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ABSTRACT 
 
This paper uses the concept of possibilistic risk aversion to propose a new approach for 

portfolio selection in fuzzy environment. Using possibility theory, the possibilistic mean, 

variance, standard deviation and risk premium of a fuzzy number are established.  Possibilistic 

Sharpe ratio is defined as the ratio of possibilistic risk premium and possibilistic standard 

deviation of a portfolio. The Sharpe ratio is a measure of the performance of the portfolio 

compared to the risk taken. The higher the Sharpe ratio, the better the performance of the 

portfolio is and the greater the profits of taking risk. New models of fuzzy portfolio selection 

considering the possibilistic Sharpe ratio, return and skewness of the portfolio are considered. 

The feasibility and effectiveness of the proposed method is illustrated by numerical example 

extracted from Bombay Stock Exchange (BSE), India and is solved by multiple objective genetic 

algorithm (MOGA).  
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1. INTRODUCTION 

 
The basic objective of portfolio selection problem is the optimal allocation of money in different 

stocks so that it maximizes the return and minimizes the risk of investment. Markowitz [1] who 

integrates probability theory and optimization to model the problem does the first mathematical 

formulation of portfolio selection problem in this return-risk framework.  The mean-variance 

model given by him is valid only when the returns of the stocks are normally distributed i.e., 

symmetric; which is not true in most of the cases. However, this model represents the risk adverse 

nature of the investors. To deal with the asymmetric nature of the return, skewness has been 

incorporated in the model by many researchers like Lai [2], Konno and Shirakawa [3], Konno and 

Suzuki [4], Chunhachinda et al. [5], Liu et al. [6], Prakash et al. [7], Briec et al. [8], Yu et al. [9], 

Bhattacharyya et al. ([10], [11], [12]), Chatterjee et al. [13] and others. Consideration of variance 

as risk is erroneous as it equally suggests penalties for up and down deviations from the mean. To 

face this problem, Markowitz [14] recommends semi-variance, a downside risk measure. Another 

alternative definition of risk is the probability of an adverse outcome (Roy [15]). The popular risk 

measure Value at Risk (Castellacci and Siclari [16], Philippe [17]) is in fact an alternative 

expression of the definition by Roy [15]. Different authors like Philippatos and Wilson [18], 

Philippatos and Gressis [19], Nawrocki and Harding [20], Simonelli [21], Huang [22], Qin et al. 

[23], Bhattacharyya et al. [10] use entropy as an alternative measure of risk to replace variance 

proposed by Markowitz [1].  
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Since the Sharpe ratio has been derived in 1966 by William Sharpe [24], it has been one of the 

most referred risk/return measures used in finance, and much of this popularity can be attributed 

to its simplicity. The ratio's credibility has been boosted further when Professor Sharpe won a 

Nobel Memorial Prize in Economic Sciences in 1990. The Sharpe ratio is defined as the ratio 

between the risk premium and the standard deviation. It is a risk-adjusted measure of return that is 

often used to evaluate the performance of a portfolio. The ratio helps to make the performance of 

one portfolio comparable to that of another portfolio by making an adjustment for risk. The idea 

of the ratio is to see how much additional return you are receiving for the additional volatility of 

holding the risky asset over a risk-free asset - the higher the better. However, the problem with 

Sharpe ratio is the presence of standard deviation in the formula. The issue with this formula lies 

in its application to investments or securities that do not have normally distributed returns. 

Nevertheless, consideration of positively skewed returns can solve this problem.  

 

In most of the research works on portfolio selection, the common assumptions are that the 

investor have enough historical data and that the situation of asset markets in future can be 

reflected with certainty by asset data in past. However, it cannot always be made with certainty. 

