
David C. Wyld et al. (Eds) : CST, ITCS, JSE, SIP, ARIA, DMS - 2014

pp. 163–171, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4116

A STRUCTURAL APPROACH TO IMPROVE

SOFTWARE DESIGN REUSABILITY

Tawfig M. Abdelaziz, Yasmeen.N.Zada and Mohamed A. Hagal

University of Benghazi, Faculty of Information Technology,

Department of Software Engineering
tawfig@cs.uni-essen.de, yasmeen.zada@hotmail.com

and Mohamed.hagal@benghazi.edu.ly

ABSTRACT

Software reuse become a very promising area that has many benefits such as reducing costs,

time, and most importantly, increasing quality of software. However, the concept of reuse is not

only related to implementation level, in fact, it can be included in the earlier stages of the

software development life cycle such as design stage. Adopting reuse at this stage provides

many benefits such as increasing productivity, saving time and reducing cost of software

development.

Accordingly, this paper presents the concept of reuse at design level in more details. As well as,

it proposes an approach to improve the reusability of software design using the directed graph

concept. This leads to produce a design to be considered as reusable components which can be

adapted in many software systems.

KEYWORDS

Software Reusability, Software Component, Unified Modeling Language (UML),

Parameterization, Directed Graph.

1. INTRODUCTION

Software reuse is a fundamental aspect of high quality software. Effective reuse of software

products is increasing productivity, saving time and reducing cost of software development.

However, as the concept of reusing software components is very clear at the code level, while the

same concept becomes more difficult to address when discussed in the context of reusing designs.

The problem with design reuse in Software Engineering is the shortage of guidelines or

approaches that support and guide the designers to be useful from previous design components.

In response to this, some researches related to reuse at design stage presented approaches that aim

to improve design reusability. Gui and Scott in [1] worked on measuring software reusability by

applying coupling and cohesion metrics on java components, and also focused on reflecting the

complexity of those components to be used in reusability activities. Kang, Cohen and Holibaugh

164 Computer Science & Information Technology (CS & IT)

in [2] proposed the work based on the refinement of the software lifecycle to identify reuse

activities. This work concentrated more on identification of reusable resources than constructing

reusable resources. Price and Demorgian[3]measure object oriented design reusability focusing

on abstraction concept using metrics to measure coupling and cohesion dependency relationships.

Mishra's Misra's [4]used reverse engineering of legacy software to create reusable components as

an attempt to understand the re-existing software by re-designing it. Johnson and Russo[5]

described design techniques that support abstract classes and framework. It provided a way to

express the design to customize it, developing frameworks and tools that facilitated the design

reusability.

The work in this paper is motivated primarily by the possibility of improving and increasing the

degree of reusability of design in any software system by discussing the concept of reuse

associated with the level of design. It presented a structural approach that is mainly considered

with the improvement of software design reusability, to result a design that is potentially reusable.

The following section describes the steps of the proposed approach that is expected to improve

the design reusability.

2. THE PROPOSED APPROACH

The work of this paper was motivated by the design reuse model represented and illustrated in

[6], and the design for reuse process of that model was the base of the proposed approach

introduced in this section.

The proposed approach consists of four activities as shown in Figure 1: Design classes,

Refinement, Reusable packages and Documentation.

Fig. 1. Conceptual overview of the proposed approach

These activities will produce design components that are ready to be reused in many software

systems. Figure 1 illustrates a conceptual overview of the proposed approach. The directions

show the priority of the activities' steps. So, it must be considered that it cannot be move from

Design classes step unless the design validation activity effectively achieved. This insures that

mistakes are detected and handled early.

Computer Science & Information Technology (CS & IT) 165

2.1 Design classes

The first activity in this approach is to decide major classes of the system design. The technique

used to decide what classes are needed is to go through the software requirements and identify the

nouns (entities) that can be considered as classes. After that, identify the characteristics (state and

behavior) of each class, and then define the relationships between these classes. Finally, construct

a class diagram as shown in figure 2.The structure of a system is represented using class

diagrams. Therefore, modularization and the parameterization concepts must be taken into

consideration in this process, due to their great impact on reusability of design. The use of

modularity concept makes a system design to be considered as a set of smaller parts that should

satisfy the quality concepts such as maintainability, testability and reusability. The effective

modularity can be achieved by developing functional independence modules with single-minded

function and refusal to excessive interaction with other modules.

Modularity and functional independence could be measured by two qualitative criteria: coupling

and cohesion. Coupling is "a measure of inter-module connectivity, and is concerned with

identifying the forms of connection that exist between modules" [7].Cohesion, in its turn,

provides "a measure of the extent to which the components of a module can be considered to be

‘functionally related'. The ideal module is in which all the components can be considered as being

solely present for one purpose"[7].Furthermore, parameterizing methods of classes is a very

important activity to improve design reusability [3].Figure 2 illustrates an example of how a

method (operation) can be parameterized in a class diagram at the design level. The Employee

class on the left shows a duplication of method raise() to do same things with different values

fivePercentRaise() and tenPercentRaise(). Where, the Employee class on the right shows the

parameterization of the method by adding a parameterpercentage to the raise() method which

later prevents duplication, which will not require much effort in creating the program, and most

importantly, makes it easier to reuse the design with no much information to be included.

