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ABSTRACT

Recently, a reduction from the problem of solving parity games to the satisfiability problem in
propositional logic (SAT) have been proposed in [5], motivated by the success of SAT solvers in
symbolic verification. With analogous motivations, we show how to exploit the notion of energy
progress measure to devise a reduction from the problem of energy games to the satisfiability
problem for formulas of propositional logic in conjunctive normal form.

1. INTRODUCTION

Energy games (EG) are two-players games played on weighted graphs, where the integer weight
associated to each edge represents the corresponding energy gain/loss. The arenas of energy
games are endowed of two types of vertices: in player O (resp. player 1) vertices, player O (resp.
player 1) chooses the successor vertex from the set of outgoing edges and the game results in an
infinite path through the graph. Given an initial credit of energy c, the objective of player O is to
maintain the sum of the weights (the energy level) positive. The decision problem for EG asks,
given a weighted game graph with initial vertex v, if there exists an initial credit for which
player O wins from v .

Energy games have been introduced in [3, 2] to model the synthesis problem within the design of
reactive systems that work in resource-constrained environments. Beside their applicability to the
modeling of quantitative problems for computer aided design, EG have tight connections with
important problems in game theory and logic. For instance, they are log-space equivalent to
mean-payoff games (MPG) [2], another kind of quantitative two-player game very well studied
both in economics and in computer science. The latter are characterized by a theoretically
engaging complexity status, being one of the few inhabitants of the complexity class NPNcoNP
(for which the inclusion in P is still an open problem). Moreover, parity games [4, 6]—
notoriously known as poly-time equivalent to the model-checking problem for the modal mu-
calculus—are in turn poly-time reducible to MPG and EG. It is a long-standing open question to
know whether the model-checking problem for the modal mu-calculus is in P.

The algorithm with the currently best (pseudopolynomial) complexity for solving EG (and MPG
via log-space reduction) is based on the so-called notion of energy progress measure [7].

David C. Wyld et al. (Eds) : CST, ITCS, JSE, SIP, ARIA, DMS - 2014
pp.- 45-52,2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4105



46 Computer Science & Information Technology (CS & IT)

Progress measures for weighted graphs are functions that impose local conditions to ensure global
properties of the graph. A notion of parity progress measure [6] was previously exploited in [6]
for the algorithmic analysis of parity games and reconsidered in [S5] to devise a SAT encoding of
the corresponding games, motivated by the considerable success that using SAT solvers has had
in symbolic verification. As a matter of fact, clever heuristics implemented in nowadays SAT
solvers can result in algorithms that are very efficient in practice. Furthermore, there are
fragments of SAT that can be solved in polynomial time. Hence, the reduction in [5] opens up a
new possibility for showing inclusion of parity games in P.

Motivated by analogous reasons, in this paper we show how to exploit the notion of energy
progress measure to devise a reduction from the problem of energy games to the satisfiability
problem for formulas of propositional logic in conjunctive normal form. Tight upper bounds on
the sizes of our reductions are also reported.

The paper is organized as follows.We recall the notions of energy games and energy progress
measure in Section 2. Section 3 and Section 4 develop the reductions from energy games to
difference logic and pure SAT, respectively, reporting tight bounds on the sizes of the
corresponding reductions.

2. PRELIMINARIES

Game graphs A game graph is a tuple I’ = (V, E, v, w, (Vy, V7)) where GI' =
(V, E,vg, w) is a weighted graph with weight function w : E — Z and (V,, V1) is a
partition of V' into the set Vj of player-0 vertices and the set V7 of player-1 vertices. An
infinite game on I' is played for infinitely many rounds by two players moving a pebble
along the edges of the weighted graph . In the first round, the pebble is on some
vertex v € V. In each round, if the pebble is on a vertex v € V; (i = 0, 1), then player i
chooses an edge (v,v"') € E and the next round starts with the pebble on v'. A play in
the game graph I” is an infinite sequence p = vyvy ...V, ... such that (v;,v;4q) € E
for all ¢ = 0. A srraregy for player i (i = 0,1) is a function ¢ : V* - V; — V', such
that for all finite paths vgv, . .. v, with v, € V;, we have (v,,0(vov1...v,)) € E. We
denote by X; (i = 0, 1) the set of strategies for player i. A strategy o for player i is
memoryless if o(p) = o(p’) for all sequences p = vpvy ...v, and p’ = vyv] ... v],
such that v,, = v,,. We denote by E;” the set of memoryless strategies of player i. A
play vgv; . ..Uy ... is consistent with a strategy o for player i if v;, 1 = o(vgvy - .. 1.'3}
for all positions j > 0 such that v; € V;. Given an initial vertex v € V', the ourcome
of two strategies oy € ¥ and 05 € X5 in v is the (unique) play outcome! (v, oy, 741)
that starts in v and is consistent with both gy and o4. Given a memoryless strategy ;
for player i in the game I", we denote by G? (m;) = (V, E,,, w) the weighted graph
obtained by removing from G all edges (v, v’) such that v € V; and v' # ;(v).