The usual feature of financial environment is uncertainty. Mostly, it is realized as risk uncertainty 

and is modelled by stochastic approaches. However, the term uncertainty has the second aspect- 

vagueness (imprecision or ambiguity) which can be modelled by fuzzy methodology. In this 

respect, to tackle the uncertainty in financial market, fuzzy, stochastic-fuzzy and fuzzy-stochastic 

methodologies are extensively used in portfolio modelling. By incurring fuzzy approaches 

quantitative analysis, qualitative analysis, experts’ knowledge and investors’ subjective opinions 

can be better integrated into a portfolio selection model. Authors like Konno and Suzuki [25], 

Leon et al. [26], Vercher [27], Bhattacharyya et al. [12] and others use fuzzy numbers to embody 

uncertain returns of the securities and they define the portfolio selection as a mathematical 

programming problem in order to select the best alternative. In possibilistic portfolio selection 

models, two types of approaches are noticed. The return of a security is considered either as a 

possibilistic variable or as a fuzzy number. In the later case, the possibilistic moments of the 

fuzzy numbers are considered. Possibilistic portfolio models integrate the past security data and 

experts’ judgment to catch variations of stock markets more plausibly. Tanaka and Guo [28] 

propose two kinds of portfolio selection models by utilizing fuzzy probabilities and exponential 

possibility distributions, respectively. Inuiguchi and Tanino [29] introduce a possibilistic 

programming approach to the portfolio selection problem under the minimax regret criterion. Lai 

et al. [30], Wang and Zhu [31] and Giove et al. [32] construct interval-programming models for 

portfolio selection. Ida [33] investigates portfolio selection problem with interval and fuzzy 

coefficients, two kinds of efficient solutions are introduced: possibly efficient solution as an 

optimistic solution, necessity efficient solution as a pessimistic solution. Carlsson et al. [34] 

introduce a possibilistic approach for selecting portfolios with the highest utility value under the 

assumption that the returns of assets are trapezoidal fuzzy numbers. Fang et al. [35] propose a 

portfolio-rebalancing model with transaction costs based on fuzzy decision theory. Wang et al. 

[36] and Zhang and Wang [37] discuss the general weighted possibilistic portfolio selection 

problems. Moreover, Lacagnina and Pecorella [38] develop a multistage stochastic soft 

constraints fuzzy program with recourse in order to capture both uncertainty and imprecision as 

well as to solve a portfolio management problem. Lin et al. [39] propose a systematic approach 

by incorporating fuzzy set theory in conjunction with portfolio matrices to assist managers in 

reaching a better understanding of the overall competitiveness of their business portfolios. Huang 

[40] presents two portfolio selection models with fuzzy returns by criteria of chance represented 

by credibility measure. Fei [41] studies the optimal consumption and portfolio choice with 

ambiguity and anticipation.  Zhang et al. [42] assume that the rates of return of assets can be 

expressed by possibility distribution. They propose two types of portfolio selection models based 

on upper and lower possibilistic means and possibilistic variances and introduce the notions of 

lower and upper possibilistic efficient portfolios. Li and Xu [43] deal with a possibilistic portfolio 

selection problem with interval center values. Parra et al. [44] introduce vague goals for return 
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rate, risk and liquidity based on expected intervals. Terol et al. [45] formulate a fuzzy 

compromise programming to the mean-variance portfolio selection problem. Huang [46] proposes 

a mean-semivariance model for describing the asymmetry of fuzzy returns. Huang [47] extends 

the risk definition of variance and chance to a random fuzzy environment and formulates 

optimization models where security returns are fuzzy random variables. 

 

In this paper, we have defined the possibilistic Sharpe ratio as the ratio between the possibilistic 

risk premium and possibilistic standard deviation. First, we have considered a bi-objective 

optimize problem that maximizes the possibilistic Sharpe ratio as well as the possibilistic 

skewness of the portfolio. As the Sharpe ratio prefers symmetric distribution, we maximize the 

skewness to get rid of this problem and to give more preference to positively skewed returns. We 

also have proposed six more models that represent different scenarios.  

 

The construction of the paper is as follows. In section 2, the possibilistic mean, standard 

deviation, skewness and risk premium of fuzzy numbers are derived. The outcomes are used to 

define the possibilistic Sharpe ratio. In section 3, the portfolio selection models are modelled. In 

section 4, a multiple objective genetic algorithm is discussed. In section 5, an example is provided 

to illustrate the feasibility and effectiveness of the proposed model using stock price data in the 

form of triangular fuzzy numbers extracted from Bombay Stock exchange (BSE).  Finally, in 

section 6, some conclusions are specified. 

