
 

David C. Wyld et al. (Eds) : CCSIT, SIPP, AISC, PDCTA, NLP - 2014 
pp. 409–419, 2014. © CS & IT-CSCP 2014              DOI : 10.5121/csit.2014.4235 

 

A RECOMMENDER SYSTEM SENSITIVE TO 

INTRANSITIVE CHOICE AND 

PREFERENCE REVERSALS 

 
Amir Konigsberg  and Ron Asherov 

 

General Motors R&D 
amir.konigsberg@gm.com 

rasherov@gmail.com 

 

ABSTRACT 

 
One of the basic foundations for many recommender systems is the assumption of preference 

consistency and transitivity of choice. In this paper we challenge this assumption and argue that 

it should be revised. We also provide a method by which recommender systems can estimate 

preference reversals and choice intransitivity. Our general approach is to incorporate variants 

of choice-behavior such that recommender systems incorporate decision-sensitive factors within 

choice-sets that tend to influence decision making. After establishing why recommender systems 

ought to consider preference reversal phenomena, we provide a high-level outline of a 

mechanism for automatically discovering and predicting preference reversals. Thereafter we 

show how the discovered or predicted preference reversals can help in generating choice sets 

that 1) are better for the users all things considered (by being in line with their general 

preferences as exhibited over time) and 2) help users make better decisions. 

 

KEYWORDS 

 

Intransitive choice; preference reversals; recommender systems; rational choice 

 

 

1. INTRODUCTION 

 
The importance of understanding user preferences has been recognized by researchers and 
practitioners in many disciplines. The wide interest in this area in academia and in the industry 
over the past decade reflects a recognition of the abundance of practical applications that are 
possible with an increased understanding of user preferences (G. Adomavicius and Tuzhilin 
2005). Moreover, from the practical standpoint understanding, what users prefer becomes ever 
more important as the amount of available information, services, and products continues to 
increase and personalizing services and filtering information becomes crucial for user experience 
and information management. Companies in a variety of fields have begun to recognize that they 
stand to benefit by matching relevant and timely information, products, or services to users based 
on an understanding of their preferences.  
 
One of the disciplines in which an understanding of user preferences is most valuable is 
recommender systems. This paper deals with a specific yet important issue that we believe 
recommender systems ought to deal with - preference reversals. Our goal is to discuss the 
preference reversal problem in the context of intransitive choice behavior, and argue why it is 
important for recommender systems to consider. Our primary goal is to outline the phenomena, 



410 Computer Science & Information Technology (CS & IT) 

 

and to suggest a system by which preference reversals can be detected so as to generate more 
useful recommendations.   
 
We also propose a way in which intransitive choice behavior can be detected and also a way of 
estimating the conditions under which user preferences will be reversed. We then make salient the 
central features of such a system. It is our belief that in dealing with this issue and making the 
necessary amendments, recommender systems can become more accurate in a wider range of 
cases. Perhaps more importantly, in incorporating the issues we draw attention to here, 
recommender systems can become sensitive to the context of choice. 
 
While a substantial amount of research has already been done in the area of recommender 
systems (e.g., Celma and Herrera 2008; Herlocker et al. 2004; Shani and Gunawardana 2011; 
Cramer et al. 2008; Victor CODIN and Luigi CECCARON 2011; Ricci 2011; Gediminas 
Adomavicius and Tuzhilin 2011), underlying most of the existing approaches is the assumption 
that users are consistent in their choices in varying choice-environments (Brun et al. 2010, sec. 
3.3; Brafman and Domshlak 2009, 2). It is assumed that if a recommender system, using content 
filtering strategies or collaborative filtering methods, or both1, were to recognize that in the past a 
particular user has always selected a hotel when offered a hotel and a B&B in an accommodation 
selection website, then the assumption is that this user will also prefer a hotel to a B&B when 
short-term apartments are also on offer. That is, if H has always been the preferred choice from 
{H, B}, then H will be preferred to B in {H, B, A}, {H, B, A, I} and in any other choice set that 
includes H and B, however many other items are in that set. And this assumption is in fact quite 
reasonable, since most of the time users behave consistently by upholding transitivity in the way 
described above. Hence assuming that users are consistent in their preferences is a useful 
methodology, most of the time. Nonetheless transitivity of choice can be influenced by affect 
dependence between items. These are cases when the presence of an item in a choice set will 
influence the utility of other items in that set whose utility would be different in the absence or 
substitution of that item. 
 
