
David C. Wyld et al. (Eds): NLPML, AIAP, SIGL, CRIS, COSIT, DMA -2023

pp. 135-146, 2023. CS & IT - CSCP 2023 DOI: 10.5121/csit.2023.130811

EDGE COMPUTING: DATA SHARING AND

INTELLIGENCE

Yeghisabet Alaverdyan1,2, Suren Poghosyan2 and Vahagn

Poghosyans2,3

1EKENG CJSC, Yerevan, Armenia
2Institute for Informatics and Automation Problems of NAS RA, Yerevan,

Armenia
3Synopsys Armenia

ABSTRACT

"The paper introduces certain timely and secure computing approaches that affect data

intelligence related to methods and tools for real-time information processing. Timely

solutions are achieved using local premises rather than supporting centralized servers or

clouds. Computing within the network partly occurs near the physical endpoints, and this is

where the edge computing paradigm comes in to help. The proposed method of the cloud

optimization suggests splitting and sharing data between network data centers and local

computing power. Provision of distinct paths between edge and main cloud for each smart

device is achieved using separate blockchain which register and store the logical links of
hierarchical data. Methods for cryptographic key splitting between the edge and the main

cloud, as well as strong authentication ensuring the shared data confidentiality, integrity,

availability, and consistency are also given.

KEYWORDS

Edge computing, key splitting, authentication, blockchain, data sharing, data intelligence

1. INTRODUCTION

Information systems vary in their primary roles and goals. Especially teal-time information

systems impose deadlines for producing control responses, as latency in their data generation,

processing and transfer may cause impermissible failures. For such systems, provision of proper
transactions depends not only on their logical correctness, but also on operability in the required

time. Latency makes these systems useless. Few examples of timely computation environments

are: urgent medical diagnosis; nuclear plants management; traffic control, real-time speech and

image processing; video surveillance, etc.

Edge computing is especially beneficial to specialized and intelligent devices which are not

designed to perform hard computational tasks. These devices respond to particular needs in a
specific way.

Edge computing is preferred over cloud computing in remote locations, where there is limited
connectivity to the centralized cloud. Operational management of resource-constrained devices

requires the deployment of rather local and low-latency data centers utilizing technological

solutions of edge computing in terms of appropriate infrastructure and data intelligence.

http://airccse.org/cscp.html
https://airccse.org/csit/V13N08.html
https://doi.org/10.5121/csit.2023.130811

136 Computer Science & Information Technology (CS & IT)

Traditional cloud technologies do not address timely requirements for data processing. The main
cloud is commonly used to store and process data that are of a huge volume and are not time-

driven. On the other hand, moving large amounts of sensitive data to the main cloud opens

backdoors to cyber threats, such as: data leakage, loss or theft especially in shared environments;

insecure interfaces or APIs, etc., such that promoting prosperous innovations in the field is of a
greater importance.

The remainder of this paper is organized as follows. Section 2 presents a review of related works
in the field. Section 3 briefly describes the edge infrastructure and edge computing paradigm.

Section 4 presents data sharing and intelligence at the edge. A brief Summary of the paper is

given in Section 5.

2. RELATED WORKS

Cloud computing provides IT resources on demand and permanently optimizes resource

provisioning [1]. Anyway, timely requirements affect data intelligence related to methods and
tools for integrating and classifying real-time information collected from IoT smart devices, and,

as authors in [2,3] state, given the unpredictable nature of the devices, maintaining and securing

fast and high-quality algorithmic results in the face of uncertainty is still a challenging problem.
The authors propose to tackle this challenge by applying coding theoretic techniques to provide

resiliency against noise.

Edge/Fog computing [4] emerges as a novel computing paradigm that harnesses resources in the
proximity of the IoT devices so that, alongside with the cloud servers, provides services in a

timely manner. In the work, the authors proposed a weighted cost model to minimize the

execution time and energy consumption of IoT applications in a computing environment with
ever-increasing growth of IoT devices, multiple fog/edge servers and cloud servers. The paper

introduces a new application placement technique based on the Memetic Algorithm to cover

concurrency of IoT applications. In order to address IoT applications’ heterogeneity, a
lightweight pre-scheduling algorithm to maximize the number of parallel tasks for concurrent

execution has been suggested.

