

Rupak Bhattacharyya et al. (Eds) : ACER 2013,

pp. 269–278, 2013. © CS & IT-CSCP 2013 DOI : 10.5121/csit.2013.3225

AN ALTERNATIVE APPROACH FOR

SELECTION OF

PSEUDO RANDOM NUMBERS

 FOR ONLINE EXAMINATION SYSTEM

Shilpi Kumari Shaw
1
, Aakash Sharma

2
, Shoubhik Chowdhury

3
,

Aritra Biswas
4
, Arnab Mitra

5

1,2,3,4,5

Department of Computer Science & Engineering

Adamas Institute of Technology, Barasat-700126, India
{shilpishaw.ait, aakashcal91, shoubhikchowdhury91,

biswas.aritra8, mitra.arnab}@gmail.com

 ABSTRACT

Fast and accurate selection of random pattern is needed for many scientific and commercial

applications. One of the major applications is Online Examination system. In this paper, a

sophisticated approach has been developed for the selection of uniform pseudo random pattern

for Online Examination System. Three random integer generators have been compared for this

purpose. Most commonly used procedural language based pseudo random number; PHP

random generator and atmospheric noise based true random number generator have been

considered for easy generation of random patterns. The test result shows a varying degree of

improvement in the quality of randomness of the generated patterns. The randomness quality of

the generated pseudo random pattern has been assured by diehard test suite. An experimental

outcome for our recommended approach signifies that our approach selects a quality set of

random pattern for Online Examination System.

 KEYWORDS

 Pseudo random number generator (PRNG), Pseudo random Pattern Generator (PRPG),

Procedural Language Random Number Generator (PrRNG), PHP random Number Generator

(PHPRNG), True Random Number Generator (TrRNG), Online Examination System (OES)

1. INTRODUCTION

Random number [1], [2] is a number engendered by a method, whose consequence is volatile, and

which cannot be sub sequentially dependably replicated. It is purely impossible to authenticate

whether the certain number was formed by a random number generator or not. In order to study

the predictability of the output of such a producer, it is therefore unconditionally essential to

reflect order of number. It is pretty direct to express whether an order of infinite extent is random

or not. This arrangement is random if the amount of info it covers – in the logic of Shannon's

information concept – is also infinite. In additional falling out, it must not be probable for a

processer, whose extent is finite, to produces this arrangement. Excitingly, an infinite random

arrangement comprises all probable predetermined sequences. Such an unbounded arrangement

does for instance hold the Microsoft Windows source code or the copy of the Geneva

270 Computer Science & Information Technology (CS & IT)

conventions. Unfortunately, this description is not very worthwhile, as it is not promising in

exercise to create and practice infinite orders.

In the case of a finite arrangement [3] of figures, it is validly difficult to confirm whether it is

random or not. It is only conceivable to check that it shares the statistical stuffs of a random

arrangement– similar to equi-probability of the whole numbers – but this is a challenging and

complex task. To demonstrate this, let us for specimen consider a binary random number

generator constructing sequences of ten bits. Although it is precisely as probable as any other ten

bits sequences, 0 0 0 0 0 0 0 0 0 0 does look a lesser random than 1 0 0 1 0 1 0 1 1 1.

Pseudo-random number generators (PRNGs) [4], [5] are algorithms to instinctively produce

elongated runs of numbers with superior random properties however eventually the series repeats.

The sequence of values evaluated by such algorithms is frequently resolute by a rigid number

known as a seed [4]. The most frequent PRNG is the linear congruential generator, which utilizes

the recurrence in Equation 1.

mdAcA nn mod)*(1 +=
+

 …… (1)
where A is the sequence of pseudorandom values, and

m, 0 < m — the "modulus”;

c, 0 < c < m — the "multiplier";

d, 0 < d < m — the "increment";

A0, 0 < A0 < m — the "seed" or "start value".

There exist two major ways used to produce [6] random numbers. One processes certain physical

phenomenon that is probable to be random and then recompenses for probable biases in the

measurement procedure. The further practices computational algorithms that can yield long

arrangements of apparently random outcomes, which are in fact absolutely determined by a

smaller primary value, well-known as a seed. The latter forms are frequently known

as pseudorandom number generators.

 Many extents of statistical investigation, research, and simulation depend on the superiority of

random number generators. Maximum programs for statistical data analysis comprise a function

for producing uniform random numbers. The Diehard suite [5] of tests has grown into a standard

technique of evaluating the superiority of uniform random number generator procedures

Diehard tests [5], [7-8] are a battery of statistical test to measure the standard of random number

generated. At first it was developed by George Marsaglia and first issued in 1995 on a CD-ROM

of random numbers. Soon after advanced version of this statistical test been reformed and

circulated thru University of Hong Kong.

