

David C. Wyld et al. (Eds) : CST, ITCS, JSE, SIP, ARIA, DMS - 2014

pp. 311–321, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4129

QUERY PROOF STRUCTURE CACHING

FOR INCREMENTAL EVALUATION OF

TABLED PROLOG PROGRAMS

Taher Ali
1
, Ziad Najem

2
, and Mohd Sapiyan

1

1
Department of Computer Science, Gulf University for Science and

Technology, Kuwait
ali.t@gust.edu.kw, sapiyan.m@gust.edu.kw

2
Department of Computer Science, Kuwait University, Kuwait

najem@cs.ku.edu.kw

ABSTRACT

The incremental evaluation of logic programs maintains the tabled answers in a complete and

consistent form in response to the changes in the database of facts and rules. The critical

challenges for the incremental evaluation are how to detect which table entries need to change,

how to compute the changes and how to avoid the re-computation. In this paper we present an

approach of maintaining one consolidate system to cache the query answers under the non-

monotonic logic. We use the justification-based truth-maintenance system to support the

incremental evaluation of tabled Prolog Programs. The approach used in this paper suits the

logic based systems that depend on dynamic facts and rules to benefit in their performance from

the idea of incremental evaluation of tabled Prolog programs. More precisely, our approach

favors the dynamic rules based logic systems.

KEYWORDS

Incremental evaluation of tabled Prolog, Incremental tabulation for Prolog queries,

Justification based truth maintenance systems, Tabulation, Memoing.

1. INTRODUCTION

Tabled resolution for logic programs [1] mitigates some of the well-known problems of Prolog,

including the tendency to fall into infinite loops, repeating subcomputations, and the

unsatisfactory semantics of negation. The implementations of tabling [2, 3, 4,5] have become

stable and efficient. The incremental evaluation of logic programs [6] maintains the tabled

answers complete and consistent in response to the changes in the database of facts and rules. The

basic idea behind incremental tabulation is that when some facts or rules change in a program, the

system recomputes only the results affected by the change, instead of re-evaluating and tabling

the query answers from scratch. The critical challenges for the incremental evaluation are how to

detect which table entries need to change, and how to compute the changes. One of the efficient

approaches to achieve these challenges is to use the symbolic support graph [7]. The symbolic

312 Computer Science & Information Technology (CS & IT)

support graph caches the dependencies between the tabled answers to propagate the changes to

the tables when the related facts/rules are added/deleted. This approach requires to cache the

answers of the query in a table along with the support graph to maintain the completeness and

correctness of tabled answers.

Figure 1: Translative closure program of the directed edge relationship

Figure 2: JTMS network installed by THE SYSTEM after proving query ? – connected (b, Y)

for the first time.

The other challenge for the incremental evaluation is to avoid the re-computation which is

required to update the tabled answers due to the changes in the related database of facts and rules.

The current technique [8] uses extra data structures (dynamic dependency graph) to interleave the

propagation of deletion and insertion operations caused by the updates of facts and rules. The

technique tries to minimize the challenging problem of re-computation which is caused by the

updates. This paper presents an alternative approach to incremental tabulation that is capable of

working in non-monotonic situations. The main idea is to cache the proof generated by the

deductive inference engine rather than the end results. In order to be able to efficiently maintain

the proof to be updated, the proof structure is converted into a justification-based truth-

maintenance (JTMS) network [9, 10].

2. CACHING THE QUERY PROOF AS A JTMS NETWORK

The main idea of our approach is to cache the proof generated by the deductive inference engine

rather than caching the end results. The proof structure is converted into a justification-based

truth-maintenance (JTMS) network. JTMS saves the dependency between deduced facts and the

facts used to make the deduction in order to be able to efficiently cache the proof structure. The

system translates every successful branch of a query into a JTMS network that links the facts and

Computer Science & Information Technology (CS & IT) 313

the rule to the answer generated by that branch. Consider the evaluation of the query: ? -

connected(b,Y) with respect to the PROLOG program of Figure 1. Figure 2 shows the

justifications installed by the system when it proves the query ? - connected (b,Y) with respect to

the PROLOG program of Figure 1. These justifications represent the proof structure of the query ?

- connected(b,Y). A justification is installed for each complete branch of the SLD-tree. When a

query is reevaluated, the system returns the answers of the query by collecting the IN

consequences of each query’s JTMS justification.