The work [5] introduces a survey on multi-access edge computing architecture and proposes an
elaboration of the cloud computing platform via the deployment of storage and computational

resources at the edge thus reducing latency of edge devices and utilizing the core network more

efficiently.

Authors in [6] rightly state that cloud and edge/fog computing are non-interchangeable

technologies, and they cannot replace one another, but, when combined, they can contribute to

promoting hierarchical data infrastructure and layered data processing.

In [7], authors interpret fog/edge computing-based IoT to be the future infrastructure on IoT

development and an important computing paradigm in realizing the intelligent cyber-physical
world.

Authors of the paper [8] highlighted typical security issues in edge architecture. Besides, they
explored security algorithms acceptable for governing IoT data privacy taking into account the

resource-constraint nature of the devices. Particularly, elliptic curve based cryptographic

solutions were selected as most appropriate.

Understanding and implementing edge computing implies consideration of traditional computing

paradigms [9], exploration of which can orientate the developers in selecting and combining

Computer Science & Information Technology (CS & IT) 137

relevant approaches. Besides the well-known methodologies in computing, trusty systems’
development requires embedding confidential computing [10, 11] which preserves the data

confidentiality not only in the rest and in transfer, but also in use. Shielding the sensitive data,

also the whole set of applied programming techniques from the rest of the entire system, makes

the data being processed to become accessible solely to authorized programming codes.

3. EDGE COMPUTING INFRASTRUCTURE

Edge computing architecture is still three-tier network. The very basic level in this hierarchy
outlines the edge level network, where network devices and sensors reside. The second layer

deploys the edge data centers which perform the operational management of individual groups of

edge devices. Classification of devices prior to inclusion to some group supervised by an

individual mini data center should be performed according to their mission and level of
intelligence. At this level, data collected from sensors will be analysed and categorized before

sending to the main cloud for further processing. The main cloud server is on the top of the

hierarchy.

The segmented architecture of the entire network enables splitting the overall workload while

leaving some portion of data processing at the basic layer of the network, closer to the devices.
Note that edge computing shouldn’t be confused with autonomous computations and data

processing embedded in edge devices. Figure 1 illustrates the edge computing infrastructure.

Figure 1. Edge computing architecture.

Edge computing stands at the intersection of 5G, artificial intelligence (AI) and digital

transformation (DT).

3.1. Edge Computing Paradigm

In edge computing, data are collected, processed and analysed hierarchically at different layers on

the network according to a predefined role distribution scheme, still near the source where they

are generated. Thus, besides data collection, the edge level may implement timely intelligent
tasks, such as:

138 Computer Science & Information Technology (CS & IT)

 data aggregation, classification and validation,

 peer-to-peer communication among regrouped devices (if needed),

 visualization,

 data filtering,

 distribution, dissemination and replication,

 data mapping and reducing,

 caching, chaining, backup,

 data and cryptographic key splitting, etc.

Edge architecture eliminates the necessity of allocating individual bandwidth for each device on

the main cloud. This significantly optimizes the overall computing power available on the entire
network by executing some tasks at the edge level. Introducing the additional layer will solve a

series of issues by adopting the so-called data minimization principle, according to which the

amount of data being sent to the main cloud should be minimized while keeping the whole chain

of the data under control. The main cloud still plays its own role in big data analysis, business
logic maintenance and data warehousing.

4. DATA INTELLIGENCE AT THE EDGE

In the edge architecture, mass of data generated and transferred by IoT devices are accumulated

at the edge level, raw and unanalysed. As digital transformation becomes increasingly ubiquitous,

more and more sophisticated solutions (appreciable) are being engineered and embedded to

reinforce edge computing.

The paper focuses on operating deliberative AI agents and introduces a selective approach for

intelligent supervision of real-time AI systems regrouped according to their intellectual mission.
For this scenario, relevant expert systems each designated to respond to specific queries is

recommended to be deployed on the main cloud site, where historical experience in terms of the

knowledgebase is stored and gets updated, also the overall data analytics is conducted.

Generally, data intelligence refers to analytical tools and methods used to not only derive

information from the collected data, but also to support machine intelligence, such as: deduction

and semantic reasoning.

In this sense, edge computing, when implemented for timely management of self-organized

collaborative computing agents, can deploy mini data centers for information accumulation,
reasoning and exchange.