 

2. POSSIBILISTIC MOMENTS AND POSSIBILISTIC RISK AVERSION 

 
Possibility theory is introduced by Zadeh [48] as an alternative to probability theory in the 

treatment of uncertainty. Fuzzy numbers represent a significant class of possibility distribution. 

The operations with fuzzy numbers can be done by Zadeh’s extension principle. Different authors 

have dealt with the notion of possibilistic moments of fuzzy numbers in different times. Dubois 

and Prade [49] propose the concept of interval-valued expectation of fuzzy numbers. Calsson and 

Fuller [50] define the possibilistic mean and variance of a fuzzy number where Fuller and 

Majlender [51] define the weighted possibilistic mean and variance of a fuzzy number. Liu and 

Liu [52] propose a definition of expected value of a fuzzy variable based on the possibilistic 

notion of credibility measure. Saeidifar and Pasha [53] define possibilistic moments of fuzzy 

numbers. Georgescu [54] proposes risk aversion by possibility theory and find out the risk 

premium by defining a new notion of possibilistic variance.  

 

Definition 2.1 [54] Let A% be a fuzzy number. Also let its α-level set 1 2[ A] [ a ( ),a ( )]=α α α% be 

such that 1 2a ( ) a ( ).≠α α The central value of [ A]α% is defined as 

a ( )2
2 1a ( )12 1

1 1
C([ A] ) xdx ( a ( ) a ( )).

a ( ) a ( ) 2
= = +

− ∫
αα

α
α α

α α
%  

Definition 2.2 [50] The expected value of a fuzzy number A% is defined by 

1

2 10
E( A ) [ a ( ) a ( )]d .= +∫ α α α α%  

Definition 2.3 [50] The variance of a fuzzy number A% is defined by 
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1 1
2 2

1 1 2 2

0 0

1
2 2

1 2

0

Var( A) POS[ A  a ( )][a ( ) E( A)] d POS[ A  a ( )][a ( ) E( A)] d

           = ([a ( ) E( A)] [a ( ) E( A)] )d

α α α α α α

α α α α

= ≤ − + ≥ −

− + −

∫ ∫

∫

% % % % %

% %
 

Definition 2.4 The skewness of a fuzzy number A% is defined by 

3

3

M ( A)
Skew( A) ,

( Var( A) )
=

%
%

%
 

where, 

1 1
3 3

3 1 1 2 2

0 0

1
3 3

1 2

0

M ( A) POS[ A  a ( )][a ( ) E( A)] d POS[ A  a ( )][a ( ) E( A)] d

           = ([a ( ) E( A)] [a ( ) E( A)] )d .

= ≤ − + ≥ −

− + −

∫ ∫

∫

α α α α α α

α α α α

% % % % %

% %

 

Definition 2.5 [54] The possibilistic risk premium 
A A, u

=ρ ρ% % associated with the fuzzy 

number A%  and the utility function u is defined by, 

A
u( E( A ) ) E(u( A)).− =ρ %

% %  

Let us assume that the utility function u is twice differentiable, strictly concave and increasing. 

Then the possibilistic risk premium 
A

ρ %  
has the form 

A

1 u ( E( A))
V( A ) ,

2 u ( E( A ))

′′
≈ −

′
ρ %

%
%

%
 

where, 

a ( )1 2
2

2 10 a ( )1

1
2 2

2 1 2 1

0

1
2 2
2 2 1 1 2 1

0

1
V( A) 2 ( x E( A)) dx d

a ( ) a ( )

2
         = ( a ( ) E( A)) ( a ( ) E( A)) ( a ( ) E( A))( a ( ) E( A)) d

3

2
        = ( a ( ) a ( )a ( ) a ( )) d 3E( A) ( a ( ) a ( )) d

3

α

α

α α
α α

α α α α α α

α α α α α α α α α

 
 = −

− 
 

 − + − + − −
 

+ + − +

∫ ∫

∫

∫

% %

% % % %

%
1 1

2

0 0

1
2 2 2
2 2 1 1

0

3E ( A) d

2
       = ( a ( ) a ( )a ( ) a ( )) d E ( A).

