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ABSTRACT 

 
Integrated circuits (a.k.a chips or IC’s) are some of the most complex devices manufactured. 

Making chips is a complex process requiring hundreds of precisely controlled steps such as film 

deposition, etching and patterning of various materials until the final device structure is 

realized. Also, each chip goes through a huge number of complicated tests and inspection steps 

to ensure quality. In IC manufacturing, yield is defined as the percentage of chips in a finished 

wafer that pass all tests and function properly. Yield improvement translates directly into 

increased revenues. A humongous amount of data (Terabytes per day) is logged from the 

equipment in the fab. This paper describes some applications of advanced data mining 

techniques used by chip makers and equipment suppliers in order to improve yield, match 

equipment, increase equipment output and also to predict the change in equipment performance 

before and after maintenance activities. 
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1. INTRODUCTION 

The process of creating integrated circuits (IC’s) is called wafer fabrication. It is a sequence of 

chemical and photographic steps (like lithography, etching, deposition, oxidation and diffusion) 

in which the circuits are constructed on a semiconductor material typically called a wafer. In 

order to perform Automatic Process Control and offline data mining, a large amount of data is 

collected, stored and retrieved from the equipment in which the said processes are being carried 

out. In IC manufacturing, yield is defined as the percentage of chips in a finished wafer that pass 

all tests and function properly. Due to the large number of processing steps and the complex 

interactions between steps, yield is a complex function to analyse. Data mining methods for yield 

analysis are now starting to be developed and deployed.  Table 1 depicts the yield values for 2 

different process technologies with a total number of steps (N) equal to 200 and 450. As can be 

seen, total perfection at each process step is absolutely necessary for achieving higher yields.  
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Table 1.  Yield for two different process technologies. 

x Y for N = 450 Y for N = 200 

95% 9.45 x 10–9 % 3.51 x 10–3 % 

99% 1.09 % 13.4 % 

99.9% 63.7 % 81.9 % 

 

Where 

  

x = Success rate of each process step and  

Y= Yield of working devices (i.e. (x/100) N %)  

 

2. DATA MINING METHODOLOGY 

 
In the proposed data mining methodology a holistic approach is being followed by the 

FabVantage group at Applied Materials. This methodology goes beyond traditional statistical 

process control methods which primarily emphasize process monitoring for change-point 

detection; instead it focuses more on yield driven control limits and strategies.  

 

2.1. Data sources and typical volumes 

 
Different types of data that are generated and used for various purposes in an IC fabrication unit 

are event logs data, unit processes data, integration data, inspection & review data, metrology 

data and parametric and final yield data. The size of each type of data varies from a few 

gigabytes/day to a few terabytes/day depending on production capacities. “Unit processes” 

constitute 30 to 40% of total process steps involved in making an IC. All the data mining 

techniques described in later sections were mostly used to analyse this “Unit Processes” data. The 

Equipment Data Acquisition is typically performed by one or more factory data gathering or 

analysis software applications (clients) using different standards like SECS (Semiconductor 

Equipment Communications Standard), GEM (Generic Equipment Model) or Interface A. One 

example of this type of client is the Applied Materials E3. E3 is the only equipment engineering 

system solution that combines statistical process control (SPC), fault detection and classification 

(FDC), equipment performance tracking (EPT), advanced data mining (ADM), run-to-run control 

(R2R) and tool automation on a unified platform. In addition to this most of the Equipment 

Controller Software provides the option to export/store the data in various file formats. The 

generic input and output model in data mining for IC fabs is shown in Figure 1. 

 

  
 

Figure 1. Inputs and outputs of FDC algorithms in IC fabs. 
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2.2. Data quality check 

 
The unit process data (mentioned above) typically called equipment (tool) sensor data consists of 

all the physical variables like temperature, flow, pressure, acceleration, torque, angle and the like. 

This data is recorded during each wafer run. A data quality check algorithm verifies this data for 

any missing sensors from the defined data collection plan, missing data or stagnant data and also 

detects any non-optimal sampling rate in any sensor.  