For example, semantic graph models for agent machinery and the system abstract architecture
may assume development of mathematical structures of the following shape [12]:

MS = {E, S, Node, KBP, WU, Ac, Ag, Fb},
Where

 E is the set of environmental states

 S is the set of states of the agent

 Node is a vertex on the semantic graph. The nodes assume accumulating knowledge, history and

evolving operational capabilities of the agents

 KBP is the knowledge base pool which collects and assimilates the derived information

 WU is the so-called wisdom unit which decides on the best strategy of utilizing the knowledge

while interacting with other agents relevant to the scope of interaction

Computer Science & Information Technology (CS & IT) 139

 Ac is the set of actions which are selected in accordance with the current decisions made

 Ag is the agent which in its strict mathematical formulation is a chain of mappings

 Fb is the feedback which is activated upon completion of every execution of actions.

Here, computation is performed over relevant pieces of information having two qualities: value

and weight. The deductive logic is constructed on the strict logical arguments reinforced with the

specified rules of inferences over premises and conclusions. Activation within the network
depends on the weights. Reasoning based on zero, first, second and even higher order logic [13]

assumes involvement of non-supervised machine learning methods and techniques implementing

facts, relations and rules.

For example, to support declarative statements having either of two outcomes; true or false, zero-

order (propositional) logic may be constructed as follows:

Algebraic structures

group = 'grp' # (G,), a non-empty set with a single operation
Define facts and properties of the algebraic group

fact(group, closure) # means: ∀ a, b ∈ G → a b ∈ G

fact(group, associative) # means: ∀ a, b, c ∈ G → a (b ° c)=(a ° b) c

fact(group, unit) # means: ∀ a ∈ G →a e = e a =a

fact(group, inverse) # means: ∀ a ∈ G →a a -1= e, etc.

First-order logic (a.k.a first order predicate logic) is an extension of the propositional logic and
involves quantifiers; Boolean representations to recognize variables and constants, and relations

which cannot be classified as true or false. Notions used in first-order logic constructs are:

 variables (x, y, z, …),

 constant magnitudes (SIZE, FILE_PATH, etc.),

 predicates (isEven, isPrime, ...),

 functions (fit, linReg, ...),
 operators and connectives (logical, bitwise, ….), etc.

A nice example of the first order formula, given a nonempty domain D and a nonempty range R,
is the definition of functions as a specific type of binary relations involving an existential

quantifier.

∀x ∈ D → ∃! y ∈ R: y = f(x).

First order logic is widely used to construct number-theoretical statements over atomic

expressions of type x = y, x + y=z and x × y=z, x, y, z ∈ N, equipped with the propositional

operations ∧, ¬, ∨, → and the quantifiers ∀x and ∃x.

With second-order logic we can make machine more intelligent: having variables x, y, z,… from

the first order logic, we involve properties X, Y, Z,… and quantifiers ∀X…, ∃X… to express

binary relations among pairs of numbers. Having done this, second and higher order logic may be

constructed over generalized identities using quantifiers of existential and universal type, such as:

∀, ∃, ∃!

For example, the followings are absolutely closed second-order formulas [13],

∀X1…. Xm ∀x1…xn (ω1= ω2),

140 Computer Science & Information Technology (CS & IT)

∀X1…. Xk∃Xk+1…. Xm ∀x1…xn (ω1= ω2),

where ω1, ω2 are words written in functional variables X1…. Xm, and in the objective variables

x1…xn, are called ∀ (∀) identity and ∀∃ (∀) identity, respectively.

Second-order quantification, commonly used in machine intelligence, can be successfully applied

in solving reachability on large decision trees. For example, DerivedNode(a, b) denoting that a is

a child node of b cannot be implemented solely in the first-order logic.

Knowledge representation in AI agents combines objects, relations, and functions via a

symbolized reasoning. Here, instructions are partitioned into well-defined subjects and

predicates with a strict restriction: predicates refer to single subjects.
F.e., given an original sentence: The vehicle should decrease the speed, the corresponding

predicate logic will be of the form: decrease (vehicle, speed).

Here, vehicle is subject, decrease is a predicate and speed is the value defined by the predicate.