The below mentioned tests are performed to extent the feature of the randomness of an individual

random pattern creator:

i. Birthday spacings: The name birthday spacing is centred on birthday paradox. Here

random points are selected on a large interval with the asymptotically exponentially

distributed spacing among the points.

ii. Overlapping permutation: This test always analyse five successive random number

arrangements, with statically identical probability, a total 120 possible ordering should

occur.

iii. Ranks of matrices: choose few number of bits from certain amount of random number to

formulate a matrix over [0, 1], then govern the rank of the matrix on the basis of

determinant value of matrix.

iv. Monkey tests: The name monkey test is based on infinite monkey theorem. In this test

sequence of few numbers of bits is considered as “words”. Therefore overlapping word

Computer Science & Information Technology (CS & IT) 271

present in a stream be counted. Any known distribution be followed by the number of

“words” that don’t appear.

v. Count the 1’s: In this test, count the 1bit in every single of either successive or chosen

bytes. Then convert the counted values into “letters” and lastly following the counting of

the existences of five-letter ‘words”.

vi. Parking lot test: Unit circle in a 100 x 100 square placed randomly is tested to search

whether any of the circles, overlaps a present one. After a repetition of 12000 tries, the

number of effectively “parked” circles would follow a certain normal distribution.

vii. Minimum distance test: In this test, place randomly 8000 points in a 10.000 x 10.000

squares, after that minimum distance between the pair is to be found. The square

of the distance with a certain mean is exponentially distributed.
viii. Random spheres test: In this test, in a cube of edge 1,000, choose randomly 4,000

points. On each point a sphere is to be centred, whose radius is the least distance to

another point.

ix. The smallest sphere’s volume ought to be exponentially distributed using a certain mean.

x. The squeeze test: Until one reach 1, multiply 2
31

 by random floats on [0,1). Repeat this

thing 100,000 times. The number of floats required to arrive at 1 should pursue a certain

distribution.

xi. Overlapping sums test: Create a extended series of random floats on [0,1]. Add series

of 100 successive floats. The sums have to be normally distributed with

characteristic mean with sigma.
xii. Runs test: create a extended sequence of random floats on [0, 1). Count up ascending

and descending runs. The counts have to pursue a certain distribution.
xiii. The craps test: Count the success and the number of toss per game, play 200,000 games

of craps. Each count ought to pursue a certain distribution.

The organization of this paper is as follows: Section 2 briefly discusses the related work. Section

3 expounds the proposed work. Section 4 records the experimental results. Section 5 draws the

conclusion. Section 6 is devoted to acknowledgements, and Section 7 includes references.

2. RELATED WORK

A number of methods have been applied [9-13], [16] to generate better quality random numbers.

Some novel labours have been established to produce better quality random numbers. Some

significant efforts have also been made to produce pseudo-random numbers. Among all Intel true

random number and true random number generation by Random.org is pretty remarkable where

atmospheric noise is applied as the seed.

A true random number[14], [15] producer is a section of electronics that plugs inside a computer

and yields genuine random numbers as disparate to the pseudo-random numbers that are created

by a computer program. The standard technique is to intensify noise produced thru a resistor

(Johnson noise) or a semi-conductor diode and feed this to a Schmitt trigger or comparator. If one

samples the out-come (not too rapidly) get a sequence of bits which are statistically autonomous.

Utmost random numbers [4] applied in computer programs are pseudo-random, which means they

are created in a expectable fashion via a mathematical formulation. This is adequate for several

purposes; however it might not stay random in the way one imagines if it used to gamble like dice

rolls and lottery drawings.

RANDOM.ORG [16], [17] proposed true random numbers to any person on the Internet. The

randomness originates from atmospheric noise, which for numerous drives is superior to the

pseudo-random number algorithms usually applied in computer programs. For gambling sites, for

scientific applications and for art and music people use RANDOM.ORG.

272 Computer Science & Information Technology (CS & IT)

3. PROPOSED WORK

Generation of our algorithm is to obtain random question number in on-line examination system

using PHP. Compare to other similar on-line examination system this system is more innovative

because of the generation of pseudo random pattern, as a result none of the question get repeated

at boundless instant of time.