Energy Games [3,2] An energy game (EGQ) is an infinite game on the game graph I,
where the goal of player 0 is to construct an infinite play vgvy ... v, ... such that for
some initial credit ¢ € M:
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7
e+ > w(v,vipq) = 0forall j =0 (1)
i=0

The quantity c+Z§;; w(v;i, vi41) is called the energy level of the play prefix vovi . .. v;.
Given a credit ¢, a play p = vgvy ... 1S winning for player 0 if it satisfies (1), otherwise
it is winning for player 1. A vertex v & V is winning for player ¢ if there exists an
initial credit ¢ and a winning strategy for player ¢ from v for credit e In the sequel,
we denote by W the set of winning states for player i. Energy games are memoryless
determined [2]. i.e. for all v £ V', either v is winning for player 0, or v is winning for
player 1, and memoryless strategies are sufficient.

Theorem 1 ([2]). Let I = (V, E.vg. w, (Vi, V1)) be an EG, for all v € V', the follow-

ing four statements are equivalent:

— dog € X - Vo1, € X - Outcomer{t!, a0, 01) is winning for plaver 0;
- Yo, € Xy - dop € X - OU'ECOI’I‘]E!I{I-‘_, a0, 1) is winning for plaver 0;
dmp € XM -V € XM - outcome! (v, mq, m1) is winning for player 0;
Wy € XM - Jmg € XM - outcome! (v, mg, 71 ) is winning for player 0;

Using the memoryless determinacy of energy games, the authors of [7] derived the next
characterizaion lemma for EG winning strategies.

Lemma 1 ([7]). Let I' = (V. E,w, (V. V1)) be an EG. For all vertices v € V', for all
memoryless strategies mo € X} for player 0, the strategy my is winning from v if and
only if all cycles reachable from v in the weighted graph G (7)) are nonnegative.

Given the energy game I' = (V, E,vg, w, {Vy, V1)), the EG decision problem asks
wether vy is winning for player 0. Such a problem is polynomially equivalent to the
corresponding decision problem for so-called meanpayoff games [2, 1].

The algorithm with the currently best (pseudopolynomial) complexity for solving en-
ergy games is based on the so-called notion of small energy progress measure [7]. Intu-
itively. the latter is a condition locally defined on the vertices of the given game graph,
tailored to witness the global absence of negative cycles within the subgame induced by
a proper strategy for player U (cfr. the characterization lemma 1). Formally, the notion
of small progress measure is recalled in Definition 1 (below) and relies on the following
notation. Given I = (V, E, vo, w, {Va, V1) ). denote by Cr the following set:

C‘r' — {ﬂEN | T EM(JI'}U{T}.

where:
Me, =D max({0} U {—w(v,v") | (v,2) € E})

eV

Moreover, denote by — the total order on Cyp defined by = — w if and only if either
y= T orr <y < Mg r.Finally, let = : Cp x Z — C be the operator such that for
alla = Cp and b = Z:
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; max(D,a —b) ifa Tanda —b < Mgr
ac b= :
T otherwise

Definition 1 ([7]). Let I" = (V| E, vo, w, {Vo, V1)) be an EG. A function f : V' — Cp
is @ small energy progress measure for I if and only if the following conditions hold:

— ifv e Vg, then f(v) = f(v") & wlv,v") for some (v,v') € E;
— ifv e Vq, then f(v) = f(v") S wl(v,v") for all (v,v") € E.

Given a small energy progress measure f for the game graph I = (V, E, vo, w, (Vo, V1)),
we denote by Vi the set of states Vy = {v | f(v) # T} A memoryless strategy
?L_Df : Vo — V for player O is called compatible with f whenever for all v € V. if
3 (v) = v’ then f(v) = f(v') © w(wv, ). The following property holds [7]: if 7 is
a strategy for player 0 compatible with the energy progress measure f. then ?T({ is a

winning strategy for player 0 from all vertices in V. Formally:

Theorem 2 ([7]). Let I' = (V, E,vp,w, {(Vu. V1)) be an EG. For all small energy
progress measures [ for I', if ?T({ is a strategy for player 0 compatible with f, then
:'ré- is a winning strategy for player 0 from all vertices v € Vi, i.e. Vy € Wo. Moreover,
1" admits a small energy progress measure f such that Vy = W,

2.1 Difference Logic

Let B = {by....,b,} be a set of boolean variables and X' = {x....,x,} be a set of
integer variables. The set of atomic formulas of difference logic consists of the boolean
variables in B and integer constraints of the form r; —x; = ¢, c € Z.

