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ABSTRACT 

 

A Threshold Logic Unit (TLU) is a mathematical function conceived as a crude model, or 

abstraction of biological neurons. Threshold logic units are the constitutive units in an artificial 

neural network. In this paper a positive clock-edge triggered T flip-flop is designed using 

Perceptron Learning Algorithm, which is a basic design algorithm of threshold logic units. Then 

this T flip-flop is used to design a two-bit up-counter that goes through the states 0, 1, 2, 3, 0, 

1… Ultimately, the goal is to show how to design simple logic units based on threshold logic 

based perceptron concepts. 
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1. INTRODUCTION 
 
In 1943, Warren McCulloch and Walter Pitts introduced one of the first artificial neurons or so 

called threshold logic units. The main feature of their neuron model is that a weighted sum of 

input signals is compared to a threshold to determine the neuron output. When the sum is greater 

than the threshold, the output is 1. When the sum is less than or equal to the threshold, the output 

is 0. They went on to show that networks of these neurons could, in principle, compute any 

arithmetic or logic function. [1] In the late 1950s, Frank Rosenblatt and several other researchers 

developed a class of neural networks called perceptrons. The neurons in these networks were 

similar to those of McCulloch and Pitts. Rosenblatt’s key contribution was the introduction of a 

learning rule for training perceptron networks to solve pattern recognition problems. [2] He 

proved that his learning rule will always converge to the correct network weights, if weights exist 

that solve the problem. Learning was simple and automatic. 
 

Ultimately, learning rule means a procedure for modifying the weights and biases of a network. 

(This procedure may also be referred to as a training algorithm.) The purpose of the learning rule 

is to train the network to perform some task. There are many types of neural network learning 

rules. In this paper we take the advantage of the Perceptron Learning Algorithm as was 

developed by Frank Rosenblatt. 
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There is a reason for choosing to implement a flip-flop using the threshold logic units or 

perceptrons. Let us envision a flip flop from the biological point of view. The brain is a large, 

web-like structure in which neurons gather information from other neurons, make a decision to 

discharge or not, and then pass this information onto other cells. Neuronal activity can rapidly 

flip-flop between stable states. The role of neuronal flip-flops has already been an area of interest 

for neuroscientists for some recent years now. [3] These neuronal flip-flops have been theorized 

in the same way as flip-flops in computers. In computers, these devices are commonly used for 

storage of a bit of information. The nervous system can also perform a similar role. A particular 

neuron cell is considered to exist in several states called multistable states. These states have the 

capability of bringing cells or entire networks ‘on-line’ in a behaviorally appropriate manner. The 

combination of synaptic, dendritic, neuronal and network flip-flops could provide a powerful 

range of states to guide and influence neuronal processing. Complicated calculations such as 

integration, gain modulation can be easily performed by the multiple stable states in the neurons 

and networks in a robust and stable manner. Rapid modifications in excitability and activity can 

be useful for keeping track of information such as position of eyes or head, making rapidly 

changing sensory world to the appropriate motor responses. However, this proposition does not 

hold well when a simple piece of information is to be stored in an entire cell or local network of 

cells. 
 

Although the perceptron initially seemed promising, it was eventually proved that perceptrons 

could not be trained to recognize many classes of patterns. This led to the field of neural network 

research stagnating for many years, before it was recognized that a feedforward neural network 

with two or more layers (also called a multilayer perceptron) had far greater processing power 

than perceptrons with one layer (also called a single layer perceptron). [4] More recently, interest 

in the perceptron learning algorithm increased again after Freund and Schapire (1998) [5] 

presented a voted formulation of the original algorithm (attaining a large margin) to which the 

kernel trick can be applied. 
 