Procedural language provides random number generation function rand(), which is found in

<stdlib.h> header. Function rand actually produces pseudorandom numbers. Calling rand

recurrently produces a arrangement of numbers that seems to be random.

Based on the above mentioned, the following flowchart 1 and Algorithm 1, should generate the

random integer set in procedural language.

Figure 1: Flow chart for generating a random pattern in procedural language

Similarly just like Procedural Language random function, PHP also have its own random function

mt_rand().The number generated in PHP is uniformly distributed over the specified range. PHP

integers are 32 or 64 bits wide, and are represented by means of two's complement arithmetic.

Based on the above mentioned, the following flowchart 2 and Algorithm 2, should generate the

random integer set in PHP.

Computer Science & Information Technology (CS & IT) 273

Figure 2: Flow chart for generating a random pattern in Scripting Language

Finally the proposed algorithm which has been proved to be better compare to previous

algorithms, and gave better randomness quality. The following flowchart 3 and Algorithm 3

should generate the random integer set.

Figure 3: Flow chart for selecting a true random sequence for online examination

274 Computer Science & Information Technology (CS & IT)

Algorithm 1: Selection of Pseudo Random Pattern Sequence

Input: Set of true random sequence

Output: Random pattern for randomly generated question set

(Write this following algorithm in step wise only. no pseudocode)

STEP 1: Start

STEP 2: Generating a random number using the seed value.

STEP 3: According to the random number, the position has been found from the file in which

 the pseudo random patterns are stored.

 STEP 3.1: Searching the random number from the file.

STEP 3.2: In the case of more than one digit number, the digits are concatenated with

 each other.

 STEP 3.3: The total string has been converted into integer.

STEP 4: After matching the first element, insert the corresponding row elements into the array.

STEP 4.1: Insert the element into the first position of the array until a space is occurred.

 Checks the next field is blank or a new line

 If matched

 The previous value has put into the array

STEP 4.2: Repeat the above step (STEP 4.2) until a new line or the end of the file

(EOF) is reached.

STEP 4.3: The elements that are found in the row are converted to integer value.

STEP 5: Print the array elements of the selected row.

STEP 6: Get the selected random pattern sequence for randomly selected question set.

STEP 7: End

Our proposed above algorithm have generated random number up to 3 digits. That means it can

generate up to 1000 random sequences which is much more than our requirement for online

examination purpose, as we know in an exam session we hardly require 40/50 question. Further

this algorithm is also efficient to produce random numbers larger than 3 digits on requirement,

which has been shown in Figure 4(b).

4. EXPERIMENTAL OBSERVATION AND RESULT ANALYSIS

The given file contains the random patters stored in text format.

Figure 4(a): The text file in which the true random sequences are stored

Computer Science & Information Technology (CS & IT) 275

Figure 4(b): The text file in which the true random sequences are stored

The algorithm generates a random number between 0 to (seed value - 1), i.e. 0 - 9 in this example.

It then starts searching from the beginning of the text file containing the random patterns. If the

first number matches the random number, the entire row containing the random pattern is taken

into an integer array else the row is scanned simply as text. The algorithm then scans the first

element of the next row. If the number is found, it takes the random pattern into the array else

continues searching. The algorithm continues until the random number is matched with the first

element and the corresponding random pattern is selected.

Figure 5(a): Outcomes of the Proposed Algorithm

276 Computer Science & Information Technology (CS & IT)

Figure 5(b): Outcomes of the Proposed Algorithm

Centred on this factor Table 2 replicates the end result of Diehard tests. The examined outcomes

can be observed in Figure 4 with graph, which demonstrate the improved feature of randomness

for resultant random integer originator

.Most of the tests in DIEHARD returns a p-value, which should be uniform on [0, 1) if the input

file contains truly independent random bits. Those p-values are chosen up by p=F(Y), where F is

the presumed distribution of the sample random variable Y---often normal. But that presumed F is

just an asymptotic approximation, for which the fit will be worst in the tails. Thus outcome

should not be surprised with occasional p-values near 0 or 1, such as .0012 or .9983. When a bit

stream really FAILS BIG, it will get p's of 0 or 1 to six or more places. By every means, the

value of p < .025 or p> .975 means that the RNG has "failed the test at the .05 level".