3

α α α

α α α α α α

  
+ 

  

+ + −

∫ ∫

∫

%

%

Depending on different forms of the utility function, the risk premium will have different forms.  
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Exponential utility of the form ( ) x
u x 1 e= − κ is unique in exhibiting constant absolute risk 

aversion (CARA) and has been used successfully in portfolio selection problem. In this literature, 

we consider the utility function as u(x) = 1 − e
− 2x. Then we have,  

 

2x

2x

u ( E( A )) 4e
2;

u ( E( A )) 2e

−

−

′′ −
= = −

′

%

%
 

so that, 
A

V( A).≈ρ %
%  

Definition 2.6 We define the possibilistic Sharpe ratio (PSR) of a fuzzy number A%  as, 

A V( A )
PSR( A ) .

Var( A ) Var( A )
= =

ρ % %
%

% %
 

Example 2.7 Let A ( a,b,c )=% be a triangular fuzzy number. Then we have, 

2 2 2

3 3 3 2 2 2

2 2 2 3

2 2 2
A

2 2 2

2 2

a 4b c
E( A) ,

6

1
Var( A) [  a + b + c ab bc ca],

18

[19(a  c ) 8b 42b(a  c ) (12b 15ac)(a  c)  60abc]
Skew( A) ,

10 2( a + b + c ab bc ca )

1
[a + 2b + c 2ab 2bc],

36

a + 2b + c 2ab 2bc
PSR

6 2 a + b + c

+ +
=

= − − −

+ − − + + − + +
=

− − −

= − −

− −
=

ρ %

%

%

%

2
.

ab bc ca− − −
 

The results are obtained by definitions 2.2, 2.3, 2.4, 2.5 and 2.6. 

 

3. POSSIBILISTIC PORTFOLIO SECTION MODEL 

 
Let for i = 1, 2, …, n, 

 

xi = the portion of the total capital invested in security i; 

ip =% fuzzy number representing the closing price of the ith security at present;  

'
ip =% fuzzy number representing the estimated closing price of the i

th
 security for the next year; 

di = fuzzy number representing the estimated dividend of the ith security for the next year;  

ir =% fuzzy number representing the return of the ith security
'
i i i

i

p  + d p
= .

p

−
 

As per discussion in the Introduction, we propose the following portfolio selection model in fuzzy 

environment. 
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1 1 2 2 n n

1 1 2 2 n n

1 1 2 2 n n

n

i

i 1

i

Maximize PSR[r x r x .... r x ]

Maximize Skew[r x r x .... r x ]

subject  to

E[r x r x .... r x ]( 3.1)

x 1

x 0,i 1,2,...,n.

α

=

+ + +


+ + +

 + + + ≥

 =



≥ =

∑

% % %

% % %

% % %

  

The constraint 1 1 2 2 n nE[r x r x .... r x ] α+ + + ≥% % % ensures that the expected return of the portfolio is 

no less than a minimum desired value α. The second constraint 
n

i

i 1

x 1
=

 
=  

 
∑ is the well-known 

capital budget constraint on the assets. The last constraint [ ]ix 0 i≥ ∀ ensures that no short selling 

is allowed in the portfolio here. 

 

Note: The following models (3.2), (3.3), (3.4), (3.5), (3.6), (3.7) can also be considered by the 

investors depending on their priorities. 
 

1 1 2 2 n n

1 1 2 2 n n

1 1 2 2 n n

n

i

i 1

i

Maximize PSR[r x r x .... r x ]

Maximize E[r x r x .... r x ]

subject to

Skew[r x r x .... r x ](3.2)

x 1

x 0,i 1,2,...,n.

β

=

+ + +


+ + +

 + + + ≥

 =



≥ =

∑

% % %

% % %

% % %

 

1 1 2 2 n n

1 1 2 2 n n

1 1 2 2 n n

n

i

i 1

i

Maximize Skew[r x r x .... r x ]

subject  to

E[r x r x .... r x ]

PSR[r x r x .... r x ]( 3.3 )

x 1

x 0,i 1,2,...,n.

