

David C. Wyld et al. (Eds) : CSEN, AISO, NCWC, SIPR - 2015

pp. 01–10, 2015. © CS & IT-CSCP 2015 DOI : 10.5121/csit.2015.51401

FRACTAL ANALYSIS OF GOOD

PROGRAMMING STYLE

Ron Coleman and Pritesh Gandhi

Computer Science Department, Marist College, Poughkeepsie, New York, USA
roncoleman@marist.edu pritesh.gandhi1@marist.edu

ABSTRACT

This paper studies a new, quantitative approach using fractal geometry to analyse basic tenets

of good programming style. Experiments on C source of the GNU/Linux Core Utilities, a

collection of 114 programs or approximately 70,000 lines of code, show systematic changes in

style are correlated with statistically significant changes in fractal dimension (P≤0.0009). The

data further show positive but weak correlation between lines of code and fractal dimension

(r=0.0878). These results suggest the fractal dimension is a reliable metric of changes that

affect good style, the knowledge of which may be useful for maintaining a code base.

KEYWORDS

Good programming style, fractal dimension, GNU/Linux Core Utilities

1. INTRODUCTION

Good programming style is a way of writing source code. Although different style guides have

different conventions, a survey of contemporary texts [1] [2] [3] [4] finds general agreement on

three basic rules: use proper indentation, include documentation, and choose meaningful or

mnemonic names. While style guides stress the importance of good style, especially for

maintenance purposes, “good” is a value word and “style” connotes, among other things, form

and taste. In other words, we propose source has potential elegance as a work of art like a

painting or photograph and indeed, any given programming style, including an indecorous one,

may be readily accessible without an in-depth understanding of how the code works or even what

it does. In this view, source has aesthetic or sensori-emotional qualities.

We are not suggesting aesthetic appeal in code should be an overarching goal of software, only

that it plays a role in crafting and maintaining code as a best practice. Yet aesthetics present

challenges. According to a modernist, Kantian view [5], aesthetics in general and notions of

beauty and matters of taste in particular are thought to be subjective, relative, and presumably

beyond the pale of automation. However, software engineers have sidestepped these dilemmas,

asking not what is beauty in source but rather what is knowable about such beauty (e.g., good

programming style), which can be incorporated in programs like the GNU/Linux command,

indent [6], which beautifies C source by refactoring indentation, comments, and spacing. Tools

like indent are a staple of modern software engineering. Unfortunately, these tools do not

quantify the value of their beautifying regimes, as a consequence developers have had to resort to

2 Computer Science & Information Technology (CS & IT)

anecdotal arguments rather than metrics to reason about aesthetic outcomes, and no research

effort heretofore has investigated the problem or its opportunities.

In this paper, we study a new, quantitative way to analyse basic tenets good programming style

using fractal geometry [7]. Fractals are often associated with beauty in nature and human designs

[8]. Furthermore since fractals are self-similar and scale-invariant, we hypothesized a fractal

approach might be inherently robust for handling distributions of source sizes.

Experiments with the C source code of the GNU/Linux Core Utilities [9], 114 commands of the

Linux shell or about 70,000 lines of code (LOC), show systematic changes in programming style

are correlated with statistically significant changes (P≤0.0002) in fractal dimension [10]. The data

further show that while the baseline sizes of C source files vary widely, there is a positive but

weak correlation with fractal dimension (r=0.0878). These data suggest the fractal dimension is a

reliable metric of changes in source that affect good style, the knowledge of which may be useful

for maintaining a code base.

2. RELATED WORK

Aesthetic value in source is not the same as readability [11] [12], although the two are related.

The latter is more about comprehending code whereas the former, appreciating it, l’art pour l’art.