Table 1: Diehard Test

Test Number Diehard Test Name

1. Birthday Spacings

2. GCD

3 Gorilla

4. Overlapping Permutations

5. Ranks of 31x31 and 32x32 matrices

6. Ranks of 6x8 Matrices

7. The Bitstream Test

8. Monkey Tests OPSO,OQSO,DNA

9. Count the 1`s in a Stream of Bytes

10. Count the 1`s in Specific Bytes

11. Parking Lot Test

12. Minimum Distance Test

13. Random Spheres Test

14. The Sqeeze Test

15. Overlapping sums Tests

16. Runs Up and Down Test

17. The Craps Test

Computer Science & Information Technology (CS & IT) 277

Table 2: Test Result

Diehard Test

Number

Procedural

Language
PHP TRNG

1. Fail Fail Pass

2. Fail Fail Fail

3. Fail Fail Fail

4. Fail Fail Pass

5. Fail Fail Fail

6. Fail Fail Pass

7. Fail Fail Fail

8. Fail Fail Pass

9. Fail Fail Pass

10. Fail Fail Pass

11. Fail Fail Pass

12. Fail Fail Pass

13. Fail Fail Pass

14. Fail Fail Pass

15. Fail Fail Pass

16. Fail Fail Pass

17. Fail Fail Pass

Total Number

of Diehard Test

Passes

0 0 13

Figure: 6 Result of the above mentioned table is shown in the following graph.

The graph below show the randomness quality of a random pattern developed in C language,

PHP, and proposed algorithm.

Procedural language has its own random function for generating random pattern, this function

give a random pattern between 0 to 99, which is plotted in the given graph in yellow colour.

Similarly PHP has also its own random function for generating random pattern, its randomness is

also plated in the same graph with pink colour.

But after comparing the proposed algorithm for random pattern generation with C’s and PHP’s

random pattern generation function by plotting the randomness in the same graph with blue

colour by taking different values, the outcomes shows that this proposed algorithm gives

improved random quality.

278 Computer Science & Information Technology (CS & IT)

Outcomes based on figure 8, it can be concluded that our proposed algorithm can be appliance as

an enhanced source of random patterns as it have maximum amount of randomness with allusion

to all further random function.

Figure 8: Randomness testing with higher number of data set

5. CONCLUSION

The algorithm selects a better random pattern and shows that the number selected from the pattern

has no repetition. The graph represents as figure 2 express the superiority of randomness archived

by this algorithm.

So as per our requirement, through this algorithm we can achieve random questions for our online

examination system, and thus meets our requirements.

REFERENCES

[1] http://en.wikipedia.org/wiki/Random_Number

[2] Arnab Mitra, Anirban Kundu; (2012) Cost optimized Approach to Random Numbers in Cellular Automata;

The Second International Conference on Computer Science, Engineering & Applications (ICCSEA); India

[3] Wolfram; Wolfram Mathematica Tutorial Collection: Random Number

.http://www.wolfram.com/learningcenter/tutorialcollection/RandomNumberGeneration/.pdf

[4] http://en.wikipedia.org/wiki/Pseudorandom_number_generator

[5] Arnab Mitra, Anirban Kundu; (2012) Cost Optimized Design Technique for Pseudo-Random Numbers in

Cellular Automata; International Journal of Advanced Information Technology (IJAIT) Vol. 2, No.3, June

2012

[6] http://en.wikipedia.org/wiki/Random_Number_Generationen.wikipedia.org/wiki/Diehard_tests

[7] Robert G. Brown. dieharder: A Random Number Test Suite, 2006a.

[8] http://www.phy.duke.edu/~rgb/General/dieharder.php. C program archive dieharder, version 1.4.24.

[9] Colin Plumb; (1994) “Truly Random Numbers”; Dr.Dobbs Journal, November 1994, p.113.

[10] Tim Matthews; (1995) “Suggestions for random number generation in software”; RSA Data Security

Engineering Report, 15 December 1995.

[11] Boaz Barak and Shai Halevi; (2005) An architecture for robust pseudo-random generation and applications

to /dev/random; In Proc. ACM Conf. on Computing and Communication Security (ACM CCS); 2005.

[12] B. Jun and P. Kocher; (1999) The Intel Random Number Generator.; Cryptography Research Inc. white

paper, Apr. 1999.

[13] Matsumoto, M. and Nishimura, T. (1998), “Mersenne-Twister: A 623-Dimensionally Equidistributed

Uniform Pseudo-Random Number Generator,” ACM Transactions on Modeling and Computer Simulation,

8:1, pp. 3- 30..

[14] http://en.wikipedia.org/wiki/True_Random_Number_Generator

[15] Dirk Eddelbuettel; Random: An R package for true random numbers;

http://dirk.eddelbuettel.com/bio/papers.html

[16] www.random.org

[17] http:// www.random.org/randomness/

