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ABSTRACT 

 

Bending loss in the waveguide as well as the leakage losses and absorption losses along with a 

comparative study among different types of S-shaped bend structures has been computed with 

the help of a simple matrix method.This method needs simple 2×2 matrix multiplication. The 

effective-index profile of the bended waveguide is then transformed to an equivalent straight 

waveguide with the help of a suitable mapping technique and is partitioned into large number of 

thin sections of different refractive indices. The transfer matrix of the two adjacent layers will 

be a 2×2 matrix relating the field components in adjacent layers. The total transfer matrix is 

obtained through multiplication of all these transfer matrices. The excitation efficiency of the 

wave in the guiding layer shows a Lorentzian profile. The power attenuation coefficient of the 

bent waveguide is the full-width-half-maximum (FWHM) of this peak .Now the transition losses 

and pure bending losses can be computed from these FWHM datas.The computation technique 

is quite fast and it is applicable for any waveguide having different parameters and wavelength 

of light for both polarizations(TE and TM).  
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1. INTRODUCTION 
 

Optical integrated circuits (OICs) has gained importance both in terms of performance and cost 

effectiveness. The size of the OICs is reducing by bending the waveguide channels. The optical 

loss introduced by these bends is a key factor which determines the overall performance and the 

achievable density of components of an OIC fabricated on a single substrate[1].There are various 

bend configurations such as two-corner bends, S-shaped bends, coherently coupled multiple 

section bends etc. S-shaped bends[1] are widely used in integrated optical circuits because they 

provide low-loss transitions between parallel waveguides with a lateral offset and are relatively 

easy to design and fabricate[1].BPM is the most powerful technique to analyze devices with 

structural variations along the propagation direction, and it provides detailed information about 

the optical field[1]. However, even 2D-BPM is a highly computation-intensive program requiring 

huge computer run-time and memory. 3D-BPM applicable to channel waveguides is even more 

computation-intensive [1]. An approach for analyzing the propagation of electromagnetic waves 

through a stratified medium is the matrix method [2]. Ghatak et al. [3] presented an analysis of 

2D optical waveguides which is computationally fast involving only straightforward 
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multiplication of 2x2 transfer matrices of layers. Since this method uses rarely any iteration, it is 

extremely fast in computation using a standard PC [1]. 

 

2. BENDING LOSS AND TRANSITION LOSS 

 
There are different types of losses occurred in the channel waveguide due to bending, they are 

mainly bending and transition losses shown in Fig. 1[1].The major two types of losses are: [a] 

pure bending loss due to any curvature in waveguide and [b] transition loss arising from the 

discontinuity in waveguidecurvature.Total bending loss is the addition of these two losses [1]. 

 

 
 

Fig 1. (a)S-type bending structure with transition length L and lateral offset h[1] (b) The transition 

and pure bending loss region[1] 

 

The scope of this work is to investigate the light  propagation within a channel waveguide and to 

calculate these losses for mainly three types of S-shaped bends(Double arc, cosine generated and 

sine generated) and to find an optimized solution. 

 

3. MATHEMATICAL BACKGROUND: MATRIX METHOD 

 
A stratified dielectric medium is considered as shown in Fig. (2).The electric field in each 

medium for a plane wave incident at angle θ1may be written in the form [4] 

 

exp[ ( cos )] exp[ ( cos )]i ii i
i i i i i i i i ie E e i t k x z e E e i t k x zε ω θ β ω θ β∆ − ∆+ + − −= + − − + + − …… (1) 

(a) 

(b) 
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βIs an invariant of the system; ie
+ and ie

− represent the unit vectors along the direction of the 

electric field, and iE
+  and iE

− represent the electric field amplitudes of waves propagating in the 

downward and upward directions in i
th
 medium (Fig. 2), respectively [4]. On applying the 

appropriate boundary conditions at the interfaces obtain 
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Fig 2. The incidence of a plane wave at an angle θ1[4] 

 

and for TM polarization 
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Obviously, for a wave incident from the first medium, there would be no upward propagating 

wave in the last medium, and thus for the structure shown, in (Fig.2), �
�= 0. Using this 

condition, and using (2) and (3) the fields are calculated the fields in terms of���.In order to use 

the above matrix method in determining the propagation characteristics of planar waveguides, the 

second, third, and fourth media (in Fig. 2) may correspond to the superstrate, the wave guiding 

film, and the substrate, respectively [4]. If one now evaluates the excitation efficiency of the wave 
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in the film (i.e. ɳ"#$ = %������%	  �� %������%	
) is evaluated as a function of β , then one would obtain 

resonance peaks appeared  [5] which are Lorentzianin shape; the value of βat which the peaks 

appear gives the real part of the propagation constant and the full widthat half maximum 

(FWHM) represents the power attenuation coefficient which is just twice the imaginary part of 

the propagation constant. If 2G represents the FWHM of the resonance peak, then pure bending 

loss for length L’of a constant curvature bent waveguide is given by [1] 

 

                                                              B=4.34(2G) L’ (dB)………………………… (6) 

 

Once the propagation constant has been determined, the fields throughout the system can be 

calculated by using the appropriate matrices at the interfaces. This method involves only 

straightforward multiplicationof 2 X 2 matrices, and no iteration needs to be carried out to 

determine the real and imaginary parts of the propagation constant, and those accuracies better 

than one part in a million can readily be obtained [4]. 