We believe that attending to the influence that  in a choice set can have on preference consistency 
is an important factor to consider in recommender systems, especially because in reality some 
user preferences are transient and vary with change of context and item availability (Gediminas 
Adomavicius and Tuzhilin 2011). It is our contention that recommender systems can be improved 
if they can predict under what conditions user preferences are likely to occur and incorporate 
these predictions in such a way that more useful choice sets can automatically be generated.  
In what follows we demonstrate how dependency can arise between choice-options and how this 
dependency can induce changes in user preferences. We also suggest how the kind of choice-
dependency that we focus on can be handled by eliciting user preferences for items in all possible 
option-spaces. We believe that if it is reasonable to assume that the level of accuracy by which a 
recommender system can estimate user preferences depends on the degree to which it has 
incorporated variants of choice-behavior into its method, then the approach to handling the 
behavioral phenomena we focus on here will be a positive addition to current attempts to provide 
accurate recommendations to users based on their preferences. 

                                                
1 Existing approaches to recommender systems will typically rank items recommended to users based on 
one of two strategies (Koren, Bell, and Volinsky 2009); either based on the attributes of the available items 
(content filtering) or based on user-item/option associations inferred from similarities between different 
items and different users (collaborative filtering). In both cases attributing preferences to users is the means 
by which recommendations are made. Depending on the strategy, preferences can either be learned from 
past choice-behavior or explicitly stated, for instance by elicitation methodologies or questions (Brafman 
and Domshlak 2009).  
* This research received no specific grant from any funding agency in the public, commercial, or not-for-
profit sectors. 



Computer Science & Information Technology (CS & IT)

 

2.  EXPECTING THE UNEXPECTED

INDEPENDENT ITEMS
 
Recommender systems typically assume that a user’s preferences are consistent. They assume 
that if so-and-so has repeatedly evaluated the set of options {x, y} and has then repeatedly chosen 
x, that he can then be registered as 
so in all other instances where x and y are offered together. Additionally, most utility based 
systems assume that x has a greater utility than y and that 
the two are offered together. But this is not to say that existing systems cannot also detect 
preference changes. They can. But this is only after they detect that the user has modified his 
choice a sufficient number of times to count as adequate for judging that his preference h
changed. Yet existing systems don’t

will change due to choice-context 
which they are offered - and remain the same in all other c
assumption of current recommendation systems implies that if other items are added to a choice 
set – for instance in other contexts 
previous choice – i.e., x from {x, y} 
 
Figure 1 (below) illustrates the consistency of preference assumption that we are referring to:
 

 
Below the dotted line in figure 1 is a set of items and the output that a recommender systems will 
typically give; either one of the new items that have been added to the choice set will be chosen, 
or the choice will remain as before (i.e., b). As can be seen, once choice b has been made between 
{a, b, c} the user will then be ascribed preferences that correspond
preferences will be remembered by the system. Moreover, on a later occasion when a, b, c are 
given in conjunction with other items 
either be b, consistent with the pre
greater utility than b. Most existing systems will not give either a or c as an output.
 
Yet users do sometimes reverse their preferences because additional items in the choice set, even 
if those additional items aren’t themselves chosen.Because of such sensitivity to the context of 
choice, an item in a choice set can have a relative as well as an absolute value, and its relative 

Computer Science & Information Technology (CS & IT)                                 

NEXPECTED: THE DEPENDENCY OF 

TEMS IN CHOICE SETS 

Recommender systems typically assume that a user’s preferences are consistent. They assume 
so has repeatedly evaluated the set of options {x, y} and has then repeatedly chosen 

x, that he can then be registered as preferring x to y. They also assume that he will continue to do 
so in all other instances where x and y are offered together. Additionally, most utility based 
systems assume that x has a greater utility than y and that this is why x is preferred to y whenever 

ther. But this is not to say that existing systems cannot also detect 
preference changes. They can. But this is only after they detect that the user has modified his 
choice a sufficient number of times to count as adequate for judging that his preference h

don’t identify the conditions under which an existing preference 
context – i.e., due to the presence of a particular item (or items) with 
and remain the same in all other cases. Instead, the consistency 

assumption of current recommendation systems implies that if other items are added to a choice 
for instance in other contexts – then either 1) those other items will be chosen, or 2) the 

x, y} - will remain as before.  