Beauty in source is also not the same as functional complexity [13]. Complexity relates to design

and efficiency in algorithms and data structures, which may have appeal in a conceptual, though

not necessarily a visual sense, although here again there is overlap. Beautiful Code [14] explores

just this sort of conceptual aesthetic, not only in source but also in debugging and testing which

are not subjects we consider. Gabriel [15] argues against clarity and conceptual beauty as primary

goals of software in favour of what the author calls “habitability.” Yet comfort with the code is

independent of style since programmers might forgo style best practices as long as they can live

with it, whereas our starting point is good style. The fractal dimension has been applied to a wide

range of disciplines, though not software development [16]. Our code depends on Fractop [17], a

Java library originally developed to categorize neural tissue. We have reused this library to

analyze source code. Some researchers have employed the fractal dimension to study paintings of

artists [18]; others working in a similar vein have used the fractal dimension to authenticate

Jackson Pollack’s “action paintings” [19] [20]. Still others have used the fractal dimension to

examine aesthetic appeal in artificially intelligent path finding in videogames [21] [22] [23]. An

investigation of Scala repositories on GitHub.com found sources are organized according to

power-law distributions [24] [25] but that effort did not consider style. Kokol, et al, [26] [27] [28]

reported evidence of fractal structure and long-range correlations in source; however, they were

investigating not style but fine details, character, operator, and string patterns in a small sample

of randomly generated Pascal programs. We study style in a moderate size sample of highly

functional C programs.

3. METHODS

We use a multi-phase operation to process a single source file: 1) beautify or de-beautify the

source style, if necessary; convert the result to an in-memory representation called an artefact; 3)

calculate the fractal dimension of the artefact.

Computer Science & Information Technology (CS & IT) 3

To beautify the source in phase 1, we use a combination of the GNU/Linux indent command and

a kit we developed called Mango [29] (see below). The indent manual page [6] gives input

options for beautifying the source according to four distinct C styles: GNU, K&R (Kernighan and

Ritchie), Berkeley, and Linux (kernel). They affect indentation, spacing, and comments and

differences can be found in the manual page. The command, indent, does not, however, change

mnemonics.

Mango is a kit written in Scala, C, and to drive the experiments, Korn shell scripts. During the

first phase of processing, Mango mostly does the reverse of indent: it “mangles” or de-beautifies

C source and outputs new source as we discuss below.

3.1. Base lining measurements

To get baseline measurements of the source, Mango skips phase 1 and sends the unmodified

source directly to phases 2 and 3 to generate the artefact and calculate the fractal dimension,

respectively.

3.2. De-beautifying source

When de-beautifying source in phase 1, Mango does one of the following: remove indentation,

randomize indentation, remove comments, or make the names of variables, functions, macros,

and labels less mnemonic. To remove indentation, Mango trims each line of spaces. To

randomize the indentation, Mango inserts a random number of spaces to the beginning of the line.

To remove comments, Mango strips the file of both block (/* … */) and line (//) comments.

Finally, to make names less mnemonic, Mango shortens them according to the algorithm below.

3.3. Non-mnemonic algorithm

The algorithm to shorten names requires two passes over the source. During the first pass Mango

filters key words, compiler directives, library references, names with less than a minimum length

(l=3), and names appearing less than a minimum frequency (n=3). For names that get through

these filters, Mango calculates new, non-mnemonic names as follows. If a name has at least one

under bar (“_”), Mango splits the name along the under bar and recombines the first letter of each

subsequent sub-name with the whole first sub-name followed by an under bar. If a name is

uppercase name, Mango uses every other letter to reform the name, effectively, cutting the name

in half. If a name is neither of these, it shortens the name by half. Mango puts the old name and

the new name in a database for lookup and substitution back into the source during the second

pass. The table below gives some examples of how the algorithm works.

Table 1. Example changes by non-mnemonic algorithm

Old name New name

i i

T_FATE_INIT T_FI

NOUPDATE NUDT

linkname link

4 Computer Science & Information Technology (CS & IT)

3.4. Mnemonic algorithm

Mango also has a beautify mode of phase 1 to make names more mnemonic. Mango does not, of

course, know the intention of programmers or semantics of names. However, it can simulate

these by lengthening names. The algorithm to lengthen names is similar to the one to shorten

them. During the first pass Mango collects appropriately filtered candidate names of a maximum

length (l=3) and with a minimum frequency (n=3). Mango makes these names a maximum of

length of four by repeating the letters in the name or adding an under bar after the name. The

table below gives some examples of how the algorithm works.

Table 2. Example changes by the mnemonic algorithm

Old name New name

loop loop

foo foo_

go gogo

i iiii

3.5. Artefact generation

Phase 2 of Mango converts an input source file it to an artefact, which has one of two types of

encodings: literal and block.