 

2.3. Knowledge Base and sensor priority 

 
Knowledge base is the repository of methodologies, tool documentation, Best Known Methods 

(BKMs), lessons learned, sensor data collection plans, previously used models and the like. A key 

part of the knowledge base is sensor prioritization. Each sensor collected from a tool is assigned a 

priority of P1 through P4 to denote its impact on yield. P1 sensors are known to impact yield if 

they go out of range, while P4 sensors are known to have no yield impact if they go out of range. 

P2 and P3 sensors are suspected to impact or not impact yield, respectively, if they go out of 

range. Sensor priorities are used to reduce the burden of analysing 1000’s of sensors in the initial 

stages of data mining. Table 2 shows an example of sensor priorities.  

 
Table 2.  Example Priority Sensor list for one specific tool/process type. 

 

Sensor Name Sensor Units Sensor Priority Sampling Frequency(Hz) 

Temperature degC P1 1 

H2 Gas Flow sccm P1 1 

RF Forward Power Watts P1 5 

Chamber Process Pressure mtorr P1 1 

Foreline Pressure mtorr P2 1 

E-Chuck Voltage V P2 1 

Gas line pressure psi P3 0.5 

Wafer Counter None P4 1 sample per wafer run 

 

Where  

 

P1: Confirmed/known to have caused a yield problem,  

P2: Science suggests there will be a problem but no experience from data,  

P3: No knowledge whether or not there will be a problem,  

P4: Known to be a non-issue.   

 

2.4. Tools and modelling methods 

 
A combination of data mining software including Applied Materials E3, R [1], JMP [2], and 

UNIX scripting were used to perform the statistical modelling, associated data preparation and 

reporting. A variety of modelling techniques are used. These include Rules Ensemble [3], 

Random Forest [4], Support Vector Machines (SVM), Partial Least Squares (PLS) Analysis and 

Discriminant Analysis in supervised learning and clustering analysis or Principal Component 

Analysis in unsupervised modelling. 
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3. ADVANCED DATA MINING APPROACH 

 
3.1. Data visualization 

 
Data visualization is the first and foremost analysis task that helps to identify obvious 

abnormalities while performing wafer to wafer comparison, lot to lot comparison or recipe to 

recipe comparison in the tool sensors data. It also helps to rebuild the recipe to quickly compare 

the recipe under investigation with the BKM recipe. The differences can be summarized and can 

be used at a later stage while running any classification/regression models as sometimes the 

differences are deliberately set. Table 3 shows one example recipe wherein the differences from 

BKM recipe are highlighted in italics.  

 
Table 3. Comparison of a recipe with BKM. 

 

Attribute/Step Number 1 2 4 5 

Step Name Stabilization Deposition Purge Pump 

Step Time (Sec) 2 30 5 10 

Temperature (deg C) 200 250  

(BKM is 270) 

190 180 

Pressure (Torr) 5 5 2 1 

Flow (sccm) 200 200  

(BKM is 250) 

50 10 

 

Customized plotting like shown in Figure 2 was performed in R in order to define the Univariate 

Analysis (UVA) models using appropriate statistics in different process regions like 

maximum/slope in transient regions and similarly mean and standard deviation in stable regions. 

 

 

 
 

Figure 2. Trace plot for pressure sensor from a single wafer run. 

 

 

 

Y-axis: Pressure ( in Torr) 
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3.2. Modelling 

 
Once appropriate UVA models are identified and summary statistics calculated, the first pass of 

modelling results are studied. This typically involves filtering out redundant variables to reduce 

the dimensions to a more manageable subset. Depending on the problem being analysed, a variety 

of supervised and unsupervised learning algorithms are available for use. Supervised algorithms, 

like some regression or classification techniques, help establish relationships between a 

dependent variable (e.g. metal film thickness) and a set of independent variables (e.g. gas flows); 

unsupervised methods like Principle Components Analysis (PCA) or clustering help highlight 

interaction between different variables (sensors).  