Representing the waveguide bend of (Fig. 1) by an equivalent straight waveguide of length equal 

to the arc length of the central line of radius of curvature R, the effective refractive index of the 

equivalent waveguide along the transverse axis x may be expressed as [6], 

 

( ) ( )(1 )eq eff

x
n x n x

R
= + ………………………. (7) 

 

 &'"($ Is the transverse effective index profile of the original waveguide without any 

curvature.The fundamental mode of the waveguide can be well approximated by a Gaussian 

distribution of the form [1] 

 

2

0 2
( ) exp( )

2 x

x
E x E

a
= − ………………………… (8) 

 

The modal offset between two waveguides of radii of curvature R� and*	 is then given by [7], 
2 4

1

2 2 2
1 2

1 1
( )( )xV a

R R
δ

ρ
= −

∆
………………………… (9) 

 

It is evident from Eq. (9) that the modal offset increases with increasing difference in curvature. 

In Eq. (9), ρ is the waveguide half-width and 
2 2
max

2
max2

subn n

n

−
∆ = ,…………………………………. (10) 

1 max

2
2V n

π
ρ

λ
= ∆ …….……................................. (11) 

 

Where +,-is the maximum refractive index value on the surface of the waveguide and ./0 is the 

refractive index of the substrate at the wavelength, λ[1]. The spot size1-appearing in Eq.(8). And 

(9) may be calculated from an Eigen value equation of the form [8] 

Exp (1 1-	2 ) =23- 456
√8,3- = ",9

: $…………………. (12) 
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Since in almost all practical cases, this modal offset is a small quantity, the transition loss can be 

expressed as [6]    

 

   T= − 4.34ln (1- 
86�6

;6 ) dB, ………………………..(13)     

 

 Where W is the waveguide width. 

Next, the model is used to calculate the bending losses of more complicated S-shaped channel 

waveguide bends (Double arc, cosine generated and sine generated).The corresponding curvature 

variations along the three different S-curves are [1], 

 �
<5"=$ = 	8>

?6 sin C	8=
? D(For sine generated)……………….. (14) 

 
�

<6"=$ = 86>
	?6 cos C8=

? D(For cosine generated)…………….. (15) 

*�"G$ = H ?6

> "1 I >6

?6
$(For double arc)………………...... (16) 

 

Where h is the lateral offset between the two parallel sections and L is the transition length in the 

longitudinal direction (fig.1). 

 

5. COMPUTATIONAL RESULT 

 
When light incident on the first medium at the guiding medium is excited by the portion of that 

light wave. So to study the excitation efficiency as a function of incident angle is the key thing for 

every computation. The nature of the plot is same for TE and TM mode. 

 

5.1. Computation of Excitation Efficiency for TE mode 

 

 

 
(c) 

 

Fig: 4. Variation of excitation efficiency with angle of incidence at first medium for TE mode for resolution of incident 

angle (a) 10-4(b) 10-5 and (c) 10-6 with refractive indices for first medium  

  � � 1.5, second medium  	 � 1.4, third medium  � � 1.5, forth medium  
 � 1.4 and the thickness of 

the layers as �� � 10µN, �	 � 0.2µN, �� � 2µN. 

1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56
0

5

10

15

20

Incident    angle

Ex
ci
ta
tio

n 
   
 e
ffi
ci
en

cy

1.42 1.44 1.46 1.48 1.5 1.52 1.54 1.56
0

10

20

30

Incident    angle

Ex
ci
ta
tio

n 
   
ef
fic

ie
nc

y

1.42 1.44 1.46 1.48 1.5 1.52 1.54
0

2

4

6

8

10

12

14

16

18
x 10

4

Incident   angle

Ex
ci
ta
tio

n 
  e

ff
ic
ie
nc

y

(a) 
(b) 



322                                     Computer Science & Information Technology (CS & IT) 

 

For TE mode the resonance occurring at the guiding medium at a particular incident angle. At this 

incident angle the excitation efficiency becomes large. Resolution of incident angle is taken to 

be10-5. All the results are obtained with the help of MATLAB (version 7.5) software. 

 

Similarly for TM mode the same results for the resonance occurring at the guiding medium for a 

particular value of the incident angle can be obtained.  
 

5.2. Effect of increasing the thickness of superstrate (d2) 

 
The thickness of the superstrate i.e. d2has an effect on the excitation efficiency. If the thickness is 

increased from 0.3 to 0.6 then the amplitude of the excitation efficiency for the leakage mode 

goes on decreasing and the guided mode becomes more confined as shown below.  
 