With literal encoding, the flat text of the source is written to a buffered image using a graphics

context. The text is Courier New, ten-point, plain style, and black foreground over a white

background with ten-point line height. In this case, the artefact looks identical the flat text except

it’s in bitmap form.

With block encoding, each character in the input is written to the graphics context as “blocks” or

8×10 (pixels) black filled rectangles over a white background with two pixels between each

rectangle. Spaces are 10×10 pixels. A block artifact resembles the source but in digital outline.

Block encoding has two advantages. It makes the artefact more robust, more independent

language. Similarly, it makes the mnemonic and non-mnemonic algorithms more robust. In fact,

for these algorithms with block encoding, only the length of the name is relevant, not the name

itself.

The figure below is an example of a simple C program.

Figure 1. Simple C file which is identical to its literal artefact encoding except in bitmap form

A literal artifact looks identical to the figure above except it is a bitmap.

The figure below shows the same C program as a block artifact.

#include <stdio.h>

int main(int argc, char** argv) {

 printf("Hello, world!");

 return 0;

}

Computer Science & Information Technology (CS & IT)

Figure 2. Same C file as an artefact with block encoding

As the reader can see from the figure above, all the language details have been “bloc

the digital outline persists.

3.6. Fractal dimension calculation

The third and final phase of Mango measures the fractal dimension of the artefact. Mandelbrot [9]

described fractals as geometric objects, which are no

self-similar at different scales. We use the geometric interpretation based on reticular cell

counting or the box counting dimension. We choose this method for two reasons. Firstly, the box

counting dimension is conceptually and computat

provides a tested, high quality implementation.

 Mandelbrot also said fractal objects have fractional dimension,

called the fractional dimension. Mathematically,

where S represents a set of points on a surface (e.g., coastlines, brush strokes, source lines of

code, etc.), ε is the size of the measuring tool or ruler and

objects or subcomponents covered by the measuring tool. For fractal objects, log

greater than log (1/ε) by a fractional amount. If the tool is a uniform grid of square cells, then a

straight line passes through twice as many cells if the

fractal object passes through more than twice as many cells.

The artefact is S from Equation 1. Mango uses the Fractop default grid sizes of 2, 3, 4, 6, 8, 12,

16, 32, 64, and 128 measured in pixels for

which is the slope of the line of the log proportion of cells intersected by the surface increases as

log cell size decreases.

4. EXPERIMENT DESIGN

The GNU/Linux Core Utilities version 8.10 [8] comprise 114 dot

generated descriptive statistics for this test bed for number of files and LOC.

 We then ran three experiments as follows

1. Established baseline D

artefact encodings.

Computer Science & Information Technology (CS & IT)

. Same C file as an artefact with block encoding

As the reader can see from the figure above, all the language details have been “bloc

3.6. Fractal dimension calculation

The third and final phase of Mango measures the fractal dimension of the artefact. Mandelbrot [9]

described fractals as geometric objects, which are no-where differentiable, that is, textured, and

similar at different scales. We use the geometric interpretation based on reticular cell

counting or the box counting dimension. We choose this method for two reasons. Firstly, the box

counting dimension is conceptually and computationally straightforward. Secondly, Fractop [x]

provides a tested, high quality implementation.

Mandelbrot also said fractal objects have fractional dimension, D, namely, a non-whole number

Mathematically, D is given by the Hausdorff dimension [15]:

���� � lim
	→�

�
��	

log �
1
	
�

represents a set of points on a surface (e.g., coastlines, brush strokes, source lines of

 is the size of the measuring tool or ruler and Nε(S) is the number of self

objects or subcomponents covered by the measuring tool. For fractal objects, log

) by a fractional amount. If the tool is a uniform grid of square cells, then a

straight line passes through twice as many cells if the cell length is reduced by a factor of two. A

fractal object passes through more than twice as many cells.

from Equation 1. Mango uses the Fractop default grid sizes of 2, 3, 4, 6, 8, 12,

16, 32, 64, and 128 measured in pixels for ε. For any given input artefact, Mango returns

which is the slope of the line of the log proportion of cells intersected by the surface increases as

ESIGN

The GNU/Linux Core Utilities version 8.10 [8] comprise 114 dot C source files. First, we

generated descriptive statistics for this test bed for number of files and LOC.