Fig. 2. Parameterizedmethod [11]

Another important note regarding with class attributes, a class with one or two attributes should

be focused on, this may indicate that those attributes belong to another class related to the first

class [9]. Therefore these attributes could be aggregated into one class. In this paper, Figure 3

illustrates an example of a small hospital system.

166 Computer Science & Information Technology (CS & IT)

Fig. 3. Health- care UML Class diagram

It consists of the following classes: person, patient, staff, doctor, nurse, clinic, room, appointment,

admission, surgery, and test. Modularity concept was represented by a class diagram and their

methods are parameterized to increase reusability by providing more information.

2.2 Design Validation

To be able to reuse a component, and to insure that a component is reliable and ready to be

reused, you have to make sure that this component does not contain any defects or errors.

Since the design validation work in this paper is based on the approach presented in [14] for class

diagram testing. Therefore, UML class diagrams can be tested using some independent methods:

Syntax Testing and Domain Expert Testing. Syntax testing is used to verify that the class diagram

is correctly and properly constructed. Accordingly, three questions need to be answered: Is it

complete? Is it correct? Is it consistent?. Then the domain expert testing is used to insure that the

design is correct. Table 1and Table 2, illustrate the syntax and domain expert testing for the

chosen health-care systems.

1..*

1

1

1..*
1..*

1..3

1..*

1..*

1..*
1..*

1..*

Computer Science & Information Technology (CS & IT) 167

Table 1. Syntax Testing of Health care system class diagram

1. Does each class define attributes, methods, relationships, and

cardinality?

�

2. Is each associations' and aggregations' cardinality correct? �

3. Are all parameters explicit rather than being embedded in method

names?

�

4. Do all subclasses implement the "is-a-kind-of" relationship properly? �

5. In inheritance structures, are all attributes and methods pushed as

high in the inheritance structure as is proper?

�

6. Does each association reflect a relationship that exists over the lives

of the related objects?

�

7. Are each 0..* and 1..* relationships implemented ? �

Table 2. Domain Expert Testing of Health care system class diagram

1 Is each class named with a strong noun? �

2 Is each attribute defined within the proper class? Is it of the correct

type?

�

3 Is each method in the correct class? �

4 Are all method names strong verbs? �

5 Does each method take the correct input parameters and return the

correct output parameter?

�

6 Does each method implement one and only one behavior? �

2.3 Refinement

The main goal of the refinement step is to produce reusable components. This will be achieved by

convert the class diagram into a directed graph. Each class is represented as a node in the graph

and the directions of the edges is the direction of dependencies between classes as shown in

figure 4. The idea behind this transformation is to introduce a technique to help increasing

cohesion of design and improve reusability as a result.

 Fig. 4. Transforming classes to a graph

Attention should be paid to the inheritance relationships in a class diagram when transforming it

into a directed graph. This relation is represented by a dotted edge between nodes in the graph.

The nature of object oriented design with inheritance is to migrate more general information and

operations up to the hierarchy where they can be reused by all descendants. Therefore when there

is a need to reuse a child class it should be also reuse the parent class. However, when there is a

need to reuse the parent class, it is not required to reuse its subclasses, since the parent class does

not use members of its subclasses.

A B B A

 B depends on A

168 Computer Science & Information Technology (CS & IT)

As a result, new systems can reuse the

cannot reuse just a lower part of a hierarchy. Figure 5 shows an illustration of transforming

inheritance relationship between classes to a directed graph.

Fig. 6. Directed graph of a health

Reusing just the top portion of a hierarchy is desirable in many cases, since the lower level

classes are more specific classes, so with respect to their parents, they are less likely to be needed

in other applications [3]. The following figure

figure 3 from class diagram into a full directed graph with taking into consideration the direction

of dependencies and the inheritance relationships between classes.

Parent

Child

Computer Science & Information Technology (CS & IT)

Fig. 5. Inheritance to directed graph

As a result, new systems can reuse the top portion of a hierarchy or the whole hierarchy, but they

cannot reuse just a lower part of a hierarchy. Figure 5 shows an illustration of transforming

inheritance relationship between classes to a directed graph.

Fig. 6. Directed graph of a health-care system

Reusing just the top portion of a hierarchy is desirable in many cases, since the lower level

classes are more specific classes, so with respect to their parents, they are less likely to be needed

in other applications [3]. The following figure (Figure 6) illustrates the transformation of the

figure 3 from class diagram into a full directed graph with taking into consideration the direction

of dependencies and the inheritance relationships between classes.

Parent

Child

Child

Parent

top portion of a hierarchy or the whole hierarchy, but they

cannot reuse just a lower part of a hierarchy. Figure 5 shows an illustration of transforming

Reusing just the top portion of a hierarchy is desirable in many cases, since the lower level

classes are more specific classes, so with respect to their parents, they are less likely to be needed

(Figure 6) illustrates the transformation of the

figure 3 from class diagram into a full directed graph with taking into consideration the direction

Computer Science & Information Technology (CS & IT) 169

2.4 Reusable Components

The purpose of this step is to extract the reusable components (packages) of the design. This will

be achieved by grouping the nodes with the same directions, which was determined according to

the relationships between classes of the system to deal with them as independent system

components. So, every sub-graph (component) can be reused separately. Also, from another

perspective, we can say that each component is a cohesive module (component), where every

member is related with other members of the same module without the need to have dependencies

on other modules. Figure 7 illustrates some examples of reusable components that can be

generated from the directed graph illustrated in Figure 6.