2. PROPOSED MODEL 
 

A linear threshold function �  is a multi-input function in which each input, ��  ϵ {0, 1} , � ϵ {0, 1, … , }, is assigned a weight ��such that � assumes the value 1 when the weighted sum of 

its inputs exceeds the value of the function’s threshold, �. That is, [6] 
[ 

����, ��, … , ��� =
��
�
��1           �� � ���� > � + ���

�

� �
0          �� � ���� ≤ � − ��##

�

� �

$ 

 

Parameters ��� and ��##represent defect tolerances that must be considered since variations (due 

to manufacturing defects, temperature changes, etc.) in the weights can lead to network 

malfunction. 
 

In the context of artificial neural networks, a perceptron is similar to a linear neuron. However, 

where a perceptron tries to learn weights that are always getting closer to a better set of weights, a 

linear neuron learns a set of weights where the outputs are always getting closer to the target 

outputs. Put another way, a perceptron is more interested in learning the hyperplane that correctly 

separates two classes of training input, whereas a linear neuron is more interested in learning a set 

of weights which reduce a real-valued prediction error. The perceptron algorithm is also termed 

the single-layer perceptron, to distinguish it from the case of a multilayer perceptron, which is a 

misnomer for a more complicated neural network. As a linear classifier, the (single-layer) 
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perceptron is the simplest kind of feedforward neural network. [7] 
 

We first define some variables: 
 

• % = ��&̅�, where % denotes the output from the perceptron for an input vector &̅. 
• ( is the bias term which is considered to be 0 in this paper. 

• ) = {���***, +��, … , ��,- , +,�} is the training set of . examples. Here �/-  is the 0-dimensional 

input vector and +1 is the desired output value of the perceptron for that input. 

• �1,� is the value of the �th node of the 2th training input vector. 

• �1,3 = 1 

• �� is the �th value in the weight vector, to be multiplied by the value of the �th input 

node. 

• ���4�, is the weight � at time 4. 

• 5  is the learning rate, where 0 < 5 < 1 . If the learning rate is too high then the 

perceptron periodically oscillates around the solution unless additional steps are taken. 

Then the steps of the learning algorithm as proposed by Rosenblatt, 
 

1. Initialize weights and threshold. In this paper ���0� = 0 and threshold 7 = 0.5 in most 

cases. 

2. Calculate the actual output- %1�4� = �:�-�4� ∙ �/- < = �:���4� + ���4��1,� + ���4��1,� + ⋯ + ���4��1,�< 
             and    ���4 + 1� = ���4� + 5 >+1 − %1�4�? �1,� 

3. Step 2 is repeated until iteration error @ 

@ = 1. � >+1 − %1�4�?
,

1 �
 

is less than the threshold 7. 

 

Let us design a two-input AND gate using the perceptron algorithm. The following table 

illustrates the Perceptron Algorithm and shows its implementation on AND logic. [8] 
 

Table 1.  Design of AND gate using the Perceptron Learning Algorithm 

 

Input 
Initial 

Weights 

Output 

Error Correction 
Final 

Weights 
Sensor 

Values 

Desired 

Output 
Per Sensor Sum Network 

A B C DE DF GE GF H I J K DE DF 

     L ∗ �3 ( ∗ �� N3 + N� 

if . > 4 

then 1, 

else 0 

% − 0 5 ∗ @ 
Δ�L∗ +� 

Δ�(∗ +� 

1 0 0 0 0 0 0 0 0 0 0 0 0 

1 1 1 0 0 0 0 0 0 1 0.1 0.1 0.1 

1 0 0 0.1 0.1 0.1 0 0.1 0 0 0 0.1 0.1 

1 1 1 0.1 0.1 0.1 0.1 0.2 0 1 0.1 0.2 0.2 

1 0 0 0.2 0.2 0.2 0 0.2 0 0 0 0.2 0.2 

1 1 1 0.2 0.2 0.2 0.2 0.4 0 1 0.1 0.3 0.3 

1 0 0 0.3 0.3 0.3 0 0.3 0 0 0 0.3 0.3 

1 1 1 0.3 0.3 0.3 0.3 0.6 1 0 0 0.3 0.3 
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Inputs: L, ( with input L held constant at 1. 