The set F of difference logic formulas is the smallest set containing the atomic
formulas which is closed under negation and conjunction ( the boolean connectives
\,—+, 4+ are defined in the usual way in terms of the operators of negation and con-
junction A, —). A (B, X’) valuation consists of two functions (overloaded with the name
a), o+ B — {1,0},a : X — Z. The valuation is extended to all difference logic
formulas by letting o(x; — z; > ¢) = 1 if and only if a(x;) — a(x;) = c and applying
the obvious rules for boolean connectives. A difference logic formula ¢ is satisfied by
a valuation o if and only if a(&) = 1. A formula ¢ is satisfiable if it admits a satisfying
valuation. The satisfyiability problem for difference logic is NP-complete [8].

3. ENCODING EG WINNING STRATEGIES IN DIFFERENCE LOGIC

In this section we show how to derive a difference logic formula ¢ from a given energy
game ' = (V, E,vg, w., (Vy, V1)) such that ¢ is satisfiable if and only if player 0 has
a winning strategy on [".

In particular, the difference logic formula ¢ uses the set of |E/| integer constants
{2 | (v, z) € E'} and ranges over the following set of boolean and integer variables:
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e for each v = V', there is a boolean variable n, and an integer variable c,,
e for aech edge (v.z)  F. there is a boolean variable 2, .

Given the above variables, ¢y = n,, N ¢o A @1 A @5 A @, 18 the conjunction of five
subformulas, where ¢y, ¢, ¢, @ are defined as follows:

e po= A (no—> \V my)
veVp (v,z)elE

e o1 = A (n,— A My 2))
veVp (v,z)elE

. ﬁf}p = V {{ V Tn{r,z]] — n‘Z}
vel  (uz)EE
v#EUg

e pe= V (Mm@sz = Yws)
(v.z)ER

- I.-'—:"{'r.r_.z} =co + Wiy,z) = Cz

Theorem 3. Player 0 has a winning strategy in the energy game I' = (V, E, vy, w, (Vy, V1))
if and only if the difference logic formula ¢ is satisfiable.

Proof. (=) Let G'-(7) be the graph induced by a winning strategy = for player 0 on the
energy game I' = (V. E,vg, w, (Vy.V7)). Consider the assignment « to the variables
of ¢ defined as follows: for each boolean variable n,, (resp. my-)) let a(n,) = 1
(resp. a(my ) = 1) if and only if » is a node (resp. (v, z) is an edge) of G (7). By
definition of G (), the assignment « satisfies n,, A ¢p A ¢1. By Theorem 2, G ()
admits a small progress measure function f : W — Mg, (). where W is the set of
vertices of G';(m). For each integer variable c, in ¢, define a(c,) = f(v) if v € W.
Since 7 is a winning strategy on [ for player 0, the assignment « satisfies also the last
conjunct ¢, in ¢. Therefore, o E ¢p.

(<=) Suppose that « is a satisfying variable assignment of ¢ . Define the following
game I'' = (V', E',vo,w', (V§,V{}): v € V' (resp. (v, z) € E')ifand only if a(n,) =
1 (resp. a(m, ;) = 1)) and for each (v, z) € E' let w'(v, z) = w(, ). Since « satisfies
Vpg A @0 A 1 A ¢, We derive that I' is a non empty subgame of I". Hence, since o
satisfies also ¢., by Theorem 2 we deduce that V' T Wy and I induces a winning

strategy for player 0 on I,

Theorem 4. Given an energy game I' — (V, E, vo, w, (Vo. V1)), the size of the differ-
ence logic formula ¢p is O(|E|), even if ¢ is required to be in CNF.

Proof. Each subformula og A &1, &5, @ has size O(|F/|). while the remaining con-

junct g, in ¢ has size 1. ¢y can be rewritten in CNF with a constant blow up by
reformulating the conjuncts ¢q, ¢1. ¢» and ¢. using the boolean equivalences:

X+ (@AY)=(x = o) A(x = 1)

(V) > X) = (@ =) AW = Y)



50 Computer Science & Information Technology (CS & IT)
4. SOLVING ENERGY GAMES BY A REDUCTION TO SAT

In this section, we present an encoding for the difference logic formula ¢, associated to
a given energy game /' into propositional logic, i.e. the subset of difference logic with
boolean variables only. Clearly, all that remains to be done is to translate the integer
variables and the constraints on them of the form ¢, + w, .y = c: inside the conjuct
(Il)e in '53')!'-

Let I" = (V. E,vo, w, {Vo, V1)) be the energy game underlying ¢ . By Theorem 2
the domain of the integer variables in ¢, can be bounded by Mg, < V- W, where W
is the maximum absolute weight in I'. Let k = [log(M,. + W)]| be the number of
bits necessary to code Mg, W.

