity 
and availability [14]. For this purpose, we suggest delegating most of the cryptographic 

operations to edge servers while embedding pre-image resistant and collision-free cryptographic 

hash functions. 
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A hash function H: S→S’ is a mapping from a set of arbitrary cardinality (S) to a single value 
from a set of a fixed (fewer) cardinality (S'). Cryptographic one-way hash function H, with the 

domain S; the range S'; s ∈ S, and y ∈ S', is of a polynomial time computation for all s ∈ S, while 

finding s: H(s) = y, is an NP-complete problem. This feature provides pre-image resistance of the 

function. If Prob_of_finding (M, M'): H(M) = H (M’) → 0, then the mapping H is also collision-
free (Russell 1992). 

 

Besides, the following mechanisms are suggested to be embedded at the edge: 
 

 Hardware based tamper-proof storage (HSMs) for secure cryptographic key generation 

 Honey Encryption combined with Advanced Encryption Standard algorithm for data 
encryption at rest and at transfer. 

 

Identity management ensures automatic identification and authentication of edge devices and 

relevant edge computing resources. For this purpose, the following mechanisms should be 
embedded at the edge level.  

 

 IoT Device Identity Lifecycle Management 
 Authentication, in order to ensure validity of entities within the system. This is the first 

step to perform any computing operation before moving to the next steps  

 Authorization, that always comes after the authentication and allows solely verified 

entities to get access to resources 
 Distributed identity management architecture, equipped with 5G network, in order to 

assign unique identities by the software defined identity management systems. Here, 

local nodes will share parameters with the local Software Defined Network servers to 
acquire identity. Local SDN devices synchronize their identity databases with the main 

cloud SDN device. All Global SDN devices will also synchronize their databases. Thus, 

the whole hierarchy in the edge architecture will be strongly identified. 
 

Whenever appropriate, timestamp may be embedded.  

 

A timestamp is a mapping T:(A×L×G) →S, where  
 

 A is an alphabet,  

 L is the set of literals,  
 G is the global TSA (Time Stamp Authority, the global secure time stamp server) data. 

The TSA will register the current transaction date and time which, when necessary, can 

be verified with the main cloud to resist to replay attacks. 
 S presents the resultant timestamp string.  

 

In cases, when embedding PKI (Public Key Infrastructure) is expensive, self-certified 

cryptography may be utilized to implement the registration and at least two-factor authentication 
of network entities. Meanwhile, authentication is verified each time before edge and main cloud 

levels interact. Internally generated certificates can be bound to identities and construct the 

identity and certificate management mechanism based on blockchain. Blockchain identity 
management systems are commonly used to address identity issues such as data insecurity and 

fraudulent identities. The distributed ledger, blockchain, will store: 

 

 complete paths (individual or joint, depending on the implementation) for each device 
having data shared between the edge and main cloud,  
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 labelling of the classified data at their cascading aggregation, validation, classification 
and then filtering phases, in order to trace the data hierarchical chain from the edge to the 

main cloud. 

 

Due to resource-constraint nature of IoT devices, we propose constructing of the edge-to-main 
cloud blockchain based on secure computations on elliptic curves. Unlike the simplified curves 

used in traditional data encryption and decryption, the selection of unique points here is done on 

an original curve in order to meet higher security requirements. 
 

An elliptic curve E over the real numbers R is defined by a Weierstrass equation, 

 

E∶ y2+a1xy+a3xy+a3y = x3+a2x 2+a4x+a5 

 

with coefficients a1, a2, a3, a4, a3 ∈ N, and Δ≠0 discriminant.  

 
The set of points on the curve is: 

 

E(L) = {(x, y) ∈ R×R∶ y2+a1xy+a3xy+a3y = x3+a2x 2+a4x+a5= 0)} ∪ {0} 
 

with the point of infinity (the 0 point). 

 

It is well known that blockchain is a digitally distributed, decentralized, public ledger that exists 
across a network. No single entity controls the blockchain network; anyone can join at any time. 

The above premises provided, identification of IoT devices within a group and on the main cloud 

(when necessary) is achieved as described below.  
 

Initially, prior regrouping the devices, the ledger is an empty list. The list gets incrementally 

updated with every new device joining the specific group and presents a dynamic list of unique 

identifiers obtained in the following steps: 
 

a) For every device in a group, a unique point on the elliptic curve is selected and 

recorded at the edge secure server zone. AES 256 is applied to encrypt the points 
according to data anonymization principle: encrypted data is neither usable nor 

decrypted as they are not used in any of further transactions. Utilizing elliptic curves 

is motivated by an NP-completeness of guessing the point coordinates even if the 
curve is made public. 

b) The encrypted point is hashed with the timestamp H1 (Point, Timestamp) using 

SHA256. 

c) H1 (Point, Timestamp) is hashed with the previous content in the public ledger (this 
step is skipped with the first record).  