We then ran three experiments as follows

 using the original, unmodified C files with literal and block

 5

As the reader can see from the figure above, all the language details have been “blocked”. Only

The third and final phase of Mango measures the fractal dimension of the artefact. Mandelbrot [9]

is, textured, and

similar at different scales. We use the geometric interpretation based on reticular cell

counting or the box counting dimension. We choose this method for two reasons. Firstly, the box

ionally straightforward. Secondly, Fractop [x]

whole number

e Hausdorff dimension [15]:

(1)

represents a set of points on a surface (e.g., coastlines, brush strokes, source lines of

is the number of self-similar

objects or subcomponents covered by the measuring tool. For fractal objects, log Nε(S) will be

) by a fractional amount. If the tool is a uniform grid of square cells, then a

cell length is reduced by a factor of two. A

from Equation 1. Mango uses the Fractop default grid sizes of 2, 3, 4, 6, 8, 12,

any given input artefact, Mango returns D,

which is the slope of the line of the log proportion of cells intersected by the surface increases as

C source files. First, we

using the original, unmodified C files with literal and block

6 Computer Science & Information Technology (CS & IT)

2. Treat the source with de-beautifying regimes using Mango to i) remove indentation, ii)

randomize indentation by 0-20 spaces, iii) randomize indentation by 0-40 spaces, iv)

make names non-mnemonic, and v) remove comments.

3. Treat the source with beautifying regimes using Mango to i) make names more and using

GNU/Linux indent to refactor the source with ii) GNU, iii) K&R, iv) Berkeley, and v)

Linux style settings.

We observed the frequency and direction in which D changes relative to the baseline. We

computed the percentage change and the one-tailed P-value using the Binomial test [30]. We also

measured the rank correlation coefficient, Spearman’s rho [30], between the baseline D and lines

of code over all source files.

5. RESULTS

The table below gives the test bed summary statistics. The range of LOC is fairly wide, from files

with just two lines to several thousand lines.

Table 3. Test bed summary statistics

Files 114

Total LOC 69,722

Median LOC 356

Maximum LOC 4,733

Minimum LOC 2

The table below gives the baseline fractal dimension values for literal and block encodings.

Table 4. Baseline analysis

 Literal Block

Median D 1.4592 1.6500

Maximum D 1.5448 1.7176

Minimum D 0.9836 1.4011

r (LOC v. D) 0.0878 0.0878

5.1 De-beautifying treatments

The tables below give the direction and the frequency of changes D decreases in relation to the

baseline. As the reader can see the fractal dimension decreases in each case with a small

difference between literal and block encoded artefacts. Removing indents is statistically

significant, however, as a contrarian indicator. In other words, rather than decreasing D, it

increases it in relation to the baseline. We explore this matter further below.

Computer Science & Information Technology (CS & IT) 7

Table 5. Changes in D in relation to the baseline with literal encoding

Treatment Dir. Freq. Rate P

Random indents 0-20 down 112 98% <0.0001

Random indents 0-40 down 109 96% <0.0001

Remove indents up 107 94% <0.0001

Remove comments down 82 72% <0.0001

Non-mnemonic down 104 91% <0.0001

Table 6. Changes in D in relation to the baseline with block encoding

Treatment Dir. Freq. Rate P

Random indents 0-20 down 113 99% <0.0001

Random indents 0-40 down 113 99% <0.0001

Remove indents up 107 94% <0.0001

Remove comments down 112 98% <0.0001

Non-mnemonic down 106 93% <0.0001

5.2 Beautifying treatments

The tables below give the direction and the frequency of changes D decreases in relation to the

baseline.
Table 7. Changes in D in relation to the baseline with literal encoding

Treatment Dir. Freq. Rate P

GNU style up 100 88% <0.0001

K&R style up 105 92% <0.0001

Berkeley style up 74 65% 0.0009

Linux style up 106 93% <0.0001

Mnemonic up 97 85% <0.0001

Table 8. Changes in D in relation to the baseline with block encoding

Treatment Dir. Freq. Rate P

GNU style up 112 98% <0.0001

K&R style up 104 91% <0.0001

Berkeley style up 78 68% <0.0001

Linux style up 105 92% <0.0001

Mnemonic up 99 87% <0.0001

5.3 No indentation as contrarian indicator

The experimental results in section 5.1, “De-beautifying treatments,” removed indentation on all

the source lines and we found D increased. We hypothesized that if removing indentation were a

contrary indicator, we expect D to rise from the baseline (0% rate) to complete indentation

removal (100% rate). The null hypothesis is no change in D is affected by the removal rate. To

test the null hypothesis, namely, no change in D with change in removal rate, we examined

several files and found we could reject the null, at least on a subset of typical size files. For

instance, mktemp.c has 358 LOC, which is very close to the median size file. We removed the