For each edge (v, z) € F. let @, .y = w1 ...w be the boolean encoding of |w, .|

(using k boolean variables), let €%, ... e, ef,...eq, si"% . sl plm®) 02 pe

further boolean variables and consider the following propositional formulas:

o If wpy, .y = 0:

e CURRY(v,z, k)= —w."%
e fori==F...1:

SUM(v, z,i) = 3,51"2] & (—ef A Dy A ﬁ?‘,fv'z:'] W (—ep Awy A —u'r'h' z]]
V(e A —wi A ﬁ?‘,l;v‘z:'} Vo(ef Aws A T'EU'ZI'}
CURRY (v, z,i — 1) = r'"7) = (—e? A w; A vl v (e¥ A —w; A vt

V(e¥ Awy AT v (e Awg AT

e CURRY (v, z,0) = —r""
e GEQ(v,2.1) = s\"" = ¢7
o fori =F%...1:
GEQ(v, 2, i) = (s'7%) = ex) A (5177 v —e?) = GEQ(v, z,i — 1)
o If wp, ) < O
o CURRY{U 2, k) = -
e fori = k. 1.

SUM(v, z,i) = s{"™ & (—ef A —wi A =r"7) v (mef Awe A7)
Vo(eZ A —wy A —ﬂ":v‘z:'} Vel Aow; A T{ﬂ'z}:l
CURRY (v, z,i — 1) = 7" z} o (—eX Aw; ATt SRV, (eX A —w; AT 2
V(€2 Awy A—riTF) v (e Awy AT
e CURRY (v, z,0) = —r("*
e GEQ(v,2.1) = eV = 5{11' z)

e fori=F%k...1:
GEQ(uv, 2, 1) = (e¥) = s A ((e? v =s(") = GEQ(v, z.i — 1)
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Let ¢}. be the propositional logic formula obtained by replacing each integer constraint
in ¢ of the form ¢, + wy, ., = c. by the propositional formula GEQ(v, z. k)

Theorem 5. Player 0 has a winning strategy in the energy game I' = (V, E, vy, w, (Vp, V1))
if and only if the propositional logic formula ¢/ is satisfiable.

Proof. (=) Let G(7) be the graph induced by a winning strategy 7 for player 0 on the
energy game I' = (V| E, vg,w, (Vy, Vy)). Consider the assignment « to the variables
of ¢ defined as follows: for each boolean variable n, (resp. m, ) let afriy) = 1
(resp. ex(1m(y ) = 1) if and only if v is a node (resp. (v.z) is an edge) of G (7). By
Theorem 3, the assignment « satisfies 1., A ¢o A ¢1. By Theorem 2, G () admits a
small progress measure function f : W — Mg ), where W is the set of vertices of
G r(x). For each (v, z) € E such that w(v, z) > 0 (resp. w(v,z) < 0):

— let a(e}), ... a(e} ) be the boolean code of f(v)

— let a(ei), ... a(e}) be the boolean code of f(z)

—leta(si"), a8 L alrl), . a(rl’*) be the boolean code of the sum
f(v) +w(v, z) (resp. f(z) + (—w(v, z))) and the corresponding curry bits.

Since 7 is a winning strategy on [ for player (), the assignment « satisfies the proposi-
tional formula GEQ(v, z, k).Therefore, a E ¢r.

(<) Suppose that « is a satisfying variable assignment of ¢ . Define the following
game I’ = (V' E' vg,w', (Vy, V{)): v € V' (resp. (v, z) € E')if and only if a(n,) =
1 (resp. cr(m(, .y = 1)) and for each (v, z) € E' let w'(v, z) = w(y 2. Since « satisfies
Vyg N o N Dy A @5, we derive that I' is a non empty subgame of I". Hence, since o
satisfies also ¢, by Theorem 2 we deduce that V' C W and I'" induces a winning

strategy for player O on [I.

Theorem 6. Given an energy game I' = (V. E, vq, w, (V. V1)), the size of the propo-
sitional logic formula &} is O(|E| - [log((V + 1) - W)]), even if ¢}. is required to be
in CNF.

5. CONCLUSIONS

We devise efficient encodings of the energy games problem into the satisfiability problem for
formulas of difference logic and pure propositional logic in conjunctive normal form. Tight upper
bounds on the sizes of the given reductions are also reported. Due to the success of nowadays
SAT solvers in symbolic verification, the proposed encodings could result in algorithms that are
very efficient in practice. Furthermore, they could open up new possibilities for devising tight
bounds on the complexity of the energy games problem, as there are fragments of SAT that can
be solved in polynomial time.
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