

David C. Wyld et al. (Eds) : COSIT, DMIN, SIGL, CYBI, NMCT, AIAPP - 2014

pp. 197–204, 2014. © CS & IT-CSCP 2014 DOI : 10.5121/csit.2014.4919

A NEW APPROACH OF CONCURRENT

CALL HANDLING PROCEDURE IN MOBILE

NETWORKS

P. K. Guha Thakurta

1
Misha hungyo

2
Jahnavi Katikitala

3
and

 Darakshan Anwar
4

1,2,3,4

Department of Computer Science and Engineering,

National Institute of Technology, Durgapur, WestBengal
1parag.nitdgp@gmail.com,

2mkonghar@gmail.com,
3
jahnavi6392@gmail.com,

4dara.singh09876@gmail.com

ABSTRACT

A new approach for handling concurrent call requests by a number of senders in mobile cellular

network is proposed in this paper. The concurrent access is resolved with the introduction of

semaphore concept. The several factors are identified to establish a priority factor (PF) for the

sender node. Based on this PF value, the right sender is selected by the receiver in case of

concurrent requests. This selection algorithm executes in linear time. The effectiveness of the

proposed model is analyzed with the introduction of progress graph.

KEYWORDS

Concurrent call requests, semaphore, mobile networks, progress graph

1. INTRODUCTION

In mobile cellular networks, mobile nodes communicate with each other using multi-hop links.

This structure is stationary because there are base stations (nodes) in every cell. Each node in the

network has call forwarding capability to other nodes [5]. Till date, various routing strategies

have been designed to address the problem of finding routing path with efficient congestion

control technique. Simultaneously, it needs a more efficient methodology to increase throughput

and reduce network latency at the same time. To provide the efficient routing strategy, the nodes

are grouped into manageable clusters based on different parameters and the Quality of Service

(QoS) availability of each node. Here, the cluster heads (CHs) play the role of local coordinators

and they maintain the QoS values of all cluster members. Using this information, a CH can

forward the calls to the corresponding destinations [4]. Thus, the network design problem

associated with this is to find a least cost or a maximum revenue network, reducing the redundant

admitted calls.

Once the clusters are formed and maintained, these can be used to handle incoming call requests.

When a mobile node sends a call request, the call is forwarded through the path as:

CS→BSS→LeaderS→LeaderR→ BSR→CR [1], where CS , BSS and LeaderS denote the sender’s

node, its corresponding BS and the CH of that cluster respectively. Similar notations are used for

198 Computer Science & Information Technology (CS & IT)

the receiver part, i.e., CR, BSR and LeaderR respectively. The concurrent call handling procedure

for multiple numbers of sender nodes under such scenario is not discussed. Moreover, the number

of unsuccessful attempts by a sender node is not taken into consideration in this procedure and so,

no priority is assigned on this basis. This may lead to indefinite waiting time for such node.

In this paper, a new approach for handling concurrent call requests by the multiple numbers of

sender nodes in mobile cellular networks is proposed. The concurrent access is resolved with the

introduction of semaphore [2] concept. The priority factor (PF) is calculated by the receiver in

case of multiple numbers of senders. Here, PF is dependent on the available bandwidth (BW) to

handle call request, timestamp (), and repeated request factor (RRF) of the sender node. With

the help of this RRF value, the number of unsuccessful attempts by a sender node is defined.

Thus the node with the highest PF is selected as the right one. In order to avoid indefinite waiting

time for the selection by receiver node, ts and RRF values of the specific sender whose requests

had been processed already, are set to zero. With the introduction of PF, the proposed model in

this work executes in linear time. In addition, the effectiveness of the proposed model is analyzed

using progress graph.

The remainder of the paper is organized as follows. In section II, the proposed model is described.

Next, the advantage of this work is concluded in section III.

2. PROPOSED MODEL

The model proposed in this work obeys the following system model.

2.1. System Model and assumptions

Suppose, there are three clusters of nodes shown in Fig. 1. Two of them represent the sender’s

clusters among three, whereas the remaining one denotes the receiver’s cluster. The sender nodes

and are trying concurrently to connect with the receiver through their respective CHs.

Fig. 1: Concurrent call requests from multiple sender’s to a receiver

Now, the receiver node has a responsibility to select one of them having the highest priority factor

(PF). This PF is dependent on three following factors.

(a) Bandwidth (BW): It is the amount of available BW to handle the call request. Generally, it

depends on the underlying hardware architecture and the network operating system used

by the sender node.

(b) Timestamp: The of any call request is determined by the call submission time in the

system and it is measured as the time recorded by the system clock. The request with

least timestamp would become as the oldest call.