Threshold (7): 0.5 

Learning Rate (5): 0.1 

 

In the following, the final weights of one iteration become the initial weights of the next. Each 

cycle over all the samples in the training set is demarcated with heavy lines. Thus in doing so, the 

AND gate can be represented with weights 0.3 and 0.3 on its input lines with a threshold value of 

0.5 
 

 

 

 

 

 

Figure 1.  An AND gate in threshold logic 
 

In order to design a counter, a JK flip-flop with both inputs connected to logic high level, or a T 

flip-flop with its input connected to logic high level is needed. We prefer T flip-flop to JK flip-

flop, because the perceptron iteration will shorter. But a T flip-flop can be easily designed with 

the help of a D flip-flop. We only require an additional XOR gate to create the T flip-flop from its 

D counterpart. The following table (Table 2) shows the use of the perceptron algorithm to 

develop the D flip-flop. Here, 4 = 0.5 and 5 = 0.1 and one of the inputs ) held constant at 1. 

Table 2.  Design of D flip-flop using Perceptron Algorithm with ) = 1 

 

Input 

Initial 

Weights 

Output 

E
rr

o
r 

Final 

Weights 
Sensor 

Values 

D
es

ir
ed

 

O
u

tp
u

t 

Per Sensor 

S
u

m
 

N
et

w
o
rk

 

) P Q� Q�R� �3 �� �� N3 N� N� . S @ �3 �� �� 

       
)∗ �3 

P∗ �� 

Q�∗ �� 

N3+ N�      + N� 

if . > 4 

then 1, 

else 0 

  Q�R�− S 

Δ�)∗ +� 

Δ�P∗ +� 

Δ�Q�∗ +� 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 1 1 0 0 0 0 0 0 0 0 1 0.1 0 0.1 

1 1 0 1 0.1 0 0.1 0.1 0 0 0.1 0 1 0.2 0.1 0.1 

1 1 1 1 0.2 0.1 0.1 0.2 0.1 0.1 0.4 0 1 0.3 0.2 0.2 

1 0 0 0 0.3 0.2 0.2 0.3 0 0 0.3 0 0 0.3 0.2 0.2 

1 0 1 1 0.3 0.2 0.2 0.3 0 0.2 0.5 0 1 0.4 0.2 0.3 

1 1 0 1 0.4 0.2 0.3 0.4 0.2 0 0.6 1 0 0.4 0.2 0.3 

1 1 1 1 0.4 0.2 0.3 0.4 0.2 0.3 0.9 1 0 0.4 0.2 0.3 

1 0 0 0 0.4 0.2 0.3 0.4 0 0 0.4 0 0 0.4 0.2 0.3 

1 0 1 1 0.4 0.2 0.3 0.4 0 0.3 0.7 1 0 0.4 0.2 0.3 

1 1 0 1 0.4 0.2 0.3 0.4 0.2 0 0.6 1 0 0.4 0.2 0.3 

1 1 1 1 0.4 0.2 0.3 0.4 0.2 0.3 0.9 1 0 0.4 0.2 0.3 

 

Thus the D flip-flop with ) = 1 can be visualized as neural node having three input lines having 

weights 0.4, 0.2 and 0.3, and with the threshold 7 = 0.5. Here the input P represents the clock 

signal. 

0.5 
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0.3 

L 

( 

% 
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Figure 2.  A D flip-flop in threshold logic with ) = 1 
 

The VHDL code for the above threshold logic neural node can be written as follows. 