Figure 3: JTMS network of Figure 2 after retracting the fact edge(b, d) to the database of Figure 1.

When changes in database take place, we have to ensure that the proof structure is both sound and

complete. Consider the following changes to the base facts of Figure 1 after caching the proof

structure of the query ?-connected(b,Y) for the first time:

1. Retracing the fact edge(b,d)

The system has to ensure that whenever base facts participating as antecedents in any

justification are asserted/retracted, the effect of this assertion/retraction should be

propagated through the JTMS justifications in order to keep the proof structure sound.

Achieving this is not difficult since changing the state of any antecedent that is

asserted/retracted to/from the database requires marking the label from IN/OUT or vice

versa, and after that, propagating the effect of this change through the whole network.

Figure 3 shows the effect of retracting the fact edge(b, d) from the database of the Figure

1. The first effect of this retraction is on the first justification since edge(b,d) is in the

antecedent list of that justification. This results in marking connected(b,d) from IN to

OUT. Since edge(b,d) is in the antecedent list of the 3rd justification, the result of outness

propagation marks connected(b,e) from IN to OUT. This method of propagating

inness/outness ensures that whenever the query is re-evaluated, the returned results by the

system are valid answers regardless whether or not the database has been changed. Note

that ensuring the soundness of the proof structure does not require any PROLOG inference

work.

2. Asserting the fact edge(b,f)

Here the situation is more complicated. the system has to take care about the effect of

asserting new data that was not available when a query was evaluated for the first time.

This is important since asserting new data to the database may add to the set of results that

are already available for the query or even remove some of them. The system handles this

problem by monitoring the nodes that may contribute to some new results of the query.

314 Computer Science & Information Technology (CS & IT)

Whenever a new fact that is related to a monitored node is asserted, query resumption

takes place to update the query’s cached proof structure. Referring back to the example of

Figure 1, when the system proves the query ?-connected (b,Y) for the first time, it marks

the nodes that will participate in resuming this query when new data is asserted. Those

nodes come from the right hand side of program rules, i.e. edge(X,Y) and connected

(Z,Y). Whenever new data that is related to the marked nodes is asserted, the query ?-

connected(b, Y) resumes its work to update the proof structure of the query. Figure 4

shows the effect of asserting the fact edge(b, f) to the database of Figure 1 on the JTMS

network of Figure 3. Three new justifications have been installed upon resuming the query

after the assertion of edge(b, f). An important point that should be mentioned here is that,

in order to keep the proof structure complete, the system has to use the help of the

PROLOG inference engine.

3. Asserting the fact edge(b,d)

The retracted fact edge(b,d) is asserted back to the base facts of Figure 1. The system is

going to change the label of the TMS node attached to this fact from OUT to IN and then

propagates the effect of this change in label throughout the JTMS network. Figure 5 shows

the effect of asserting back the fact edge(b,d) to the database of Figure 1 on the JTMS

network of Figure 4.

Figure 4: JTMS network of Figure 3 after asserting the fact edge(b, f) to the database of Figure 1.

3. IMPLEMENTATION

The main objective of this research is to provide a PROLOG system which supports incremental

tabulation by using the justification-based truth-maintenance system, and this is what we

achieved. The system evaluates the query only once with maintaining enough information to

ensure both consistency and completeness of the collected solutions as the dynamic state changes.

When the query is re-evaluated, the system returns the cashed answers which are always up to

Computer Science & Information Technology (CS & IT) 315

date. There are two approaches to integrate tabling support into existing PROLOG systems. The

first approach is to modify and extend the low-level engine. The advantage of this approach is the

run-time efficiency, however, the drawback is that it is not efficiently portable to other Prolog

systems because the engine level modifications are slightly more complex and time consuming.

This approach is used by the XSB [2] system. XSB is the only PROLOG implementation so far that

supports incremental tabulation. The second approach to incorporate tabled evaluation into

existing PROLOG systems is to apply the source level transformations to a tabled program, and

then use external tabling primitives to provide direct control over the search strategy. This idea

was first explored by Fan and Dietrich [11] and later used by Rocha, Silva and Lopes [12] to

implement tabled PROLOG systems. The main advantage of this approach is the portability of

applying it on different PROLOG systems. The drawback is of course the efficiency, since the

implementation is not at a low level. Our implementation approach is based on applying the

source level transformations to a tabled program. We named our approach as JLOG (Justification-

based Logic), the idea of this name came from the word PROLOG (Programming in logic).