illustrates the consistency of preference assumption that we are referring to:

Figure 1 
 

Below the dotted line in figure 1 is a set of items and the output that a recommender systems will 
give; either one of the new items that have been added to the choice set will be chosen, 

or the choice will remain as before (i.e., b). As can be seen, once choice b has been made between 
{a, b, c} the user will then be ascribed preferences that correspond to this choice and these 
preferences will be remembered by the system. Moreover, on a later occasion when a, b, c are 
given in conjunction with other items – d, e, f, g, in the same choice set, the system’s output will 
either be b, consistent with the previous choice, or d, e, f, or g, if one of these happens to have a 
greater utility than b. Most existing systems will not give either a or c as an output. 

Yet users do sometimes reverse their preferences because additional items in the choice set, even 
those additional items aren’t themselves chosen.Because of such sensitivity to the context of 

choice, an item in a choice set can have a relative as well as an absolute value, and its relative 

                                 411 

Recommender systems typically assume that a user’s preferences are consistent. They assume 
so has repeatedly evaluated the set of options {x, y} and has then repeatedly chosen 

assume that he will continue to do 
so in all other instances where x and y are offered together. Additionally, most utility based 

is why x is preferred to y whenever 
ther. But this is not to say that existing systems cannot also detect 

preference changes. They can. But this is only after they detect that the user has modified his 
choice a sufficient number of times to count as adequate for judging that his preference has 

identify the conditions under which an existing preference 
i.e., due to the presence of a particular item (or items) with 

ases. Instead, the consistency 
assumption of current recommendation systems implies that if other items are added to a choice 

then either 1) those other items will be chosen, or 2) the 

illustrates the consistency of preference assumption that we are referring to: 

 

Below the dotted line in figure 1 is a set of items and the output that a recommender systems will 
give; either one of the new items that have been added to the choice set will be chosen, 

or the choice will remain as before (i.e., b). As can be seen, once choice b has been made between 
to this choice and these 

preferences will be remembered by the system. Moreover, on a later occasion when a, b, c are 
d, e, f, g, in the same choice set, the system’s output will 

vious choice, or d, e, f, or g, if one of these happens to have a 

Yet users do sometimes reverse their preferences because additional items in the choice set, even 
those additional items aren’t themselves chosen.Because of such sensitivity to the context of 

choice, an item in a choice set can have a relative as well as an absolute value, and its relative 



412 Computer Science & Information Technology (CS & IT) 

 

value is often a function of how it relates to other items2. And it is natural to suppose that choices 
made between items under particular choice-conditions may change under other choice-
conditions, even if those choice-conditions don’t offer any items that offer tangible gain on a 
previously considered utility function or decision rule.  
 
Because recommender systems that aim to anticipate user choice are modelled on the anticipated 
satisfaction of a user, it is natural to expect that the accuracy of a system’s prediction will be 
reflective of the degree to which it has incorporated contextual variants such as the impact of 
items on other items in relation to choice behaviour and recommendation acceptance. 
 
In what follows we propose a method for estimating preference reversals that result from inner set 
dependencies in between items. As noted above, we believe that a recommender system that uses 
this approach can deliver more accurate recommendations than existing systems.  
 

3.  A MODEL FOR PREFERENCE REVERSAL BEHAVIOR AND ITEM 

DEPENDENCY 
 
In order to deal with the interacting options in an option space we define a matrix A, whose i,j 
entry represents the additional utility, or gain, of the Ith  item, given the jth  item. The entries on 
the main diagonal of the matrix represent the initial utility of the item, disregarding any other 
items with which it is presented. Otherwise put: the values in the diagonal represent the utility 
that item x has in and of itself, independent of the presence of any other item. Utility shall be 
measured in pure unit-free numbers. The scale is chosen such that the biggest number on the main 
diagonal is 10, meaning that the largest value that can be attributed to an item is 10. But this is 
only for demonstrative purposes. In essence, larger or smaller scales can be used. 
 