Computer Science & Information Technology (CS & IT) 199

(c) Repeated Request Factor (RRF): It is defined as the number of unsuccessful connection

establishment by the sender node. Initially, it is set to 0 and is incremented by 1 after each

unsuccessful attempt. Whenever the receiver selects the specific sender node for the

connection establishment, then RRF is again set as 0 for that sender. The node having

greater RRF value is considered as higher priority node. As available bandwidth limits

the number of call requests that can be processed, so PF is directly proportional to

bandwidth BW. With the help of RRF factor, a preference is given to a sender node which

is calling repeatedly. So, a node with greater RRF value has a greater PF value. Also,

preference must be given to an older request. With the help of timestamp, we select the

oldest request. So, PF is inversely proportional to timestamp. Thus the terminology PF is

defined as the ratio of the product of BW and RRF to It is expressed as

2.2. Proposed Functional Model

The model proposed in this paper considers the situation described in Fig. 1. The sender sets

its semaphores to busy state just before sending the requests. Then it checks the receiver’s status

whether it is busy or idle. If the receiver is busy, the leader of records and corresponding

 of the sender node and subsequently store them into a generic linked list.

The linked lists are represented with following fields – (a) for the leader of the receiver node:

sender’s id, the PF value and address to the next node, (b) for the leader of the sender node:

sender’s id, RRF of value and address to the next node. The linked representations are

shown in Fig. 2 for Fig. 1.

Fig. 2: Initial Linked Representation: (a) Linked List for

(b) Linked List for (c) Linked List for

the semaphore of indicates idle, the calculates the PF of the senders that has been

sending call requests and stores them into its own linked list. The receiver node then selects the

sender that has maximum PF from the linked list and grants its requests. After the call has been

granted, the and the of are set again to initial values. This goes on dynamically for

every node and the procedure is described by the following algorithm.

2.3. Algorithm:

Input: initial values: .

Output:

200 Computer Science & Information Technology (CS & IT)

Declaration: R=Receiver; Sender ; Semaphore of

=Semaphore of R; = total timestamp; = new Timestamp; = previous

timestamp; =Leader of the receiver; data storage=generic linked list;

Time Complexity: The algorithm executes in time for both functions call () and receive

().

Concurrent_Call_Request()

{

 Call();

 Receive();

 =0; /*setting the values to zero after the call has been granted*/

 }

 Call()

 {

 =busy; /*setting its own semaphore to "busy" state before trying to connect to the

receiver*/

While(==busy) /*while the semaphore of the 'R' is in "busy" state the leader of Si

increements the ts and RRF values accordingly*/

 {

 Record these values into the respective leader’s data storage;

 }

 }

Receive()

 {

 if(count()>1) /* for multiple number of senders*/

 {

 While (i<=n) /*receive () executes until the computation of all PF for ‘n’ senders*/

 {

 calculates the respective PF of the ;

 Each PF is then stored into the data storage of ;

 }

 calculate from data storage;

 flag=TRUE;

 }

Computer Science & Information Technology (CS & IT) 201

2.4. Example

Initially the random available BW for call handling by and are assumed as 12 mbps and 10

mbps respectively. Similarly, the initial timestamp values for these nodes are randomly

considered as 10 and 20 respectively.

STEP 1: Leaders are recording the respective values into its data storage as shown in Fig. 3.

Fig. 3: After step 1: (a) Data Structure of after entering the values; (b) Data structure of after

entering the values

STEP 2: calculates PF of each and stores them into its corresponding data storage as shown

in Fig. 4.

Fig. 4: After step 2: (a) Linked List for (b) Linked List for (c) Linked List for

STEP 3: Leader of Receiver calculates the maximum of the PF from its data storage and then

forwards the call to the respective receiver. Here, PF (Hence ’s request is

granted first.

STEP 4: Set the values of of to initial value as 0 and it is shown in Fig. 5.

Fig. 5: After step 4: (a) Linked List for (b) Linked List for after its call has been accepted (c)

Linked List for

202 Computer Science & Information Technology (CS & IT)

2.5. Correctness

To prove the correctness of the proposed algorithm, a concept of progress graph [3] is used. The

Progress graphs have intrinsic properties that are formalized by following postulates as given

below.

P1: The concurrency state of a system defines a unique point in a progress graph.

P2: A transition from a state represented by a point p1 to a state represented by a point p2 is a ray

rooted at p1 with direction p1 p2.

P3: A point is feasible if and only if it is not within a forbidden region. The forbidden region is

the region that violates the constraints on the relative progress of the processes imposed by the

signal events in progress graph.