Figure 5: JTMS network of Figure 4 after asserting back the fact edge(b,d) to the database of Figure 1.

4. RESULTS AND DISCUSSION

To have a look at the performance of the system, JLOG is to compare it with:

1. Normal PROLOG (NP) implementations [13] that do not support tabulation.

2. Tabled PROLOG (TP) implementations [4, 2] that support monotonic (static facts and

rules) logic systems.

3. Incremental tabled PROLOG (ITP) implementations [2] that supports non-monotonic

(dynamic facts and rules) logic systems. This is considered to be the main assessment

factor since the main objective of this research is to support incremental tabulation. Our

316 Computer Science & Information Technology (CS & IT)

benchmark is the XSB system since it is the only PROLOG implementation that so far

supports the incremental tabulation.

The main assessment factors for testing the performance of our approach are categorized into the

following:

1. Evaluating the query for the first time

We execute PROLOG queries on normal, tabled, incremental tabled PROLOG and JLOG.

The execution time of these queries is analyzed and compared among the four systems.

2. Re-evaluation of a query

Once a query is evaluated for the first time, the same query is re-evaluated again on

normal, tabled, incremental tabled PROLOG and JLOG. The execution time of re-

evaluating this query is analyzed and compared among the four systems.

Figure 6: Translative closure PROLOG program to find the connected students in a certain semester.

Figure 7: Statistics of evaluating the query connected(Sem, 946, Y).

Computer Science & Information Technology (CS & IT) 317

3. Evaluating a subquery related to a previously proven query

We compare the time it takes to evaluate subqueries related to some previously proven

queries on normal, tabled, incremental tabled PROLOG and JLOG.

4. The cost of maintaining the cashed proof structure up-to-date for a previously proven

query

After the query is proven for the first time, we assert/retract PROLOG facts or rules

to/from the PROLOG program that would change the state of the cached answers of the

query.

We tested the performance of JLOG by implementing a small business intelligence [14], or a

reporting tool for a mid-size University. We have chosen this approach rather than the standard

benchmark dataset to test the system on real data. The objective is to observe if the system is able

to work under real applications. Graph reachability is a classic problem with many applications in

the real-world. The graph reachability problem has been used as a benchmark in any PROLOG

tabled implementation. We mapped the graph reachability to the student information database

using the following scenarios:

• Picking a certain student in an academic semester, we would like to know the set of

students that can be reached from, connected to, this particular student. We used the

assumption that all students registered in the same class are connected to each other, i.e.

we add an edge between each couple of students registered in the same class (There are

so many scenarios in the student information system that can be mapped to the

reachability problem, we just picked one example). Then we apply the transitive closure;

if student X is connected to Y, Y is connected to Z; we conclude that X is connected to Z.

• In graph theory, a connected component of an undirected graph is a subgraph in which

any two vertices are connected to each other by paths, and which is connected to no

additional vertices in the super graph. In a student information database, we would like to

know how many connected components of students exist in a certain semester. Each

student registered in the current semester is represented as a vertex in the graph.

Whenever two students are registered in the same class, we add an edge between these

two students (vertices) in the graph

Figure 6 shows the translative closure PROLOG program to find the connected students in a

certain semester. The first rule in the program connects each couple of students registered in the

same class. The second rule uses the transitive relation to connect students indirectly. Given the

enrollment data up to a certain academic year, we would like to list all the students connected to a

particular student. For example, the query connected(Sem,946,Y) finds the list of students

connected to the student number 946 in all the semesters that exist in the database of facts. Figure

7 presents the statistics of evaluating the query connected(Sem,946,Y) for the first time. The

graph that is going to be constructed from the relation edge/3 contains cycles which yields that

this query suffers from infinite loop in Np while it terminates successfully in all tabled (Tp, ITp,

JLOG) runs. The query generates a lot of redundant answers which are neglected by Tp and ITp.