Additionally, we assume that utilities are additive in this matrix, meaning that as a means of 
evaluating an item we add together the utilities it gets from every other available item. Hence, in 
order to find the final utility of an item (in some context or option space), we add up the entries of 
the item’s row of values and the columns of the other available options. Then we compare these 
sums and determine which item has the highest utility, given the context of the specific option 
space (note: we are aware that assuming additivity is not trivial. We have chosen to presuppose it 
since we believe it serves our system best. Nonetheless, we discuss this assumption further 
below). We also assume that the user whose choices this matrix represents is rational, meaning 
that he maximizes a utility function by choosing the item, or row, with the highest measure of 
utility. Let us flesh out this model by way of an illustrative example. 
 
You are on a business trip in an area that you are visiting for the first time, driving a car equipped 
with a point-of-interest (POI) recommendation system that offers you restaurants, museums, 
shops, and other services and points of interest upon request or proactively, based on your 
location and preferences. At some point on your journey the system offers you two options:  
 
 1) “Hank’s” – a club with live music (H) 
  2) A local restaurant (R).  
 
You don’t have too much information about the local music scene – e.g., what kind of music the 
local bars play, and you also feel quiet hungry, so you rate the options accordingly – you give Ra 
10, and H a 5, reflecting your order of preference, in favor of the restaurant. You now have the 
incomplete matrix: 
 

                                                
2 See Dan Ariely’s now famous Economist subscription example in: (Ariely 2009, chap. 1) 



Computer Science & Information Technology (CS & IT)                                 413 

 

 H R 

H 5  

R  10 

 

As can be seen, the utility scores in the matrix are distributed for each item – H and R. Because 
the items that the system has offered are independent of one another and no information derived 
from one item can affect the other item, the remaining entries in the matrix are zero: 
 

 H R Σ 

H 5 0 5 
R 0 10 10 

 
You calculate the sum of all entries in the same row, and, being rational (that is, a maximizer), 
you decide to go to the restaurant (R), because this item has the greatest overall utility. 
 
Now, before you manage to reveal your choice to the system, the system offers you a third item: a 
music festival (F). You evaluate this item at 7, and then you also realize that now the item relating 
to the possibility of going to “Hank’s” (H) sounds much better, giving it an additional value of 15, 
perhaps because the idea of going to a festival (F) made listening to music in a bar (H) more 
attractive. The important point here is that knowing about item F adds some utility to item H.  
You now have the following matrix: 
 

 H R F Σ 

H 5 0 15 20 
R 0 10 0 10 
F 0 0 7 7 

 
As can be seen, the offer of a third item F made you assign a higher utility to the first item (H), 
and in practice it also changed the result of the inner comparison between the initial items H and 
R (we can also describe this change on a temporal dimension: whereas at time t1 you preferred 
item R to item H, at time t2, when F also became a possibility, you preferred H. Your preference 
thus reversed between ��and ��, as a result of the additional availability of F at t2). 
 

4. GENERALIZING THE MODEL 

 
Let us generalize this phenomenon to a case in which one faces � choices, denoted as ��, … , �	. 
In such a case 
 is an � × � matrix, whose elements are �,�. As explained above, the main 
diagonal of the matrix houses the basic independent utilities of the items: 

 

 �� �� … �	 

�� ��    

��  ��   

⋮   ⋱  

�	    �	 

 



414 Computer Science & Information Technology (CS & IT) 

 

We proceed to fill in the rest of the matrix by examining the relations between the different items: 
�,� represents the additional utility of item � when we know �� is present (i.e., when �� is also a 
viable possibility). Note that in most cases, the effect isn’t symmetrical, so generally 
speaking�,� ≠ ��,. We now get this full matrix: 
 

 �� �� … �	 

�� �� ��,�  ��,	 

�� ��,� ��   

⋮   ⋱ ⋮ 

�	 �	,�  … �	 

 

What we want to suggest is that the total utility of an item in some option-space C is the sum of 
the relevant row and columns. And we believe that recommender systems can benefit by so 
calculating an item’s utility: 

 
Where C is the relevant item space; C is a nonempty subset of the set of all possible items. As can 
be seen in the formula above, the utility of an item depends on its context, or on the options 
available besides that item. Understanding the effect of the context over the item’s utility allows 
us to manipulate or predict user preference as a function of the item space C. In the last example, 
we saw that when C = {H,R}, item R was preferred (i.e. U(R) > U(H)), but when we extended C 
and made it {H,R,F}, we got U(R) < U(H). By adding more items X,Y,Z, we can (perhaps) 
change the preference again. 
 