 

The first pass modelling results are followed by a number of iterations to successively and 

systematically remove noise and unwanted variables to improve model quality. Next, a model 

quality report is generated with the top ranked variables and their respective contributions (Figure 

3). A glance at the plot of predicted values vs. actual values (Figure 4) provides a good measure 

of the model quality.  
 

More often, a combination of two algorithms is significantly more effective than using any one 

algorithm. For example, consider fitting a prediction model for transistor current (Idrive) after an 

etching process. It was found that Rules Ensemble alone performed very poorly in terms of the 

predictive ability of the model. Likewise, an algorithm like Random Forest, which builds decision 

trees based on splitting sensor values, is prone to overfitting. However, a combination of the two 

methods proved to be significantly more powerful – a Rules Ensemble algorithm was used to 

reduce the number of variables (sensors), while Random Forest was then used to build a model 

with high predictive power and good generalizability. 
 

 
 

Figure 3: Contribution Pareto of top-ranked variables. 

 

 
 

Figure 4: Plot of predicted value of dependent variable (x) vs. actual value of dependent variable (y). 

 

Yield driven control limits were set at the end of the data mining phase wherein the independent 

variable is allowed to vary in a specific range based on its correlation with the yield numbers as 
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depicted in Figure 5. Idrive is the dependent variable and the FDC (Fault Detection and 

Classification) sensor is the independent variable like gas flow that was found to be highly 

correlated with the dependent variable. The vertical lines on the right side of the chart indicate the 

independent variable control limits needed to meet the dependent variable specification limits as 

shown in the left side of the chart. 

 

 
 

Figure 5. Left: Actual (blue) vs. predicted (red) dependent variable and Right: Scatter plot of independent 

variable vs. dependent variable. 

 

Figure 6 is the visual representation of the said data mining methodology. 
 

 
 

Fig 6. Advanced data mining approach. 

 

4. RESULTS AND DISCUSSION 

 
Some of the high level data mining problem statements that we address are listed below: 

 

• Transistor drive current not matched post-etch process.  

• Thickness uniformity of hard mask layers are not in specification limits of <1.5%. 

• Improving the temperature matching on Epi chambers from ±10ºC to ≤5ºC.  

• Identifying key sensors controlling transistor drive current from Epi process.  

• Determining the root cause of arc and deep scratches at Copper Chemical and Mechanical 

Planarization process and reducing them. 

• Reducing particle count on various key device layers. 
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Multivariate regression was performed using Random Forest and Rules Ensemble models 

separately in R platform in order to find the key sensors controlling the transistor drive current 

variation across multiple chambers from an etch process. The model prediction power (based on 

R-square value) was 0.95. From the drill down and physical verification of the model the root 

cause for transistor drive current variation was identified. Subsequent recipe optimization resulted 

in reducing the standard deviation of the process by 30% as depicted in Figure 7. 

 

 
 

Figure 7. Chamber matching performance matching after changes implemented. 

 

In another case multivariate regression analysis found the root cause sensors affecting the 

uniformity mismatch of dielectric layers wherein the slope of liquid gas flow sensor across 6 

chambers were found to be the variable of highest correlation to the dependent variable (i.e., 

uniformity). Figure 8 shows the improvement in non-uniformity values after the changes were 

implemented based on the data mining results on data from 300 wafers. 

 

 
 

Figure 8. Dielectric film non-uniformity improvement in 6 chambers. 

 

The chart below (Figure 9) shows the pre- and post-implementation results obtained after 

implementing changes based on the FabVantage data mining analysis. Analysis of gate critical 

dimension (CD) data over a span of six months revealed that a bad RF generator was causing a 

bias impedance mismatch (resistance and reactance), which was in turn driving the variation in 

gate CD. 
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Figure 9. Identification of root cause driving variation in gate CD across 2 etch chambers.  

 

 

5. CONCLUSIONS 

 
Advanced data mining techniques are deployed in order to achieve higher yields in IC 

manufacturing units. Different statistical modelling techniques were used to study the impact of 

independent physical variables on the chamber matching, fault detection and to set the new 

control limits in order to maintain the yield at desired levels. Similar methodology can be used in 

any semiconductor, electronic, and photovoltaic manufacturing.  
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