VHDL program used Xilinx – ISE 

Program version T��0� 9.2� 
Targeted Family Spartan3 

Target Device XC3S200 

Package PQ208 

Speed -4 
 

library IEEE; 

use IEEE.STD_LOGIC_1164.ALL; 

use IEEE.STD_LOGIC_ARITH.ALL; 

use IEEE.STD_LOGIC_UNSIGNED.ALL; 

entity d_ff_d_1 is 

Port ( D : in STD_LOGIC; 

L :in STD_LOGIC; 

Qn :in STD_LOGIC; 

Q :out STD_LOGIC); 

end d_ff_d_1; 

architecture Behavioral of d_ff_d_1 is 

begin 

process(L) 

variable y, z : real; 

begin 

if rising_edge(L) or falling_edge(L) then 

if rising_edge(L) then 

y := 1.0; 

else 

y := 0.0; 

end if; 

z := real(conv_integer(D))*0.4 + y*0.2 +  real(conv_integer(Qn))*0.3; 

if(z > 0.5) then 

Q <= '1'; 

else 

Q <= '0'; 

end if; 

end if; 

end process; 

end Behavioral; 

Let us build the remaining part of the flip-flop with one input ) held constantly at ) = 0. 

 

0.5 

0.4 

0.3 

) 

Q� 

P 
0.2 Q�R� 
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Table 3.  Design of D flip-flop using Perceptron Algorithm with ) = 0 

 

Input 

Initial 

Weights 

Output 

E
rr

o
r
 

Final 

Weights Sensor 

Values 

D
es

ir
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 O
u

tp
u

t 

Per Sensor Sum 

N
et

w
o
rk

 

) P Q� Q�R� �3 �� �� N3 N� N� . S @ �3 �� �� 

       
)∗ �3 

P∗ �� 

Q�∗ �� 

N3+ N�      + N� 

if . >4 

then 

1, 

else 

0 

Q�R�− S 

Δ�)∗ +� 

Δ�P∗ +� 

Δ�Q�∗ +� 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 0.1 

0 1 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0.1 

0 1 1 0 0 0 0.1 0 0 0.1 0.1 0 0 0 0 0.1 

0 0 0 0 0 0 0.1 0 0 0 0 0 0 0 0 0.1 

0 0 1 1 0 0 0.1 0 0 0.1 0.1 0 1 0 0 0.2 

0 1 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0.2 

0 1 1 0 0 0 0.2 0 0 0.2 0.2 0 0 0 0 0.2 

0 0 0 0 0 0 0.2 0 0 0 0 0 0 0 0 0.2 

0 0 1 1 0 0 0.2 0 0 0.2 0.2 0 1 0 0 0.3 

0 1 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0.3 

0 1 1 0 0 0 0.3 0 0 0.3 0.3 0 0 0 0 0.3 

0 0 0 0 0 0 0.3 0 0 0 0 0 0 0 0 0.3 
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0 0 1 1 0 0 0.3 0 0 0.3 0.3 0 1 0 0 0.4 