The above equation can be rearranged to get the following result: the utility of an item in context 

is the sum of the basic independent utility of that item and the additional utility caused by the 

presence of all other items in the item space. 

 
Henceforth our goal is to suggest a computational method that for every set of items {��, … , �	}, 
from which a particular choice �� is made, is able to determine the conditions under which that 
choice is reversed (to some different ��) due to an expected reversal in the user’s preferences. 
 
To determine in what context (in what item space) the choice is reversed to �� - i.e. the 
conditions under which the total utility of �� is greater than the total utility of �� − we consider 
the difference � = �� − ��.  
 
Because choice �� is the choice made at the outset, we assume that its utility is greater than ��’s 
and so  � < 0. The method we propose tries to reverse the choice by creating conditions within 
which �� is of greater value. Hence the method tries to maximize �, or at least make it positive. 
 
The method enables establishing how any other �� affects both ��and ��. As a rule, if �� 
affects �� more positively than it affects ��, i.e. if ��� > ���  or if it has a positive d: �� =

��� − ��� > 0, then adding �� to our choice space will increase the total utility of �� relative 
to ��. By gathering all such ��’s we reach the maximal difference between �� and ��.  



Computer Science & Information Technology (CS & IT)                                 415 

 

However, this does not yet assure us that �� will be the selected item. Two additional cases need 
to be considered for the system to be able to predict the user’s preference when other items are at 
hand: 
 

1. Even with all such ��’s, the total utility of �� might still be lower than ��’s. Relating to 
the last example, if the music festival (F) is not my taste, it may add only 3 to C’s utility, 
and then item R (at 10) is still preferred over item H (at 8). 
 

 H R F Σ 

H 5 0 3 8 
R 0 10 0 10 
F 0 0 7 7 

 
2. Every such �� affects not only ��and ��, but other ��’s too. So it is possible that after 

taking all such ��’s, the total utility of �� will indeed surpass ��’s, but the total utility of 
some other item �� will be even higher. Following the last example, the idea of going to a 
music festival in a foreign land may sound so attractive to you, that you may prefer it 
over anything else. 

 H R F Σ 

H 5 0 15 20 
R 0 10 0 10 
F 0 0 30 30 

 
3. If we are looking at larger initial sets and we aim to reverse the choice to specific items in 

those sets then we may end up with a third item being chosen: for example, if the initial 
item space was {X,Y,Z}, out of which X was chosen, and in order to change the 
preference to Y in that set we added T,U,V, we might reach a situation in which the 
choice in {X,Y,Z,T,U,V} is Z. 
 

Hence by adding or subtracting items in the item space a user may proceed to take one of a 
number of consequent actions:  
 

a) Sticking with the previous choice;  
 

b) Reversing to a previously available (but not chosen) option (the one we aimed to 
reverse the choice to);  
 

c) Choosing one of the new options;  
 

d) Reversing the preference such that the option that is chosen is another, different 
option. 
 

We can now ask several questions about the collection of external items that satisfy the ‘positive 
d’ condition (by “external items” we mean items that are part of the set of all possible items, but 
currently not in the presented item space). As a reminder, element m is said to meet the ‘positive 
d’ condition if �� = ��� − ��� > 0, i.e. if it adds more value to the kth �� item than it adds to 
the first item ��. 
 
a. Which external items will give the greatest difference between the two items (the currently 

chosen option and the one we wish to reverse the option to)? i.e. what options will make me 
prefer the second item by the largest “gap”? The answer appears to be that all of the items 



416 Computer Science & Information Technology (CS & IT) 

 

that have a positive d – every one of them strengthens the utility of the kth option with respect 
to the first item, so adding them all up will give the greatest difference. 
 