Fig. 7. Reusable packages

2.5 Documentation

The importance of documentation in software component reuse is critical. It needs accurate

information about a component in order to state the component with a requirement by referencing

the Software Design Document (SDD) [12][13]. Although good documentation of components is

170 Computer Science & Information Technology (CS & IT)

Some advice was provided in [10] about what should be included in a reuse document. Table 3

illustrates of documentation of two selected packages as an example from the given Health care

system.

Table 3. Component documentation example

Component

name

Identification Specification Technical

restrictio

ns

Commercial

or legal

restrictions

Problems Recommend

ed

enhancement

s

R.Package1 Reusing this

component is

when the

system needs

to have

patient

information

Patient class

that inherits

from Person

class, which

contains all

the

properties

and

operations

that need to

be done for

a patient

VB.Net

programm

ing

language

This

component

is suitable

only for

health care

systems

None

(component

is tested and

bugs are

detected and

fixed)

This

components

can be

integrated

with other

components

to extend

functionality

R.Package2 Reusing this

component is

when the

system needs

to have staff

information

Staff class

that inherits

from Person

class, which

contains all

the

properties

and

operations

that need to

be done for

a Staff

member

VB.Net

programm

ing

language

This

component

is suitable

for health

care or

managemen

t systems

None

(component

is tested and

bugs are

detected and

fixed)

This

components

can be

integrated

with other

components

to extend

functionality

3. CONCLUSION

Reuse at design level is an important aspect that should be focused on during the software

development life cycle. The proposed approach described how to improve design reusability in a

structured way that can be applied on any software design in order to produce design of reusable

components. The use of directed graphs helps the designers to understand how to extract the

design components by putting them in a form of nodes and directed edges that can be grouped

into packages (components) that could be reused in other systems.

As a future work, we are considering to develop a tool that performs the steps of the approach by

providing the class diagram, and then the tool performs the refinement process of the class

diagram to a directed graph and generates reusable packages of the produced.

Computer Science & Information Technology (CS & IT) 171

REFERENCES

[1] Gui, G & Scott, P.D. (2009), “Measuring software component reusability by coupling and cohesion

metrics”, Journal of computers, Vol.4, No.9.

[2] Kang, K.C, Cohen, S &Holibaug H.R. (1992), “Reuse-Based Software Development Methodology”,

(Report No. SEI-92-SR-4). Application of Reusable Software Component Project.

[3] Price, M.W &Demorgian, S.A. (1997), “Analyzing and measuring reusability in object oriented de-

signs”, University of Connecticut, computer science and engineering department.

[4] Mishra, S.K, Kushwaha, D.S & Misra, A.K. (2012),“Creating reusable software components from

object oriented legacy system through reverse engineering”, Journal of object technology, pp 1-13.

[5] Johnson, R.E & Russo, V.F. (1991), “Reusing object oriented designs”, Unpublished Manuscript,

department of computer science, University of Illinois, West Lafayette.

[6] Duffy, S.M, Duffy, AHB &MacCallum, K.J. (1995),“A Design Reuse Model”. International confe-

rence of engineering design (iced 95): Glasgow, Heurista, 490-495.

[7] Budgen, D. (2003), “Software design”, England: Pearson education.

[8] Price, M.W &Demorgian, S.A.(1997) “Analyzing and measuring reusability in object oriented de-

signs”, University of Connecticut, computer science and engineering department.

[9] Chidamber, S.R &Kemerer, C.F.(1994),“A Metrics Suite for Object Oriented Design”, IEEE Transac-

tion on Software Engineering, Vol,20. No, 6.

[10] Sametinger,J.(1996) “Reuse Documentation and Documentation Reuse”, A&M University, Texas,

USA.

[11] Sourcemaking.com/refactoring, Access: (January,2013).

[12] Jones, M & Mortensen, U. (1995), “Guide to the software detailed design and production phase”,

ESA publications divisions,Vol.1: Paris, France.

[13] Kuhns, R.D. (1998) “Strategies for designing and building reusable GIS application components”,

Unpublished Manuscript, Convergent Group, Englewood, Colorado.

AUTHORS

Tawfig M. Abdelaziz

He is an assistant professor at the department of software engineering and a vice dean of

faculty of Information Technology, University Of Benghazi, Libya. He is interesting in

Agent systems, software Quality Assurance, software project management and Formal

methods

Yasmeen.N.Zada

She is a graduate student at Department of Software Engineering, Faculty of Information

Technology, University of Benghazi, Libya.

Mohamed Ali Hagal

He is a lecturer at the department of software engineering, faculty of Information

Technology, Benghazi University-Libya. He is interesting in software requirements

engineering, software design and software project management.