P4: The time between two synchronizing events within each process is greater than zero.

Now, in our work, we summarize the events of the senders (and) as follows in table 1:

TABLE 1: Events of the senders

P(Availr)=waiting for

Availr ;

V(Si)=Signal Si;

V(Availr)=Signal Availr;

V(Si)= Signal Si ;

P(Availr)=waiting for

Availr ;

V(Si)=Signal Si;

V(Availr)=Signal Availr;

V(Si)= Signal Si ;

Following these events for and , the corresponding progress graph is shown in Fig. 6.

Therefore, it is clearly seen that there is neither forbidden state, nor unsafe state as there is no

starvation and deadlock. Thus the concurrency among the call requests is preserved.

Fig. 6: Progress graphs

Computer Science & Information Technology (CS & IT) 203

2.6. Discussion

Presently, while handling concurrent calls no preference is given to a sender node that is

repeatedly trying to connect to a particular node. So, this may lead to indefinite waiting time for

such node. For illustration, considering a sender node A sending a call request to a receiver node

R repeatedly for (n-1) times and its request has not been processed yet. Now, sender node A sends

the request for the nth time and concurrently a different node B sends a call request to same

receiver node R for the first time. In such scenario, the system may usually process either of the

requests without giving any preference to sender node A.

In our proposed approach, this indefinite waiting time can be handled by assigning a RPF factor

to each node of the network. This RPF factor denotes the unsuccessful attempt of a sender node.

Initially, it is set to 0 and incremented by 1 after each unsuccessful attempt. So, in the above

scenario, RPF factor for A is n and RPF factor for B is 1.At the receiver node R , sender A is

selected because of its greater RPF value

3. CONCLUSIONS

An efficient approach for concurrent call handling procedure is described in case of cluster based

call scheduling for mobile networks. The semaphore concept is introduced here to resolve this

concurrent issue. To determine the right sender among the alternatives, a priority factor (PF) is

established. The several factors are determined to provide PF for a sender node. Furthermore, the

proposed model executes in linear time. The performance of the model is analyzed with the help

of progress graph. Moreover, we are extending our work with the help of logical clock to provide

a compact and more efficient model for handling such concurrent events.

REFERENCES

[1] P.K.Guha Thakurta, Saikat Basu, Sayan Goswami and Subhansu Bandyopadhyay, “A New Approach

on Cluster based Call Scheduling for Mobile Networks”, Journal of Advances in Information

Technology, vol. 3, no. 3, August 2012.

[2] Silberschatz, Galvin and Gagne, “Operating System Concepts” , 7th Edition, February 8, 2005.

[3] Scott D. Carson and Paul F. Reynolds, Jr., “The Geometry of Semaphore Programs”, ACM

Transactions on Programming Languages and Systems, Vol. 9, No. 1, January 1987, Pages 25-53.

[4] Zhengmin Kong, Liang Zhong, Guangxi Zhu, Li Yu, “A Novel Cluster-Based Routing Protocol and

Cluster Reformation Criteria for Mobile Ad Hoc Networks”, 2010 International Conference on

Computer Application and System Modeling (ICCASM 2010).

[5] P.K.Guha Thakurta, Rajarshi Poddar and Subhansu Bandyopadhyay, “A New Approach on Co-

ordinate based Routing Protocol for Mobile Networks”, IEEE Advanced Computing Conference,

February 2010.

204 Computer Science & Information Technology (CS & IT)

AUTHORS

P. K. Guha Thakurta is an Assistant is an Assistant Professor at National Institute of

Technology, Durgapur for the department Computer Science and Engineering with an

experience greater than eight years. He published 5 International Journal and

11International Conference papers. His area of interest include DBMS, Network,

Algorithm Analysis and Design, Formal language and automata

Jahnavi Katikitala is working as a software engineer at Samsung Research India,

Bangalore. She has pursued her Bachelors of Technology from National Institute of

Technology, urgapur. Her area of interest include Network, Algorithm Analysis and

Design & Operating systems.

Misha Hungyo is pursuing her Masters in Computer Science and Engineering,in Motilal

Nehru National Institute of Technology,Allahabad.She did her Bachelors from National

Institute of Technology,Durgapur.Her area of interests are Computer Networking,

Operating Systems, Data Structures and Algorithms.

Darakshan anwar is pursuing is working as a research engineer at C-DOT Bangalore.She

has pursued her Bachelors of Technology degree from National Institute of

Technology,Durgapur. Her area of interest include Network, Algorithm Analysis and

Design.