b. What is the set of basic sufficient combinations of choices (choice spaces) that span the 
remaining item spaces? Evidently if a certain set of items is sufficient to tip the scales, then 
any additional item with a positive � will result in reversing the choice (making the 
difference even greater). Hence, for the collection of all item spaces that give us a total 
positive �, we may be interested in finding the minimal set of item spaces that spans all other 
combinations. This set shall be referred to as a “base” to the collection of all combinations 
that tip the scales. In other words, a set B will be a base if every item space in which the 
choice is reversed contains an element (i.e. a choice set) of B. 
 

c. What external items will give the minimal yet positive difference? i.e. what items will be 
sufficient to change one’s chosen item (to tip the scales). It should be made clear that the 
answer to this question is a member of a “base” of the collection of all preference-reversing 
combinations of items, as it is defined in answer to the previous question. 
 

5. A NOTE ABOUT ADDITIVITY 
 
In the system we proposed we assumed that utilities are additive. As a reminder, in order to get 
the total utility of an item in a choice space, our model sums the initial utility of the item and the 
additional utilities that it receives from the other items in the space. This method is distinct from 
other methods such as for instance combining utilities in non-additive ways. 
 
As far as computation time and complexity are concerned, assuming that utility is additive has 
significant implications. Without this assumption, each and every set of items must be checked 
independently, since we cannot assume any connection between different item spaces; without 
assuming additivity, knowing the user chose X out of {X,Y,Z} tells us nothing about the choice 
set {X,Y,Z,T}. Under the linear assumption, it is sufficient to know the independent effect every 
item has on any other item, regardless of the current space; in this case it is sufficient to know the 
entries of the matrix. Hence in a given space, we sum these pairwise effects to get the total effect. 
Because we assume linearity, we can add up independent partial values to get the value of the 
whole. If we do not assume additivity, we cannot infer any information about the whole space, 
even when we have full information about its subsets. 
 
What this means for the model is that with the additivity assumption, we can reduce the amount 
of item spaces (i.e. subsets of the collection of all items) to be checked from all possible subsets 
(the number of subsets of a set with n elements is 2	)3, to the number of elements in the matrix 
(��). This reduction, from exponential runtime to polynomial, is extremely significant, since 
exponent grows much faster than any polynomial, and so the computation time of the non-
additive method will grow rapidly, and will be impractical for even relatively small values of n. 
Hence because we assume additivity we assume that the additional gain of a set equals the sum of 
the gain of the individual elements. We therefore ignore any internal relations within the external 
group that may affect the total gain on a certain item. By considering every subset (2	) we take 
these internal relations within the external group into consideration. The effect could indeed be 
zero; in such a case the two methods will give similar results. But if the effect is nonzero, the "full 
method" (exponential runtime) is more accurate. For example, the utility of a hamburger with a 
good bun and quality beef exceeds the arithmetic sum of the utilities of a hamburger with a good 
bun and a hamburger with quality beef. That is, it could be that one quality  � adds some utility 

                                                
3 For example, if n=3 and the total option space is {X,Y,Z}, we have 8 subsets, or partial option spaces: {}, 
{X}, {Y}, {Z}, {X,Y}, {Y,Z}, {X,Z}, {X,Y,Z}. 



Computer Science & Information Technology (CS & IT)                                 417 

 

!� to an item ", and a different quality  � adds !� to ", yet there is something (an internal 
relation) in the combination of the two qualities { �,  �} that gives " a utility greater than  � +  �. 
The “full method” will capture this; the method proposed here will not. Nonetheless, our system 
assumes additivity because of its relative simplicity and because the amount of data to be 
considered under the additivity assumption is significantly smaller, and hence the amount of data 
to be collected is also much smaller, which means much less for the system to learn. 

 

6. LEARNING CONDITIONAL UTILITIES 
 
The system learns the values of the conditional utilities of items (i.e. the entries of the matrix A) 
by monitoring users’ selections in various item spaces. Every selection that a user makes of an 
item from an item space is translated to an inequality with A’s entries, and using many such 
inequalities, a prediction for the exact values of the matrix may be made. Every selection made in 
an option space gives N inequalities (N being the number of options in the option space). Large 
amounts of data give us large amounts of inequalities. Every such inequality poses a constraint; 
by considering all such constraints, the region (in the n^2 space) in which the actual Matrix’s 
entries are to be found is narrowed down. With enough constraints it is therefore possible to give 
good estimates for the matrix entries. 
 