0 1 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0.4 

0 1 1 0 0 0 0.4 0 0 0.4 0.4 0 0 0 0 0.4 

0 0 0 0 0 0 0.4 0 0 0 0 0 0 0 0 0.4 

0 0 1 1 0 0 0.4 0 0 0.4 0.4 0 1 0 0 0.5 

0 1 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0.5 

0 1 1 0 0 0 0.5 0 0 0.5 0.5 0 0 0 0 0.5 

0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0.5 

0 0 1 1 0 0 0.5 0 0 0.5 0.5 0 1 0 0 0.6 

0 1 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0.6 

0 1 1 0 0 0 0.6 0 0 0.6 0.6 1 -1 0 
-

0.1 
0.5 

0 0 0 0 0 0 0.5 0 0 0 0 0 0 0 0 0.5 

0 0 1 1 0 0 0.5 0 0 0.5 0.5 0 1 0 0 0.6 

0 1 0 0 0 0 0.6 0 0 0 0 0 0 0 0 0.6 

0 1 1 0 0 0 0.6 0 0 0.6 0.6 1 -1 0 
-

0.1 
0.5 

0 0 0 0 0 
-

0.1 
0.5 0 0 0 0 0 0 0 

-

0.1 
0.5 

0 0 1 1 0 
-

0.1 
0.5 0 0 0.5 0.5 0 1 0 

-

0.1 
0.6 

0 1 0 0 0 
-

0.1 
0.6 0 -0.1 0 -0.1 0 0 0 

-

0.1 
0.6 

0 1 1 0 0 
-

0.1 
0.6 0 -0.1 0.6 0.5 0 0 0 

-

0.1 
0.6 

0 0 0 0 0 
-

0.1 
0.6 0 0 0 0 0 0 0 

-

0.1 
0.6 

0 0 1 1 0 
-

0.1 
0.6 0 0 0.6 0.6 1 0 0 

-

0.1 
0.6 

0 1 0 0 0 
-

0.1 
0.6 0 -0.1 0 -0.1 0 0 0 

-

0.1 
0.6 

0 1 1 0 0 
-

0.1 
0.6 0 -0.1 0.6 0.5 0 0 0 

-

0.1 
0.6 
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Figure 3.  A D flip-flop in threshold logic with ) = 0 
 

The overall D flip-flop can be represented as a neural network as follows- 

 

Figure 4.  The D flip-flop neural network with inputs ), P and Q� and output Q�R� 

 

Figure 4 represents the D flip-flop with two individual components - one with ) = 1 that is 

shown as the node A and the other with input ) = 0 that is shown as node B. The nodes D and E 

represent AND gates and the node F, an OR gate. Lastly, the node C is a NOT gate with threshold 

-0.5 and weight on the input line also -0.5. Thus the D flip-flop with inputs )��, WPX and output Q�YZ can be described as follows – 

 

 

 

 

 

Figure 5.  The complete real D flip-flop neural network 

 

Now, in order to convert it to a T flip-flop, we just need to add an XOR gate to its input )��. 
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Figure 6.  The T flip-flop using D flip-flop 

 

The most classic example of linearly inseparable pattern is a logical XOR function. Our initial 

approach to solving linearly inseparable patterns of XOR function is to have multiple stages of 

perceptron networks. Each stage would set up one decision surface or a line that separate patterns. 

Based on the classification determined by the previous stage, the current stage can form sub-

classifications. Thus, the XOR gate can be represented in threshold logic [9] by- 
 

 

 

 

 

 

 

Figure 7.  The XOR gate in threshold logic 

 

Finally, we come to the two-bit up-counter. Figure 8 shows its implementation using two T flip-

flops. 

 

 

 

 

Figure 8.  The two-bit up-counter 

 

3. SIMULATION RESULTS 
 

 

Figure 9.  The D flip-flop output 
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Figure 10.  The T flip-flop output 

 

 
 

Figure 11.  The two-bit up-counter output 

 

4. CONCLUSION 

 
Neural networks, with their remarkable ability to derive meaning from complicated or imprecise 

data, can be used to extract patterns and detect trends that are too complex to be noticed by either 

humans or other computer techniques. A trained neural network can be thought of as an “expert” 

in the category of information it has been given to analyze. This expert can then be used to 

provide projections given new situations of interest and answer “what if” questions. [10, 11] 

 

The perceptron learning rule is very simple, but it is also quite powerful. The rule will always 

converge to a correct solution, if such a solution exists. The weakness of the perceptron network 

lies not with the learning rule, but with the structure of the network. The standard perceptron is 

only able to classify vectors that are linearly separable. 

 

Other advantages include:   

 

1. Adaptive learning: An ability to learn how to do tasks based on the data given for training 

or initial experience.  

2. One of the preferred techniques for gesture recognition. 

3. Multi-layer Perceptrons/Neural networks do not make any assumption regarding the 

underlying probability density functions or other probabilistic information about the 

pattern classes under consideration in comparison to other probability based models. 

4. They yield the required decision function directly via training. 
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