 
 

 
 

Fig: 5 Variation of excitation efficiency with thickness of superstrate for (a) �	 � 0.3µN(b) �	 � 0.4µN 

(c) �	 � 0.5µNand (d)�	 � 0.6µN 
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5.3. Effect of bending the waveguide with a bending radius(R) 

 
In a bended waveguide if the thickness of the superstrate is increased then the amplitude of the 

excitation efficiency reduced and the excitation efficiency as a function of incident angle yields a 

Lorentzian shaped resonance curve. The value of βat which the peak appears gives the real part of 

the propagation constant of the guided waves, and the full width at half maximum FWHM 

represents the power attenuation coefficient which is twice the imaginary part of the propagation 

constant. 

 

5.3.1. Calculation of pure bending loss fora double arc and cosine-generated S-

shaped bend waveguide 
 
The pure bending loss for double arc and cosine-generated S-shaped bend structure has been 

computed here. For the double arc is a structure having two radius of curvature with one value 

positive and other is negative. Here the value of the radius of curvature has been kept same. The 

radius of curvature for the double arc and cosine-generated structure follows Eqn.16 and Eqn.15 

respectively. The bending loss can be calculated using Eqn.6.Depending on the variation of 

bending radius (R) and the waveguide length (L’) the pure bending loss also changes. 

 

 
Fig: 6 Excitation efficiency as a function of incident angle for the computation of pure bending loss as (a) 

R=7.2mm, L’=1.2mm, calculated FWHM=0.006980 radian (for positive arc) and (b) R=8.5mm, 

L’=1.3mm, calculated FWHM=0.006916 radian (for positive arc). 
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Fig: 7 Variation of pure bending loss for cosine-generated bend waveguide as a function of transition 

length and bending radius for different transition length (L) as (a) L=500µm (b) L=1000µm.Values of the 

parameters are taken as h (lateral offset) =100µm and λ=1µm.Calculated FWHM are given with the figure 

itself. 

 

From the above results it is cleared that the amplitude of the excitation efficiency decreases as the 

bending radius increases.The FWHM is calculated from each profile and then with the help of 

Eqn.6 the pure bending loss can be calculated. It may be noted that there is a rapid increase of 

bending loss if the radius of curvature decreases below 10 mm. 

 
5.3.2. Transition loss and total bending loss as a function of bending radius for an S-curve 

made of two circular arcs 
 

Variation of the radius of curvature has the effect on transition loss as well as total bending loss 

as observed from the following results. The transition loss is calculated with the help of Eq. (13). 

 

 
 

Fig: 8 Variation of (a) transition loss and (b) total bending loss as a function of bending radius with the 

required parameters values W (waveguide width)=2µm,ρ (waveguide half width)=1µm and λ=1µm. 

 

(a) (b) 

(a) (b) 
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Total bending loss is calculated by adding the transition loss and the pure bending loss. From the 

above two plot it can be seen that the transition loss is less than the pure bending loss. Also the 

transition loss increases slightly below R=10mmcompared to total bending loss. For sine and 

cosine generated structures the same variation can be obtained. 

  

5.3.3. Comparison of total bending loss between different S-shaped bends waveguide 

as a function of transition length  

 
Now with the help of the transition loss calculated from the Eqn.13, the total bending loss can be 

obtained by adding that with the calculated pure bending loss. This total bending loss changes 

with the variation of transition length of the waveguide as found from the below results. 

 

 
Fig:9 Variation of total bending loss as a function of transition length for (a) double arc (b) sine- generated 

(c) cosine-generated S-shaped bend waveguide with the required parameter values taken as h(lateral 

offset)=100µm and λ=1µm. 

 

It can be observed that all the loss profiles are of same nature. The results shows that the total 

bending loss decreases with the transition length but amount of total bending loss is much less in 

case of cosine-generated S-shaped bend waveguide than the other two bend structures. So in case 

of OIC design the use of cosine-generated bend structure is very handful. 

 

 

(a) 
(b) 

(b) 

(c) 
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6. APPLICATIONS 

 
This method has been vastly used in OIC design. In case of designing a directional coupler the 

bending losses can be computed and optimized by following the efficient bend structure through 

this method. With the help of this method it is possible to design couplers for any level of 

coupling. Other applications involve designing of distributed Bragg reflector (DBR) laser, 

distributed feedback (DFB) lasers and other passive and active optical devices [12]. 

 

7. CONCLUSIONS 

 
To calculate the losses due to waveguide bending, a simple method including matrix 

multiplication is shown here. Solution of any transcendental or differential equation is not 

required here. Also a comparative study among three different S-shaped waveguide bend 

structures (double arc, sine generated, cosine generated) on the basis of total bending loss is 

shown here and it has been found that the suitable method to minimize the loss is to use the 

cosine generated S-shaped bend structure. The transition loss has to be taken into account for this 

computation. For any wavelength and polarization of input light, this technique is applicable. 

Hence this method is very handful in OIC design. Amplifier can be used to compensate the losses 

due to bending; but it would be expensive. If the refractive index of the guiding medium can be 

modified so that it will compensate the losses then it can be a very useful method. This method 

can be implemented to minimize the losses in channel waveguide by index matching. It does not 

involve any approximations and thus gives exact numerical results for TE and TM modes. Also 

the computation using the present model is very fast. 
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