8 Computer Science & Information Technology (CS & IT)

indentation on randomly selected lines at 75%, 50%, and 25% rates and measured D in ten trials

using literal encoding. The data for mktemp.c is in the table below is typical for other programs

we examined.

Table 9 D for different random remove rates over ten trials for mktemp.c

 Indentation removal rate

Trial 25% 50% 75%

1 1.468205428 1.470438295 1.476648907

2 1.46463698 1.472219091 1.47721244

3 1.465692458 1.470056954 1.475848552

4 1.465102815 1.47256331 1.479550183

5 1.464691894 1.469024252 1.477846232

6 1.464413407 1.470376845 1.480434004

7 1.465313286 1.474732486 1.481568639

8 1.466252928 1.470800863 1.480060737

9 1.469609632 1.470203698 1.474179211

10 1.467231153 1.468487205 1.480865379

Median 1.465502872 1.47040757 1.478698207

The chart below shows the plot with the median values for 25%, 50%, and 75% removal rates,

the baseline (0%), and complete removal (100%).

Figure 3 The rate of indentation removal rate vs. D for mktemp.c where 0% is the baseline and 100% is

removal of all indentation.

6. DISCUSSION

The first observation we make is generally D

literal
 < D

block
. This makes sense since the block

encoding covers more surface area, S, in the artefact than the literal encoding. Our preference is

for block encoding because of its robustness we mentioned earlier. Nevertheless the pattern of

Computer Science & Information Technology (CS & IT) 9

results is consistent between literal and block encoding. When we de-beautify the source, D

decreases; when we beautify the source, D increases.

The exception, we noted, is the removal of all indentation. Yet Figure 1 suggests that removing

indentation is a contrarian indicator of style. We believe the contrariness is a peculiar property of

the fractal dimension. That is, keeping in mind that D=2 means there is no texture and we have a

completely covered surface of a solid colour, the larger D for removing indentation implies

greater surface area. Thus, having all the text aligned on the left gives a more compact, and thus

complete, surface.

All the beautifying treatments increase in D. The indent command programmed with Linux style

is the most effective for raising D and Berkeley style, the least effective.

What is most interesting is that since the GNU/Linux Core Utilities were presumably written with

the GNU style guide, the GNU style-beautifying regime nonetheless increases D. If changes in D

are represent changes in style as the data suggests, then it appears there may be room yet for style

improvements in the Core Utilities.

This observation offers insight into how to formulate a relative aesthetic value. Consider, for

instance, the conflict between regimes that beautify code and increase D and the contrarian effect

of removing all indentation, which de-beautify the code but also increase D. One way to resolve

this is to randomly sample the removal of indentation at different rates, measure D for each rate

as we did above, and test the slope of the line. If it is near zero, we assume there must be poor

indentation. In fact, the slope might be the aesthetic value of the indentation. A similar process

could be developed for documentation and mnemonics.

7. CONCLUSIONS

We have seen how systematic changes in the style of C programs affect the fractal dimension in a

statistically significant manner. Future research may consider the nature of these changes, i.e.,

how much beauty was added or removed by a change in style as suggested in the discussion.

Another useful avenue is confirming these results for programming languages other than C.