α

γ

=

+ + +


 + + + ≥
 + + + ≥

 =



≥ =

∑

% % %

% % %

% % %  

1 1 2 2 n n

1 1 2 2 n n

1 1 2 2 n n

n

i

i 1

i

Maximize PSR[r x r x .... r x ]

subject to

E[r x r x .... r x ]

Skew[r x r x .... r x ](3.4 )

x 1

x 0,i 1,2,...,n.

α

β

=

+ + +


 + + + ≥
 + + + ≥

 =



≥ =

∑

% % %

% % %

% % %
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1 1 2 2 n n

1 1 2 2 n n

1 1 2 2 n n

n

i

i 1

i

Maximize E[r x r x .... r x ]

subject  to

PSR[r x r x .... r x ]

Skew[r x r x .... r x ]( 3.5 )

x 1

x 0 ,i 1,2 ,...,n.

γ

β

=

+ + +


 + + + ≥
 + + + ≥

 =



≥ =

∑

% % %

% % %

% % %  

and 

1 1 2 2 n n

1 1 2 2 n n

1 1 2 2 n n

n

i

i 1

i

Maximize PSR[r x r x .... r x ]

Maximize E[r x r x .... r x ]

Maximize Skew[r x r x .... r x ]

subject  to( 3.6 )

x 1

x 0,i 1,2,...,n.

=

+ + +


+ + +
 + + +



 =



≥ =

∑

% % %

% % %

% % %

 
 

where the values of α, β, γ would be specified by the investors according to their needs. 

 

Theorem 3.1 Suppose i i i ir  = (a , b , c ), [i=1,2,...,n]%  are independent triangular fuzzy numbers. 

Then the model (3.1) generates the multi-objective programming problem model (3.8). 

 
2 2 2

n n n n n

i i i i i i i i i i

i  =  1 i  =  1 i  =  1 i  =  1 i  =  1

n n n

i i i i i i

i  =  1 i  =  1 i  =  1

1
M axim ize  a x +  b x +   c x a x b x

6 2

                  b x  c x  c x

( 3.7 )

         
−                  

         

    
− −       
    

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

1
2 2

n n n2

i i i i i i

i  =  1 i  =  1 i  =  1

2
n n n n n

i i i i i i i i i i

i  =  1 i  =  1 i  =  1 i  =  1 i  =  1

a x a x +  2 b x

                      +   c x 2 a x b x 2 b x  c x

−        
              

        

        
− −              

        

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

2 2 2
n n n n n

i i i i i i i i i i

i  =  1 i  =  1 i  =  1 i  =  1 i  =  1

n n n

i i i i i i

i  =  1 i  =  1 i  =  1

1
M axim ize  a x +  b x +   c x a x b x

10 2

              b x  c x  c x


  



         
−                  

         

   
− −      
   

∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

3
3 3

n n n2

i i i i i i

i  =  1 i  =  1 i  =  1

3 2
n n n n

i i i i i i i i

i  =  1 i  =  1 i  =  1 i  =  1

a x 19   a x   c x

                8   b x  42  b x a x   c x

−             +                           

       
− − +            

       

∑ ∑ ∑

∑ ∑ ∑ ∑
2

2
n n n n n

i i i i i i i i i i

i  =  1 i  =  1 i  =  1 i  =  1 i  =  1

n n

i i i i

i  =  1 i  =  1

             12  b x 15 a x c x a x  c x

             +  60  a x  b x

 
 

+ 
  

               
− +                     

             

 
  
 

∑ ∑ ∑ ∑ ∑

∑ ∑
n

i i

i  =  1

n n n n

i i i i i i i i

i  =  1 i  =  1 i  =  1 i 1

c x  

subject  to

1
 a x  +  4  b x  +   c x ,   x 1,   x 0 ,i 1,2 ,...,n .

6
α

=


































   
       
    



  

≥ = ≥ =     

∑

∑ ∑ ∑ ∑
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Proof: Since i i i ir  = (a , b , c )% are triangular fuzzy numbers, by extension Principle of Zadeh it 

follows that
n n n

1 1 2 2 n n i i i i i i

i  = 1 i = 1 i = 1

r x r x .... r x  =   a x  ,  b x  ,  c x ,
 

+ + +   
 
∑ ∑ ∑% % %  which is also a fuzzy 

number. Combining this with the results obtained in example 2.7, we are with the theorem. 