Reinforcement learning can be applied to train deductive agents situated in an environment to

simulate collaboration and information full exchange among peers, as follows:

env = env ()

wisdom=wisdom () # suggests the best strategy to react

skill=skill () # inherit skills
for agent in env. agent_iter ():

 success_story=[] #empty logical sentence

 observation, info = env. snapshot ()
 action = policy (agent, observation, wisdom)

 info_ dissemination (other_agents, info, gossiping)

 success= env. step (action, success_story)

 if success:
 reward=true

 skill. increment ()

 wisdom. accumulate (action, success-story)

Mini data centers endowed with local strategy patterns each operating separate groups of

intelligent devices with similar intelligence will react to stimuli faster and according to specific
needs. Urgent medical diagnosis, traffic control, borders’ security and other timely computations

utilizing machine intelligence can certainly benefit from the edge computing, meanwhile

historical data and relevant expert knowledge will reside on the traditional cloud being queried on

demand.

This way, edge computing promotes deployment of specialized data centers to operate classified

IoT devices rather than embedding unified clouds for serving the needs of heterogeneous sources
of information.

4.1. Data Splitting and Sharing

Data splitting is the act of partitioning available data into portions according to some well-

defined criteria. Generally, splitting is done to perform pre-processing prior to model
construction, and may contribute to:

 parallel computations

 segmentation and pattern recognition

Computer Science & Information Technology (CS & IT) 141

 cross-validation, where one portion of the data is used to run a specific computation and
the other to evaluate the results

 secret splitting and threshold scheme construction, like: Shamir, Blakely, or other algebra

based

 hierarchical computing.

Edge computing paradigm can benefit from this methodology by applying unsupervised learning

for classifying the data being stored and processed on different layers on the entire network.
Graph partitioning algorithms and equivalence relations from discrete mathematics can stand for

excellent basics for implementing data splitting and resource regrouping at the edge. Spectral

clustering and Louvain Clustering are other mechanisms for splitting and evaluating the data
models.

The following should be ensured prior splitting the data into disjoint segments:

a) data distribution is always the same, or

b) data distribution changes over time.

In the simplest implementation, edge data splitting paradigm assumes:

a) leaving and processing timely data at the edge level, and
b) transferring the historical data, also skills (successful or unsuccessful stories) gained

through intelligent actions to the main cloud. Here, both successful and unsuccessful

stories will be assimilated by the expert system and contribute to the overall wisdom.

Data sharing is the process of making the same data accessible to a number of users or

applications based on the one-to-many principle of association.

Note that data within a device are under the sole control and are of a required physical and cyber

security. In this sense, the edge level must ensure the confidentiality and integrity of data being

shared or exchanged in order to exclude exposing data to unauthorized access.

In edge computing, some portions of data are shared with the main cloud for a deeper and

probably latent analysis. The edge level may even split and share cryptographic keys, tokens and

other cyber identifiers in order to keep trace of the shared data between computational and
storage levels. The hierarchical nature of the edge computing paradigm points out a series of

sensitive aspects that should be addressed. Particularly, while splitting is done within a specific

edge data point and under the local control, sharing data parts results in transferring them, and
this is when solely GDPR compliant solutions have to be embedded in order to ensure zero-trust

based identification and strong authentication of the shares. The volume of intelligible data that

needs to be shared should be minimized. Here, the data minimization refers to encrypting data

thus making their content inaccessible for non-authorized access. As a result, the amount of
available and intelligible data consequently decreases and resides in the scope of confidential

computing.

4.2. Edge Data Privacy and Identity Management

Privacy at the edge is of a great importance and implies preserving data confidentiality, integrity
and availability [14]. For this purpose, we suggest delegating most of the cryptographic

operations to edge servers while embedding pre-image resistant and collision-free cryptographic

hash functions.

142 Computer Science & Information Technology (CS & IT)

A hash function H: S→S’ is a mapping from a set of arbitrary cardinality (S) to a single value
from a set of a fixed (fewer) cardinality (S'). Cryptographic one-way hash function H, with the

domain S; the range S'; s ∈ S, and y ∈ S', is of a polynomial time computation for all s ∈ S, while

finding s: H(s) = y, is an NP-complete problem. This feature provides pre-image resistance of the

function. If Prob_of_finding (M, M'): H(M) = H (M’) → 0, then the mapping H is also collision-
free (Russell 1992).

Besides, the following mechanisms are suggested to be embedded at the edge:

 Hardware based tamper-proof storage (HSMs) for secure cryptographic key generation

 Honey Encryption combined with Advanced Encryption Standard algorithm for data
encryption at rest and at transfer.