These answers are not neglected by JLOG, hence it is suffering from overhead when the query is

proved for the first time. To test the correctness (soundness) and completeness of the cached

318 Computer Science & Information Technology (CS & IT)

answers, we picked samples of the data such that the number of edges (facts), coming from the

reg/4 predicate, is between 2 to 4kb. The sample takes snapshot of the data before the first day of

classes, i.e. start of add/drop period in the university. First we evaluate the general query related

to this program which is connected(Sem,X,Y). We pass the semester values for which we are

looking the list of connected students. Then, we use the following scenarios to test the soundness

and completeness of the cached proof structure:

1. We track all the changes that take place on the predicate reg/4 starting from the 1st day of

add drop period until the end of semester. When a student drops (soundness) a class, the

related PROLOG fact is retracted. When a student adds a new class, then the fact is

asserted. This can be a new fact (completeness) if the student is adding the class for the

first time, or it can be an old fact (soundness) because the student dropped the class after

registering it for the first time and then decided to reenroll back in the class. The current

version of JLOG updates the JTMS network, attached to the cached query, whenever the

assert/retract command is executed. This means that the query proof structure is always

updated and returns the correct answers. Figure 8 shows the statistics of maintaing the

soundness and completeness of the query connected(Sem,X,Y) based on the changes in

the predicate reg/4. For the same add/drop events ITp (XSB) is faster than JLOG. The

reason behind this difference in the performance is coming from the fact that JLOG is

updating the JTMS network after each assert or retract command, while ITp is handling

the situation through batch processing since it is implemented at low level. When the

tables were updated after each assert or retract command in ITp, the performance of the

system was degraded. For example, for the semester 1101, ITp takes 47608 milliseconds

to update the query answers through batch processing, see Figure 8. This time jumps to

12,972,825 milliseconds when we tried to update the tables after each assert/retract

command. JLOG updates the JTMS network after each assert/retract in 120,842

milliseconds which is significantly lower than the time taken by ITp to handle the events

one by one.

Figure 8: Statistics of maintaing the soundness and completeness of the query connected(Sem,X,Y) based

on the changes in the predicate reg/4.

Computer Science & Information Technology (CS & IT) 319

Figure 9: Maintaing the soundness of the query connected(Sem,X,Y) after retracting of the rule

connected(X,Y) : -edge(X,M), connected(M,Y) from the PROLOG program of Figure 6.

2. The second scenario is used to test soundness of the query which is related to

assertion/retraction of rules in the program of Figure 6. Consider the case where we

would like to know the list of students who are connected directly and we want to

exclude the tuple of students who are connected indirectly. This can be achieved by

retracting the third rule in the program of Figure 6 which connects the students indirectly.

In order to be able to retract the rule, the predicate connected/2 must be defined as

incrementally dynamic. Once connected/2 is defined as dynamic predicate, the query

connected(Sem,X,Y) does not terminate in ITp. ITp fails to handle the query due to an

infinite loop. JLOG handles the situation smoothly. Figure 9 shows the time taken by

JLOG for maintaing the soundness of the query connected(Sem,X,Y) after retracting of

the rule connected(X,Y) : -edge(X,M), connected(M,Y) from the PROLOG program of

Figure 6. JLOG handles the retraction easily because it is a single event used to update the

JTMS network and does not require any inference work from the PROLOG side.

5. CONCLUSION

This paper proposed a general framework of a subsystem integrated with PROLOG inference

engine (SWIPROLOG, YAP-PROLOG, XSB, ..., etc) that uses justification-based truth

maintenance system to support incremental tabulation that can work under nonmonotonic logic.

Our system evaluates a query only once, maintaining enough information to ensure both

consistency and completeness of the collected solution as the dynamic state changes. The main

idea of the system is to cache the proof generated by the PROLOG inference engine as a JTMS

network rather than saving the end results as it is the case for most tabling systems. The approach

presented in this paper is suitable for a query that depends on dynamic information is to be

evaluated repeatedly as the dynamic state changes. The are few advantages of our approach. The

first advantage comes from caching the query answers in one consolidate subsystem (JTMS

Network). Then the evaluation of subqueries requires no inference work. Another system

advantage is related to handling the assertion/retraction of rules. On the other hand, the approach

is suffering from few limitations. The first limitation of the system is the inability to handle

queries with infinite answers. The other limitation of current approach occurred when the query is

evaluated for the first time. JLOG is paying sufficient overhead since it caches the proof structure

320 Computer Science & Information Technology (CS & IT)

of the query rather than the end results. JLOG is not a good choice for the queries generating a

large number of answers. The large number of answers for a query requires large JTMS network

to be installed for the query in order to cache the proof structure. We need to study carefully the

memory usage of JLOG and see how this issue can be resolved by controlling or compacting the

memory management for the JTMS network.