For instance, if when being presented options 1 and 2 the user chooses 1, then we may assume 
that �$��% > �$��%, i.e. �� + ��,� > �� + ��,�. However, if when option 3 is also present the 
user chooses 2, that means that �� + ��,� + ��,& < �� + ��,� + �&,�. Every such inequality 
defines a region in an ��-dimensional world (a dimension for every entry in the matrix). By 
considering many such regions, we can narrow down the options for every entry, and by that get a 
good estimation for their exact numerical values. 
 
Several methods may be employed to improve this learning process: 
 

• Since we do not consider the exact numerical utility, but just compare different utilities, 
we may normalize all values, such that, for example, �� = 1 (otherwise, we can multiply 
the whole matrix by a constant to get that, and the recommendation results will be 
identical. What we mean here is that it doesn’t matter if A = [1 2; 3 4] or A = [2 4; 6 8]; 
all that matters are the proportions. If with the first matrix we arrived at utility 8, the 
second matrix will give utility 16, and so on, i.e. it’s all monotonous (if X > Y with 
matrix A, this inequality will remain true if we use 2A or 6A). So we can divide all 
elements of the matrix by a constant and remain with the same properties, so we can 
assume U1 = a11 = 1 (otherwise, if a11 = 8, we’ll just divide it all by a factor of 8.)). 
 

• If the system records many selections made in the same option space, the system may use 
that information in order to estimate the “gap” between options. For instance, if when 
given A and B the user chose A 97% of the time, then the gap may be big, but if the user 
chose A only 51% of the time, then the total utilities of A and B (in that context) are 
identical, or close to identical. This replaces the inequality with an equality, which is far 
better computationally, as it reduces the dimension of the problem by one. 
 

• As explained before, the values on A’s main diagonal �� = ��,� represent the utility the 
option has in and of itself. Therefore, after a selection has been made, the system may ask 
to rate the selection in a context free environment, in order to get an estimated value of 
��, or at least an estimation for the effect cause by the context. For example, in book 
recommendations, out of three books A, B, and C, book B seems very appealing, so you 
choose to read it and discover that it is in fact boring. You may feel cheated; in its 



418 Computer Science & Information Technology (CS & IT) 

 

context, the book seemed interesting, however when it was context-free, it was boring. 
That means that the presence of books A and C had a positive effect on the contextual 
(total) utility of book B. 

 

7. CONCLUSION 

 
We have proposed a recommender system that is sensitive to preference changes that result from 
dependencies between items or options in choice sets. The type of cases we have attended to are 
those in which choice transitivity is violated due to preference-sensitive information conferred by 
a new option (or options) in the option space. We have proposed a system that provides a 
framework that better reflects the way people do in fact behave - because seemingly independent 
items can impose meaning and can provide information that bears on other, seemingly 
independent and unrelated items. Consequently we believe that any system that possesses 
information relating to when and under what conditions preferences and choices will be reversed 
will be more intelligent and useful than a system that only operates according to consistency 
considerations by assuming transitivity of choice.  

 
REFERENCES 
 
[1] Adomavicius, G., and A. Tuzhilin. 2005. “Toward the Next Generation of Recommender Systems: a 

Survey of the State-of-the-art and Possible Extensions.” IEEE Transactions on Knowledge and Data 
Engineering 17 (6): 734–749.  

[2] Adomavicius, Gediminas, and Alexander Tuzhilin. 2011. “Context-Aware Recommender Systems.” 
In Recommender Systems Handbook, edited by Francesco Ricci, Lior Rokach, Bracha Shapira, and 
Paul B. Kantor, 217–253. Boston, MA: Springer US.  

[3] Ariely, Dan. 2009. Predictably Irrational, Revised and Expanded Edition: The Hidden Forces That 
Shape Our Decisions. Rev Exp. Harper. 

[4] Brafman, Ronen, and Carmel Domshlak. 2009. “Preference Handling - An Introductory Tutorial.” AI 
Magazine 30 (1) (January 18): 58.  