Identity management ensures automatic identification and authentication of edge devices and

relevant edge computing resources. For this purpose, the following mechanisms should be
embedded at the edge level.

 IoT Device Identity Lifecycle Management
 Authentication, in order to ensure validity of entities within the system. This is the first

step to perform any computing operation before moving to the next steps

 Authorization, that always comes after the authentication and allows solely verified

entities to get access to resources
 Distributed identity management architecture, equipped with 5G network, in order to

assign unique identities by the software defined identity management systems. Here,

local nodes will share parameters with the local Software Defined Network servers to
acquire identity. Local SDN devices synchronize their identity databases with the main

cloud SDN device. All Global SDN devices will also synchronize their databases. Thus,

the whole hierarchy in the edge architecture will be strongly identified.

Whenever appropriate, timestamp may be embedded.

A timestamp is a mapping T:(A×L×G) →S, where

 A is an alphabet,

 L is the set of literals,
 G is the global TSA (Time Stamp Authority, the global secure time stamp server) data.

The TSA will register the current transaction date and time which, when necessary, can

be verified with the main cloud to resist to replay attacks.
 S presents the resultant timestamp string.

In cases, when embedding PKI (Public Key Infrastructure) is expensive, self-certified

cryptography may be utilized to implement the registration and at least two-factor authentication
of network entities. Meanwhile, authentication is verified each time before edge and main cloud

levels interact. Internally generated certificates can be bound to identities and construct the

identity and certificate management mechanism based on blockchain. Blockchain identity
management systems are commonly used to address identity issues such as data insecurity and

fraudulent identities. The distributed ledger, blockchain, will store:

 complete paths (individual or joint, depending on the implementation) for each device
having data shared between the edge and main cloud,

Computer Science & Information Technology (CS & IT) 143

 labelling of the classified data at their cascading aggregation, validation, classification
and then filtering phases, in order to trace the data hierarchical chain from the edge to the

main cloud.

Due to resource-constraint nature of IoT devices, we propose constructing of the edge-to-main
cloud blockchain based on secure computations on elliptic curves. Unlike the simplified curves

used in traditional data encryption and decryption, the selection of unique points here is done on

an original curve in order to meet higher security requirements.

An elliptic curve E over the real numbers R is defined by a Weierstrass equation,

E∶ y2+a1xy+a3xy+a3y = x3+a2x 2+a4x+a5

with coefficients a1, a2, a3, a4, a3 ∈ N, and Δ≠0 discriminant.

The set of points on the curve is:

E(L) = {(x, y) ∈ R×R∶ y2+a1xy+a3xy+a3y = x3+a2x 2+a4x+a5= 0)} ∪ {0}

with the point of infinity (the 0 point).

It is well known that blockchain is a digitally distributed, decentralized, public ledger that exists
across a network. No single entity controls the blockchain network; anyone can join at any time.

The above premises provided, identification of IoT devices within a group and on the main cloud

(when necessary) is achieved as described below.

Initially, prior regrouping the devices, the ledger is an empty list. The list gets incrementally

updated with every new device joining the specific group and presents a dynamic list of unique

identifiers obtained in the following steps:

a) For every device in a group, a unique point on the elliptic curve is selected and

recorded at the edge secure server zone. AES 256 is applied to encrypt the points
according to data anonymization principle: encrypted data is neither usable nor

decrypted as they are not used in any of further transactions. Utilizing elliptic curves

is motivated by an NP-completeness of guessing the point coordinates even if the
curve is made public.

b) The encrypted point is hashed with the timestamp H1 (Point, Timestamp) using

SHA256.

c) H1 (Point, Timestamp) is hashed with the previous content in the public ledger (this
step is skipped with the first record).

The resultant H2 (Point, Timestamp, History) is the unique ID for a device joining the

group.
d) H2 is recorded in the edge ledger.

e) The ledger is transmitted to the main cloud server to a distinct location.

Distinct paths for each blockchain provided, anyway, access control mechanisms that meet the

edge computing security, privacy and data diversity requirements should be upgraded from

traditional access control schemes. For this purpose, involving Bloom filter integrated with

identity management and lightweight secret key agreement protocols based on self-authenticated
public key may serve as a good basis for innovating edge/cloud access control.

