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Abstract 

Association rules play a very vital role in the present day market that especially involves generation of 

maximal frequent itemsets in an efficient way. The efficiency of association rule is determined by the 

number of database scans required to generate the frequent itemsets. This in turn is proportional to the 

time, which will lead to the faster computation of the frequent itemsets. In this paper, a single scan 

algorithm which makes use of the mapping of the item numbers and array indexing to achieve the 

generation of the frequent item sets dynamically and faster. The proposed algorithm is an incremental 

algorithm in that it generates frequent itemsets as and when the data is entered into the database. 
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1. INTRODUCTION 

The frequent itemsets involve the generation of the most frequent itemsets from the given set of 

transactions with the given support value [1]. The frequent itemsets are the items which occur 

frequently in multiple transactions. The number of frequent itemsets need to be generated varies 

depending on the application. The frequent itemsets are used to make decisions regarding the 

production of the sets of items that are bought more frequently, by benefitting the end users- 

retailers. In some of the business applications, the number of transactions may be large, hence 

there should be faster way of computing the frequent itemsets. 

 

2. EXISTING ALGORITHM AND DRAWBACKS 

The basic algorithm that is being widely used today in association rule for generating the frequent 

itemsets is the Apriori algorithm [1] [4]. Algorithm's basic idea is to identify all the frequent 

itemsets which exceeds the predefined threshold support. In other words frequent items generates 

strong association rule, which must satisfy minimum support and minimum confidence [2]. Even 

this algorithm is simple and clear, it has some limitations. It is costly to handle a huge number of 

candidate sets. Initially the frequent one itemsets are generated based on the given candidate one 

itemsets in the transaction. The candidate 2-itemsets generation is based on the frequent 1- 

itemsets. Now again the generation of the frequent 2-itemsets requires the entire scan of the 

transactions to count for the required support in the candidate 2-itemsets [3] [7]. This process 

goes on until the required number or all the possible number of frequent itemsets are generated 

for the given set of transactions. Hence Apriori algorithm needs ‘n’ number of passes for the 

generation of frequent n-itemsets. Hence the time required to obtain the maximal frequent 
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itemsets would be more. Apart from this, the major drawback is to wait until the last transaction. 

Hence there is a need for proposing a new algorithm to generate the frequent itemsets as and 

when each transaction is entered into the database and also to reduce the number of passes 

possible.  

 

To effectively extract information from a huge amount of data in databases, the knowledge 

discovery algorithms must be efficient and scalable in large databases [5].  Most of the algorithms 

apply only to static databases. That is, when more transactions are added, the process of 

generation of the frequent itemsets must start again from the beginning [6]. In the proposed 

algorithm, there is no restriction on the number of transactions. 

 

3. PROPOSED WORK 

The proposed algorithm involves the generation of the frequent itemsets as and when the 

transaction is entered into the database and also reducing the number of scans. In this work, a 

single scan algorithm is proposed to generate the frequent itemsets which makes use of mapping 

of the item numbers into the array index during computation. In this approach, since algorithm is 

incremental, the frequent itemsets are mapped for the particular index in an array during a single 

scan.  

 

3.1 Algorithm 

The main idea of this algorithm is to keep track of the frequent itemsets as and when a particular 

transaction is entered into the database. When a new transaction is added into the database, the 

counters of the corresponding itemsets are incremented. After incrementing the counters of the 

itemsets obtained are matched with the support value to obtain the frequent itemset. 

Pseudocode for the proposed algorithm in generic. 

C is an array which counts the itemset frequency 

f-set collects all frequent itemsets 

Begin 

Initialize the elements of array C to zero 

Read each transaction 

for each transaction  read 

begin 

          Consider all items present in the transaction as a set 

          Generate all the subsets of the above set 

          Increment the array C element considering the subset as the index   

end 

for all element of array C  

       if element is exceeding support value 

              store the array index in f-set 

End 

 

Pseudocode for the generation of the frequent itemsets for the number of items being less than 

100. 

// Computation for generation of frequent 1 itemset. 

for i =1 to n 

    if a[i] = 1 

        c[i]++; 

// Computation for 2 itemsets 

 for i = 1 to n 
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        for j = i+1 to n 

             if a[i] = 1 and a[j] = 1 

                             c[i*100+j]++; 

// Computation for 3 itemsets 

    for i =1 to n 

          for j = i+1 to n  

     for k = j+1 n 

                    if a[i] =1 and a[j ]= 1 and a[k] = 1 

                   c[i*10000+j*100+k]++; 

                                                                    . . . . . . . . . . . 

As an example, consider a transaction containing 3 items, 011(the second and the third items are 

added in this transaction).   The counter c2 and c3 gets incremented. In correspondence with this, 

c23 would be incremented as well. Thus after all the transactions are complete, the counters are 

checked for the support value to obtain the frequent itemsets. The counters indicate the indexes to 

an array corresponding to the item numbers. Hence the mapping can be done easily. The support 

of the itemset ‘i’ can be checked by looking at the content of the array at index i, as each time the 

item i occurs the content at that index is incremented.  