[5] Brun, Armelle, Ahmad Hamad, Olivier Buffet, and Anne Boyer. 2010. “Towards Preference 
Relations in Recommender Systems.” In In Proc. of the ECML/PKDD Workshop on Preference 
Learning. 

[6] Celma, Òscar, and Perfecto Herrera. 2008. “A New Approach to Evaluating Novel 
Recommendations.” In , 179. ACM Press.  

[7] Cramer, Henriette, Vanessa Evers, Satyan Ramlal, Maarten Someren, Lloyd Rutledge, Natalia Stash, 
Lora Aroyo, and Bob Wielinga. 2008. “The Effects of Transparency on Trust in and Acceptance of a 
Content-based Art Recommender.” User Modeling and User-Adapted Interaction 18 (5) (August 20): 
455–496.  

[8] Herlocker, Jonathan L., Joseph A. Konstan, Loren G. Terveen, and John T. Riedl. 2004. “Evaluating 
Collaborative Filtering Recommender Systems.” ACM Transactions on Information Systems 22 (1) 
(January 1): 5–53.  

[9] Hsee, Christopher K. 2012. “The Evaluability Hypothesis: An Explanation for Preference Reversals 
Between Joint and Separate Evaluations of Alternatives.” SSRN eLibrary. Accessed April 3.  

[10] Kahneman, Daniel, and Amos Tversky. 1979. “Prospect Theory: An Analysis of Decision Under 
Risk.” Econometrica 47 (2) (March): 263. 

[11] Kokinov, Boicho Nikolov. 1994. “The Context-Sensitive Cognitive Architecture DUAL.” In 
Proceedings of the Sixteenth Annual Conference of the Cognitive Science Society. 

[12] Kokinov, Boicho, Penka Petkova, and Georgi Petkov. 2004. “Does Irrelevant Information Play a Role 
in Judgment.” In In: Proceedings of the 26th Annual Conference of the Cognitive Science Society, 
720–725. 

[13] Koren, Y., R. Bell, and C. Volinsky. 2009. “Matrix Factorization Techniques for Recommender 
Systems.” Computer 42 (8): 30–37.  

[14] Kriesler, Kobi, and Shmuel Nitzan. 2007. “Is Context-Based Choice Due to Context-Dependent 
Preferences?” Theory and Decision 64 (1) (June 20): 65–80.  



Computer Science & Information Technology (CS & IT)                                 419 

 

[15] Payne, John W., James R. Bettman, and Eric J. Johnson. 1993. The Adaptive Decision Maker. 
Cambridge University Press. 

[16] Ricci, Francesco. 2011. Recommender systems handbook. New York: Springer. 
[17] Samuelson, P. A. 1938. “A Note on the Pure Theory of Consumer’s Behaviour.” Economica 5 (17). 

New Series (February 1): 61–71.  
[18] Sen, Amartya. 1993. “Internal Consistency of Choice.” Econometrica 61 (3) (May 1): 495–521.  
[19] Shani, Guy, and Asela Gunawardana. 2011. “Evaluating Recommendation Systems.” In 

Recommender Systems Handbook, edited by Francesco Ricci, Lior Rokach, Bracha  
[20] Shapira, and Paul B. Kantor, 257–297. Boston, MA: Springer US.  
[21] Tversky, Amos, and Itamar Simonson. 1993. “Context-Dependent Preferences.” Management Science 

39 (10) (October 1): 1179–1189.  
[22] Victor Codin, A, and Luigi Ceccaron. 2011. “Extending Recommendation Systems with Semantics 

and Context-Awareness: Pre-Filtering Algorithms.” In. 
http://www.lsi.upc.edu/~vcodina/papers/ccia11.pdf. 

 
 

AUTHORS 

 

Amir Konigsberg 
 
Amir a senior scientist at General Motors Research and Development Labs, where he 
works on advanced technologies in the field of artificial intelligence and human machine 
interaction. Amir gained his PhD from the Center for the Study of Rationality and 
Interactive Decision Theory at the Hebrew University in Jerusalem and the Psychology 
Department at Princeton University.  
 
Ron Asherov 
 
Ron is an intern researcher at the General Motors Advanced Technical Centre in Israel. Ron completed a 
degree in Mathematics and Computer Science at the Open University of Israel. 