144 Computer Science & Information Technology (CS & IT)

4.3. Cryptographic Key Management at the Edge

Key management at the edge administers the full lifecycle of hierarchic cryptographic keys.
It is strongly recommended to limit

 the amount of information protected by a given key,

 the amount of exposure if a single key is compromised,

Note, that edge-level encryption secures the data collected from edge devices such that no level

in computing receives the raw version of the payload directly. For effective and secure key
management, HSM and related secure zone at the edge level should be embedded. This will

ensure supporting sensitive operations, like:

 key generation, key secure storage and key encryption,

 key distribution, backup,

 verifiable secret splitting and sharing, etc.

In order to support two-level cryptographic key sharing, the edge-level HSM internally performs:

 cryptographic key generation,
 cryptographic key encryption applied AES-256,

 cryptographic key verifiable secret splitting. One portion of the encrypted key remains at

the edge secure zone, while the second portion is transferred to the main cloud
 each time a transaction is activated on the main cloud site, firstly a verification of the

validity of the key shares is performed.

Most of existing secret sharing schemes of proven security (like in Shamir’s threshold scheme)
are based on the assumption that all participating users are legitimate. This approach is prone to

sophisticated attacks: the attacker can impersonate a legitimate party without being detected.

Schemes of proven security can be found in [15,16] where the impersonation attack is advised to
be blocked based on modification of Shamir’s threshold scheme, or based on plane parametric

curves with one-parameter representation for a master key, respectively. Other solutions are

arising from Latin squares [17].

We propose constructing a verifiable secret sharing scheme based on abstract structures from

non-associative algebras. The theory of quasigroups is a permanently evolving scientific

direction. Quasigroups are based on the Latin square property and stand for a generalization of
groups without the associative law or identity element [18].

The attractiveness of quasigroups in construction of verifiable secret splitting and sharing
schemes is in their easily programmable nature due to utilization of solely logical operations. A

quasigroup with its parastrophs (Q, ·, \, /) is a set closed under three different binary operations,

referred to as multiplication (·), left division (\) and right division (/) satisfying the conditions:

1. x · (x \ y) = y

2. (y / x) · x = y

3. x \ (x · y) = y
4. (y · x) / x = y

5. x / (y \ x) = y

6. (x / y) \ x = y

The verifiable secret splitting is performed as follows:

Computer Science & Information Technology (CS & IT) 145

1. the order n of the quasigroup (the number of its elements) dictates the number of shares

2. edge computing paradigm suggests having (2-out-of 2n) shares satisfying above

properties for the secret quasigroup

3. the two shares are encrypted and distributed between the network layers
4. when combined, the two shares are decrypted within the edge level HSM, where shares

are authenticated.

The proposed scheme eliminates the risk of impersonation attacks against both the edge and the

main cloud levels: the shares are verified at the edge level HSM by a polynomial time

computation (meanwhile for the non-legitimate party this computation will lead to a numerical
explosion with a large order of the secret quasigroup), and the main cloud site is secured by

confidential computing.

Another significant factor motivating the usage of quasigroups is that generalized identities of
higher order logics can be effectively constructed on quasigroups without having any significant

impact on algorithmic complexity.

5. CONCLUSIONS

The paper presents a series of methodologies which can be efficiently implemented in edge

computing. By combining relevant computing paradigms and secure data processing, the

proposed approaches can reinforce timely and intelligent computing within the cloud-edge
hierarchy, where data chaining and logical linkage is achieved by embedding blockchain through

verifiable secret sharing.

REFERENCES

[1] Ramanathan R. (2019) “Towards optimal resource provisioning for Hadoop-MapReduce jobs using

scaleout strategy and its performance analysis in private cloud environment”, Cluster Computing,

Springer, Vol. 22, No. 6, pp 14061–14071.

[2] Cao K., Liu Y., Meng G., & Sun Q. (2020) “An Overview on Edge Computing Research”. IEEE
access, Vol. 8, pp 85714-85728.

[3] Lee K., Lam M., Pedarsani R., Papailiopoulos D., & Ramchandran K. (2018) “Speeding up

distributed machine learning using codes”, IEEE Transactions on Information Theory, Vol. 64, No.

3, pp 1514–1529,

[4] Goudarzi M., Wu H., Palaniswami M., & Buyya R. (2021) “An Application Placement Technique

for Concurrent IoT Applications in Edge and Fog Computing Environments”, IEEE Transactions on

Mobile Computing, Vol. 20, No. 4, pp. 1298 – 1311.