REFERENCES

[1] Weidong Chen and David S. Warren. Tabled evaluation with delaying for general logic programs. J.

ACM, 43(1):20–74, January 1996.

[2] Terrance Swift and David Scott Warren. Xsb: Extending prolog with tabled logic programming.

TPLP, 12(1-2):157–187, 2012.

[3] Ricardo Rocha, Fernando Silva, Ricardo Rocha Fern, and Vítor Santos Costa. Yaptab: A tabling

engine designed to support parallelism. 2000.

[4] Vítor Santos Costa, Ricardo Rocha, and Luís Damas. The yap prolog system. TPLP, 12(1-2):5–34,

2012.

[5] Neng-Fa Zhou, Isao Nagasawa, Masanobu Umeda, Keiichi Katamine, and Toyohiko Hirota. Bprolog:

A high performance prolog compiler. In Takushi Tanaka, Setsuo Ohsuga, and Moonis Ali, editors,

IEA/AIE, page 790. Gordon and Breach Science Publishers, 1996.

[6] Diptikalyan Saha and C. R. Ramakrishnan. Incremental evaluation of tabled logic programs. In ICLP,

pages 392–406, 2003.

[7] Diptikalyan Saha and C. Ramakrishnan. Symbolic support graph: A space efficient data structure for

incremental tabled evaluation. In Maurizio Gabbrielli and Gopal Gupta, editors, Logic Programming,

volume 3668 of Lecture Notes in Computer Science, pages 235–249. Springer Berlin / Heidelberg,

2005.

[8] Diptikalyan Saha and C. Ramakrishnan. A local algorithm for incremental evaluation of tabled logic

programs. In Sandro Etalle and Miroslaw Truszczynski, editors, Logic Programming, volume 4079 of

Lecture Notes in Computer Science, pages 56–71. Springer Berlin / Heidelberg, 2006.

[9] Truong Quoc Dung. A revision of dependency-directed backtracking for jtms. In Günther Görz and

Steffen Hölldobler, editors, KI, volume 1137 of Lecture Notes in Computer Science, pages 57–60.

Springer, 1996.

[10] Gerhard Brewka, David Makinson, and Karl Schlechta. Jtms and logic programming. In LPNMR,

pages 199–210, 1991.

[11] Changguan Fan and Suzanne Wagner Dietrich. Extension table built-ins for prolog. Softw. Pract.

Exper., 22(7):573–597, July 1992.

[12] R. Rocha, C. Silva, and R. Lopes. Implementation of Suspension-Based Tabling in Prolog using

External Primitives. In J. Neves, M. Santos, and J. Machado, editors, Local Proceedings of the13th

Portuguese Conference on Artificial Intelligence, EPIA’2007, pages 11–22, Guimarães, Portugal,

December 2007.

[13] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager. SWI-Prolog. Theory and

Practice of Logic Programming, 12(1-2):67–96, 2012.

[14] Oksana Grabova, Jerome Darmont, Jean-Hugues Chauchat, and Iryna Zolotaryova. Business

intelligence for small and middle-sized enterprises. SIGMOD Record, 39(2):39–50, June 2010.

Computer Science & Information Technology (CS & IT) 321

AUTHORS

Tahir M. Ali received his BSc and Ms from Kuwait University and PhD from

University of Malaya. He is currently an Assistant Professor of Computer Science in

Gulf University for Science and Technology, and also serving as the IT director. His

main research interest is in field of Artificial Intelligence (AI), in particular, logic

programming and scheduling algorithms.

Ziad H. Najem received his BSc from Kuwait University and Ms and PhD from

University of Illinois at Urbana-Champaign. Prior to joining the Department of

Computer Science at Kuwait University in 1999, Dr. Najem worked as a Scientific

Researcher at Kuwait Institute for Scientific Research.

Mohd Sapiyan Baba is currently a Professor of Computer Science in Gulf University

for Science and Technology, Kuwait. He was a lecturer in University of Malaya for

more than 30 years, teaching Mathematics and Computer Science courses, and

supervised numerous students for their research projects at undergraduate and

postgraduate levels. His main research interest is in field of Artificial Intelligence

(AI), in particular, the application of AI in Education