 

4. MULTIPLE OBJECTIVE GENETIC ALGORITHM 
 
The proposed portfolio selection model (3.7) is solved by using Multiple Objective Genetic 

Algorithm (MOGA). The MOGA proposed by Bhattacharyya et al. [55] is followed. 

 

The following are followed for the development of the MOGA for the proposed model (3.7). 

 
Representation: An n-dimensional real vector X = {x1, x2, …, xn} is used to represent a solution 

where each ix [0,1], i =1, 2,..., n.∈  
 
Initialization: L such solutions X1, X2, …, XL are randomly generated such that each of them 

satisfies the constraints of the model. This solution set is the set P.  

 

Cross Over and Mutation: Crossover operator is mainly responsible for the search of new strings. 

Crossover operates on two parent solutions at a time and generates offspring solutions by 

recombining both parent solution features. After selection of chromosomes for new population, 
the crossover operator is applied. Here the arithmetic cross over is used. Mutation is the unary 

operation by which genes present in a chromosome are changed. Here the usual mutation 

procedure is followed. 
 

Proposed multi-objective genetic algorithm has the following two important components:  

 
(a) Consider a population P of feasible solutions of (3.7) of size L. We like to partition P into 

subsets F1, F2, ..., Fk, such that every subset contain non-dominated solutions, but every solutions 

of Fi are not dominated by any solution of Fi+1, for i = 1,2,..., k-1.  Let the number of solutions of 

P which dominate x is nx and the set of solutions of P that are dominated by x is Sx. Note that, as 

there are two objective functions, these require O(2L
2
) computations. 

 

(b) To determine the distance of a solution from other solutions of a subset first sort the 

subset according to each objective function values in ascending order of magnitude. For both 

objective functions, the boundary solutions are assigned an infinite distance value (a large value). 
All other intermediate solutions are assigned a distance value for the objective, equal to the 

absolute normalized difference in the objective values of two adjacent solutions. The overall 

distance of a solution from others is calculated as the sum of individual distance values 

corresponding to each objective.  

 

For detailed discussions on ‘the division of P(T) into disjoint subsets having non-dominated 

solutions’ and ‘distance of a solution of subset F from other solutions’, Roy et al. [56] can be 

consulted.   

 

Since two independent sorting of at most L solutions (in case the subset contains all the solutions 
of the population) are involved, the above algorithm has O(2Llog L) computational complexity.  
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Using the above two operations proposed multi-objective genetic algorithm is formulated as: 

 
1. Set probability of crossover Pc and probability of mutation Pm.  

2. Set iteration counter T =1.  

3. Generate initial population set of solution P(T) of size L.  

4. Select solution P(T) for crossover and mutation.  

5. Made crossover and mutation on selected solution and get the child set C(T).  

6. Set 1P P(T ) C(T ).= U  

7. Divide P1 into disjoint subsets having non-dominated solutions. Let these sets be F1, F2, ..., Fk. 

8. Let 2 1 2 nP F F ... F .= U U U Select maximum integer L such that 2O( P ) L.≤   

9. If O(P2) < L sort solutions of Fn+1 in descending order of their distance from other solutions of 

the subset. Then select first L - O(P2) solutions from Fn+1 and add with P2. 

10. Set T = T + 1 and P(T) = P2. 

11. Go to step-4 if termination condition does not hold.  

12. Output: P(T)  

13. End algorithm. 

 

Since in the above algorithm computational complexity of step-7 is O(2L
2
), step-9 is O(2NlogN) 

and other steps are ≤ O(N), so overall time complexity of the algorithm is O(2N
2
).  

 

In this MOGA, selection of new population after crossover and mutation on old population is 

done by creating a mating pool by combining the parent and offspring population and among 

them best L solutions are taken as solutions of new population. By this way, elitism is introduced 

in the algorithm.  