 

3.2 Demonstration of the Mapping 

As an example for demonstration of the pseudocode for mapping items into array index, consider 

the set of transactions as shown in Table 1, Based on the algorithm and the pseudocode specified 

above, the mapping of the itemsets into array index takes place as follows. 

  

If ‘a’ is an array keeping track of the count of the itemsets and minimum support (threshold 

value) is 3, then the transaction proceeds as follows. 

 

Table1. Transaction set. 

 
Item 

1 

Item 

2 

Item 

3 

Item 

4 

Item 

5 

Trans1 1 1 1 0 0 

Trans2 0 1 1 0 1 

Trans3 0 0 0 1 1 

Trans4 1 0 1 1 1 

Trans5 0 1 1 0 0 

 

In the scan of the first transaction, a[1], a[2], a[3], a[12], a[13], a[23] and a[123] gets 

incremented. Now the array “a” is updated as follows: a[1]=1, a[2]=1, a[3]=1, a[12]=1, a[13]=1, 

a[23]=1, a[123]=1. 

 

In the scan of the second transaction, a[2], a[3], a[5], a[23], a[25], a[35] and a[235] gets 

incremented. Now array “a” would be  updated as -> a[1]=1, a[2]=2, a[3]=2, a[5]=1, a[12]=1, 

a[13]=1, a[23]=2, a[25]=1, a[35]=1, a[123]=1 and a[235]=1. 
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In the third transaction, a[4], a[5], a[45] gets incremented. Now array gets updated as follows, 

a[1]=1, a[2]=2, a[3]=2, a[4]=1, a[5]=2, a[12]=1, a[13]=1, a[23]=2, a[25]=1, a[35]=1, a[45]=1, 

a[123]=1 and a[235]=1. 

 

In the scan of fourth transaction, a[1], a[3], a[4], a[5], a[13]. a[14], a[15], a[34], a[35], a [45], 

a[134], a[145], a[345] gets incremented. Now the array gets updated as follows, a[1]=2, a[2]=2, 

a[3]=3, a[4]=2, a[5]=3, a[12]=1, a[13]=2, a[14]=1, a[15]=1, a[23]=2, a[25]=1, a[34]=1, a[35]=2, 

a[45]=2, a[123]=, 1[134]=1, a[145]=1, a[235]=1 and a[345]=1. 

 

In the scan of fifth transaction, a[2], a[3] and a[23] gets incremented, the array would updated as 

follows, a[1]=2, a[2]=3, a[3]=4, a[4]=2, a[5]=3, a[12]=1, a[13]=2, a[14]=1, a[15]=1, a[23]=3, 

a[25]=1, a[34]=1, a[35]=2, a[45]=2, a[123]=1, a[134]=1, a[145]=1, a[235]=1 and a[345]=1. So 

frequent itemsets are {2}, {3}, {5} and {2, 3}. 

 

4. ADVANTAGES 

Since the algorithm is based on the array index mapping, the algorithm is best suitable when used 

for the incremental approach, i.e. as and when the data is entered into the database, the value of 

the particular array index is incremented corresponding to the items. Hence it is not required to 

explicitly generate the frequent itemsets. In this approach, the frequent itemsets are available at 

any point of time. Generation of the n-frequent itemsets is independent of the candidate itemsets 

and also on (n-1) frequent itemsets. The algorithm is reliable even if there are millions of 

transactions.  

 

5. DISADVANTAGES 

Memory is not used efficiently as only some of the array indexes are mapped to the items and the 

remaining part of the array would not be utilized. There is a limit on the number of items in the 

transactions depending on the availability of memory and also the maximal frequent itemsets to 

be generated.  

 

6. RESULT ANALYSIS 

Table 2 shows  the  set of  transactions t hat are being entered, while Figure 1 shows the snapshot 

of the output generated for given input transactions. For the given example, we considered 

minimum support as 3. From Figure 1, we can observe that the frequent itemsets are generated 

 

Table 2. Transactions Sets. 

 



Computer Science & Information Technology (CS & IT)                                 257 

implicitly as and when each transaction is updated into the data base. In the time analysis, the 

computation of 1-frequent itemset took an average of 40207 ns for a given set of 15 transactions 

and 4 items, while apriori took 116343 ns for the same set of transactions and items.  

 

Fig. 1. Correspondence Result.  

 
 

In the proposed algorithm, the generation of the maximal frequent itemsets is independent of the 

generation of previous maximal frequent itemsets. As an example, the generation of maximal 

frequent 4-itemsets is independent of the result of frequent 3-itemsets. 

 

7. CONCLUSION AND FUTURE WORK  

The proposed algorithm generates the frequent item sets in a single pass in an efficient way which 

makes use of the mapping of the item numbers and array indexing. The algorithm also supports 

for the incremental approach. Generation of the frequent itemsets are independent of the 

candidate itemsets. The scope for the future work includes generation of the large number of 

frequent itemsets in an efficient way in a single pass, i.e. making use of the array efficiently, 

irrespective of the number of items in the memory. 
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