[5] Taleb T., Samdanis K., Mada B., Flinck H., Dutta S., & Sabella D., (2017) “On Multi-Access Edge

Computing: A Survey of the Emerging 5G Network Edge Cloud Architecture and Orchestration”,

IEEE Communications Surveys & Tutorials, Vol. 19, No. 3, pp 1657–1681.

[6] Ferdinand N. & Draper S. C. (2018) “Hierarchical coded computation”, IEEE International
Symposium on Information Theory (ISIT), pp 1620–1624.

[7] Lin J., Yu W., Zhang N., Yang X., Zhang H., & Zhao W. (2017). “A survey on internet of things:

Architecture, enabling technologies, security and privacy, and applications”. IEEE Internet of

Things Journal, Vol. 4, No. 5, 1125-1142.

[8] Jose D. V., & Vijayalakshmi A. (2018) “An Overview of Security in Internet of Things”, Procedia

Computer Science, Elsevier, Vol. 143, pp 744-748.

[9] De Donno M., Tange K. P., & Dragoni N. (2019) “Foundations and evolution of modern computing

paradigms: Cloud, IoT, edge, and fog”, IEEE Access, vol. 7, pp. 150936 – 150948.

[10] Baumann A., Peinado M., & Hunt G. (2014) “Shielding Applications from an Untrusted Cloud with

Haven”, In: 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI 14),

Broomfield, CO: USENIX Association, pp.267–283.

146 Computer Science & Information Technology (CS & IT)

[11] Alaverdyan Y., & Satimova E. (2019) “Fully Homomorphic Cipher Based on Finite Algebraic

Structures”, Earthline Journal of Mathematical Sciences, Vol. 1, No. 1, pp 97-103.

[12] Alaverdyan Y. (2022) “Multi Agent Machinery in Construction of Cognitive Systems”. Journal of

NeuroQuantology, Vol. 20, No. 8, pp 2445 -2452.

[13] Movsisyan Yu., & Gevorgyan A. (2021) “Invertible algebras satisfying associative identities with
functional variables”, Asian-European Journal of Mathematics, 2021, Vol. 14, N 1, 2050155 (16

pages).

[14] Pang H. & Tan K.-L. (2004) “Authenticating query results in edge computing”, Proceedings of 20th

International Conference on Data Engineering, pp 560–571.

[15] Chor B., Goldwasser S., Micali S. and Awerbuch B. (1985) “Verifiable Secret Sharing and

Achieving Simultaneity in the Presence of Faults”, FOCS85, pp. 383-395.

[16] Li B. (2021) “Verifiable Secret Sharing Scheme Based on the Plane Parametric Curve”. Applied

Mathematics, 12, pp. 1021-1030.

[17] Cooper J., Donovan D., Seberry J. (1994) “Secret sharing schemes arising from Latin squares,

Bulletin of the Institute of Combinatorics and its Applications, 12, pp. 33-43.

[18] Pflugfelder H., (1990) “Quasigroups and loops”, Heldermann Verlag, Sigma series in Pure

Mathematics, 7, pp.28-59.

AUTHORS

Yeghisabet Alaverdyan. Head of Systems Integration Department at EKENG CJSC

since 2018. Graduate of the National Polytechnique University of Armenia. PhD,

Associate Professor. Author of more than 25 scientific papers published in local and

international scientific journals. Research is in Mathematical Cryptography, AI and

Cognitive systems modelling.

Suren Poghosyan. Lead of Scientific group at the IIAP NAS RA since 1988. Graduate

of the Yerevan State University. Author of more than 25 scientific papers published in

local and international scientific journals. PhD. Research is in Self-organized systems
modelling.

Vahag Poghosyan. Research fellow at the IIAP AS RA and Senior Software developer

at Synopsis Armenia. Graduate of the Yerevan State University. PhD. Author of more

than 30 scientific papers published in local and international scientific journals.

Research is in Self-organized systems modelling.

© 2023 By AIRCC Publishing Corporation. This article is published under the Creative Commons

Attribution (CC BY) license.

http://airccse.org/

	Abstract
	Keywords
	Edge computing, key splitting, authentication, blockchain, data sharing, data intelligence