 

5. CASE STUDY: BOMBAY STOCK EXCHANGE  

 
In this section we apply our portfolio selection model on the data set extracted from Bombay 

stock exchange (BSE). Bombay Stock Exchange is the oldest stock exchange in Asia with a rich 
heritage of over 133 years of existence. What is now popularly known as BSE was established as 

"The Native Share & Stock Brokers' Association" in 1875. It is the first stock exchange in India 

which obtained permanent recognition (in 1956) from the Government of India under the 

Securities Contracts (Regulation) Act (SCRA) 1956. Today, BSE is the world's number 1 

exchange in terms of the number of listed companies and the world's 5th in handling of 

transactions through its electronic trading system. The companies listed on BSE command a total 

market capitalization of USD Trillion 1.06 as of July, 2009.  The BSE Index, SENSEX, is India's 

first and most popular stock market benchmark index. Sensex is tracked worldwide. It constitutes 

30 stocks representing 12 major sectors. It is constructed on a 'free-float' methodology, and is 
sensitive to market movements and market realities. Apart from the SENSEX, BSE offers 23 

indices, including 13 sectoral indices. 

 
We have taken monthly share price data for sixty months (March 2003- February 2008) of just 

five companies which are included in BSE index. Though any number of stocks can be 

considered, we have taken only five stocks to reduce the complexity.  The Table 5.1 shows the 

companies name along with their return in the form of trapezoidal uncertain numbers. 
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Table 5.1 Stocks and their returns 

 

Company Return (
ir% ) 

Reliance Energy (RE) (-0.008, 0.031,0.067) 

Larsen and Toubro (LT) (-0.003, 0.043, 0.087) 

Tata Steel (TS) (0.009, 0.030, 0.052) 

Bharat Heavy Electricals Limited (BH) (-0.002, 0.036, 0.083) 

State Bank if India (SB) (-0.010, 0.033, 0.079) 

 

With respect to the above data, we consider the following portfolio selection model: 

 

1 1 2 2 3 3 4 4 5 5

1 1 2 2 3 3 4 4 5 5

1 1 2 2 3 3 4 4 5 5

1 2 3 4 5

1 2 3 4 5

Maximize PSR[r x r x r x r x r x ]

Maximize Skew[r x r x r x r x r x ]

subject  to
( 5.1)

E[r x r x r x r x r x ] 0.04

x ,x ,x ,x ,x 0

x +x +x +x +x 1

+ + + +


+ + + +



+ + + + ≥
 ≥


=

% % % % %

% % % % %

% % % % %
 

We apply theorem 3.1 to convert model (5.1) into the deterministic model (3.7). To solve it, the 

proposed MOGA is used. The cross over and mutation probabilities are chosen as 0.6 and 0.2 

respectively. The number of iterations is 100. The solution is obtained as shown in Table 5.2.  

 
Table 5.2 Portfolio 

 

x1 x2 x3 x4 x5 

0.3936170 0.00000 0.00000 0.6000000 0.00638296 

 

Table 5.2 shows that the investor should invest 39.36%, 60% and 0.64% of the total money in the 

1
st
, 4

th
 and 5

th
 stocks. The portfolio is explained via the pie chart given in Figure 5.2. 

 

 
 

Figure 5.2 Portfolio 
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6. CONCLUSIONS 

 
In this paper, a new framework of fuzzy portfolio selection is introduced. Instead of following the 

return-risk framework, this work concentrates on the risk-aversion nature of the investors and set 
up a possibilistic Sharpe ratio –skewness portfolio selection problem. To do so, the possibilistic 

Sharpe ratio is defined. As the Sharpe ratio prefers symmetric distribution, we consider skewness 

to get rid of this drawback. The model is tested on a data set collected from BSE.  

 

In near future, we will apply these portfolio selection models and solution method to other asset 

allocation problems, combinational optimization models and multi-period problems to find 

optimal investment strategy under complex market situations. Some other algorithms such as 

ACO (ant colony optimization), PSO (particle swarm optimization), VEGA (vector evaluation 

genetic algorithm), NEGA (Nondominated sorting genetic algorithm), NPGA (Niched Pareto 
genetic algorithm) and PAES (Pareto archived evolution strategy) may be employed to solve the 

problem, especially when the data set is significantly large. 
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