The resultant H2 (Point, Timestamp, History) is the unique ID for a device joining the 

group. 
d) H2 is recorded in the edge ledger. 

e) The ledger is transmitted to the main cloud server to a distinct location. 

 
Distinct paths for each blockchain provided, anyway, access control mechanisms that meet the 

edge computing security, privacy and data diversity requirements should be upgraded from 

traditional access control schemes. For this purpose, involving Bloom filter integrated with 

identity management and lightweight secret key agreement protocols based on self-authenticated 
public key may serve as a good basis for innovating edge/cloud access control.   

 

 



144         Computer Science & Information Technology (CS & IT) 

4.3. Cryptographic Key Management at the Edge 

 
Key management at the edge administers the full lifecycle of hierarchic cryptographic keys. 
It is strongly recommended to limit 

 

 the amount of information protected by a given key, 

 the amount of exposure if a single key is compromised, 
 

Note, that edge-level encryption secures the data collected from edge devices such that no level 

in computing receives the raw version of the payload directly. For effective and secure key 
management, HSM and related secure zone at the edge level should be embedded. This will 

ensure supporting sensitive operations, like: 

 
 key generation, key secure storage and key encryption, 

 key distribution, backup,  

 verifiable secret splitting and sharing, etc. 

 
In order to support two-level cryptographic key sharing, the edge-level HSM internally performs: 

 

 cryptographic key generation, 
 cryptographic key encryption applied AES-256, 

 cryptographic key verifiable secret splitting. One portion of the encrypted key remains at 

the edge secure zone, while the second portion is transferred to the main cloud 
 each time a transaction is activated on the main cloud site, firstly a verification of the 

validity of the key shares is performed. 

 

Most of existing secret sharing schemes of proven security (like in Shamir’s threshold scheme) 
are based on the assumption that all participating users are legitimate. This approach is prone to 

sophisticated attacks: the attacker can impersonate a legitimate party without being detected. 

Schemes of proven security can be found in [15,16] where the impersonation attack is advised to 
be blocked based on modification of Shamir’s threshold scheme, or based on plane parametric 

curves with one-parameter representation for a master key, respectively. Other solutions are 

arising from Latin squares [17]. 

 
We propose constructing a verifiable secret sharing scheme based on abstract structures from 

non-associative algebras. The theory of quasigroups is a permanently evolving scientific 

direction. Quasigroups are based on the Latin square property and stand for a generalization of 
groups without the associative law or identity element [18].  

 

The attractiveness of quasigroups in construction of verifiable secret splitting and sharing 
schemes is in their easily programmable nature due to utilization of solely logical operations.  A 

quasigroup with its parastrophs (Q, ·, \, /) is a set closed under three different binary operations, 

referred to as multiplication (·), left division (\) and right division (/) satisfying the conditions:  

 
1. x · (x \ y) = y 

2. (y / x) · x = y 

3. x \ (x · y) = y 
4. (y · x) / x = y  

5.  x / (y \ x) = y  

6. (x / y) \ x = y 
 

The verifiable secret splitting is performed as follows: 
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1. the order n of the quasigroup (the number of its elements) dictates the number of shares 

2. edge computing paradigm suggests having (2-out-of 2n) shares satisfying above 

properties for the secret quasigroup 

3. the two shares are encrypted and distributed between the network layers 
4. when combined, the two shares are decrypted within the edge level HSM, where shares 

are authenticated. 

 
The proposed scheme eliminates the risk of impersonation attacks against both the edge and the 

main cloud levels: the shares are verified at the edge level HSM by a polynomial time 

computation (meanwhile for the non-legitimate party this computation will lead to a numerical 
explosion with a large order of the secret quasigroup), and the main cloud site is secured by 

confidential computing.  

 

Another significant factor motivating the usage of quasigroups is that generalized identities of 
higher order logics can be effectively constructed on quasigroups without having any significant 

impact on algorithmic complexity. 

 

5. CONCLUSIONS 
 

The paper presents a series of methodologies which can be efficiently implemented in edge 

computing. By combining relevant computing paradigms and secure data processing, the 

proposed approaches can reinforce timely and intelligent computing within the cloud-edge 
hierarchy, where data chaining and logical linkage is achieved by embedding blockchain through 

verifiable secret sharing. 
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