REFERENCES

[1] Vermeulen, Allan & Ambler, Scott W., (2000) The Elements of Java Style, Cambridge

[2] Oulline, S., (1992) C Elements of Style: The Programmer’s Style Manual for Elegant C and C++

Programs, M&T, 1992

[3] Google, Inc., (2015) “google-styleguide”, http://code.google.com/p/google-styleguide/, accessed 11-

May-2015

[4] NOAA National Weather Service, National Weather Service Office of Hydrologic Development,

(2007) “General Software Development Standards and Guidelines Version 3.5”

[5] Kant, Immanuel, (1978) The Critique of Judgment (1790), translation by J. C. Meredith, Oxford

University Press

[6] Free Software Foundation, (2015) http://linux.die.net/man/1/indent, access 13-May-2015

[7] Mandelbrot, Benoit, (1967) “How long is the coast of Britain? Statistical self-similarity and fractional

dimension,” Science, vol. 156 (3775), p. 636-638

[8] Peltgen, Heinz-Otto & Richter, P.H., (1986) The Beauty of Fractals, Springer, 1986

10 Computer Science & Information Technology (CS & IT)

[9] Free Software Foundation (2015) http://www.gnu.org/software/coreutils/coreutils.html, accessed 11-

May-2015

[10] Mandelbrot, Benoit, (1982) Fractal Geometry of Nature, Freeman, 1982

[11] Posnett, Daryl, Hindle, Abram & Devanbu, Prem, (2011) “A Simpler Model of Software

Readability”, MSR ’11 Proceedings of the 8th Working Conference on Mining Software Repositories

[12] Buse, Raymond P.L., & Weimer, Westley R., (2008) “A metric for software readability,” ISSTA '08

Proceedings of the 2008 international symposium on Software testing and analysis

[13] Tran-Cao, De, Lévesque, Ghislain, & Meunier, Jean-Guy, (2004) "A Field Study of Software

Functional Complexity Measurement," Proceedings of the 14th International Workshop on Software

Measurement

[14] Oram, Andy & Wilson, Greg, eds. (2007) Beautiful Code, O’Reilly

[15] Gabriel, Richard, (1996) Patterns of Software, Oxford

[16] Schroeder, M., (2009) Fractals, Chaos, and Power Laws, Dover, 2009

[17] Cornforth, David, Jelinek, Herbert, Peichl, Leo, (2002) “Fractop: A Tool for Automated Biological

Image Classification,” Proceedings of the Sixth Australia-Japan Joint Workshop on Intelligent and

Evolutionary Systems, p. 1-8

[18] Gerl, Peter, Schönlieb, Carola, Wang, Kung Cheih, (2004) “The Use of Fractal Dimension in Arts

Analysis,” Harmonic and Fractal Image Analysis, 2004, p. 70-73

[19] Coddington, Jim, Elton, John, & Rockmore, Daniel, Wang, Yang, (2008) “Multifractal analysis and

authentication of Jackson Pollock paintings” Proc. SPIE 6810, Computer Image Analysis in the Study

of Art, 68100F; doi: 10.1117/12.765015

[20] Taylor, R.P, Micolich, A.P., Jonas, D., (1999) “Fractal analysis of Pollock’s drip paintings,” Nature,

vol. 399, June 1999

[21] Coleman, R, (2009) “Long-Memory of Pathfinding Aesthetics,” International Journal of Computer

Games Technology, Volume 2009, Article ID 318505

[22] Coleman, R., (2009) “Fractal Analysis of Stealthy Pathfinding,” International Journal of Computer

Games Technology, Special Issue on Artificial Intelligence for Computer Games, Volume 2009,

Article ID 670459

[23] Coleman, R., (2008) “Fractal Analysis of Pathfinding Aesthetics,” International Journal of Simulation

Modeling, Vol. 7, No. 2

[24] Coleman, Ron, Johnson, Matthew, (2014) ”A Study of Scala Repositories on Github”, International

Journal of Advanced Computer Science Applications, vol. 5, issue 7, August 2014

[25] Coleman, Ron, Johnson, Matthew, (2014) “Power-Laws and Structure in Functional Programs,”

Proceedings of 2014 International Conference on Computational Science & Computational

Intelligence, Las Vegas, NV, IEEE Computer Society

[26] P. Kokol, J. Brest, and V. Zumer, “Long-range correlations in computer programs,” Cybernetics and

systems, 28(1), 1997, p43-57

[27] P. Kokol, J. Brest, “Fractal structure of random programs,” SIGPLAN notices 33(6), 1998, p33-38

[28] P. Kokol “Searching for fractal structure in computer programs,” SIGPLAN 29(1), 1994

[29] Coleman, R., Pretty project, (2015) http://github.com/roncoleman125/Pretty, accessed 11-May-2015

[30] Conover, W.J., (1999) Practical Non-Parametric Statistics, Wiley

