

David C. Wyld et al. (Eds) : CSEN, AISO, NCWC, SIPR - 2015

pp. 11–19, 2015. © CS & IT-CSCP 2015 DOI : 10.5121/csit.2015.51402

A NEW CRYPTOSYSTEM WITH FOUR

LEVELS OF ENCRYPTION AND PARALLEL

PROGRAMMING

Parag A. Guruji

Department of Computer Science and Engineering,

Walchand College of Engineering Sangli (An Autonomous Institute)

Vishrambag, Sangli, Maharashtra, India- 416415
gurujipa@gmail.com

ABSTRACT

Evolution in the communication systems has changed the paradigm of human life on this planet.

The growing network facilities for the masses have converted this world to a village (or may be

even smaller entity of human accommodation) in a sense that every part of the world is

reachable for everyone in almost no time. But this fact is also not an exception for coins having

two sides. With increasing use of communication networks the various threats to the privacy,

integrity and confidentiality of the data sent over the network are also increasing, demanding

the newer and newer security measures to be implied. The ancient techniques of coded

messages are imitated in terms of new software environments under the domain of

cryptography. The cryptosystems provide a means for the secured transmission of data over an

unsecured channel by providing encoding and decoding functionalities. This paper proposes a

new cryptosystem based on four levels of encryption. The system is suitable for communication

within the trusted groups.

KEYWORDS

Matrix transformation, Fractionification, Re-integerization, Change of radix

1. INTRODUCTION

A cryptosystem refers to a suite of algorithms needed to implement a particular form of

encryption and decryption. The encryption operations are the transformation functions with the

set of all symbols which appear in data to be encrypted as their domain and the set of all

corresponding encoded symbols as their codomain. The basic characteristic of any encryption

operation for the faithful transmission of data is its reversibility. Any encryption operation that

transforms input data into some encoded form must work as a bijective mapping, whose inverse

exists and is also a bijective mapping. These criteria if not satisfied, the retrieval of the data from

its encoded form back to its original form cannot be assured. Following figure represents the

encryption operation f and its inverse f
-1

 (called decryption operation) as the bijective mappings

from their corresponding domain and codomain.

12 Computer Science & Information Technology (CS & IT)

Figure 1. The encryption and decryption operations as mappings

In this paper the author proposes a new cryptosystem for the implementation in form of an

application able to perform all the encryption and decryption tasks in an abstracted manner and

thus keeping all of them transparent to only the valid user. The system operates on four levels of

layers of the encryption making the complexity of cracking it extremely high. The four layers

refer to the different set of operations, undergoes which the user data. The fragmentation and re-

organization of the data is to be done as preprocessing before passing it to the encryption module.

On the other side the decryption module works for the retrieval of encrypted data from the

chunks that it receives and reorganizes it by sorting the randomly received chunks; after

performing the four decryption operations on it which are inverses of the four encryption

operations.

The encryption operations are:

1. Matrix transformation

2. Fractionification

3. Random no. addition

4. Change of radix

The decryption operations are:

1. Change of radix

2. Random no. removal

3. Re-integerization

4. Matrix re-transformation

The key generation operations are:

1. Random no. generation

2. Matrix generation using corresponding polynomial and checking for its inevitability

3. Radix generation using corresponding polynomial.

 Computer Science & Information Technology (CS & IT) 13

2. THE FUNCTIONAL DESIGN

2.1. Defining Tasks

To perform the operations in a systematic manner, the author defines the tasks to be performed on

both the sides, the encryption and decryption as follows:

2.1.1. Encryption Tasks

1. Fragmentation of input data into chunks and indexing them.

2. Generation of the random key for each chunk and thus that of the key matrix and key

radix.

3. Operating each chunk with encryption operations in the sequence in which they are listed

above.

4. Augmentation of encrypted chunk with corresponding key which is a mere random

integer.

2.1.2. Decryption Tasks

1. Receipt of the encrypted chunk and separation of key

2. Generation of the key matrix and key radix for received chunk.

3. Operating each chunk with decryption operations.

4. Reorganization of the chunks using the indices to retrieve data in its original form.

The selection/formation of polynomials required for the key generation are left on the

implementation to keep this design flexible. The complexity of these polynomials will add to the

complexity of whole of the system.

2.2. Task Accomplishment Scheme

The scheme for completing each of the above tasks is discussed in this section.

2.2.1. Fragmentation of input data into chunks and indexing:

The input data is fragmented in the chunks, each of size s bytes where s is the implementation-

specific size defined for representation of an integer. The data structure to be used store these

fragments is a linear list, each node of which contains a chunk and an index value representing

the offset of that chunk from the beginning of the input data in terms of no. of chunks. Along

with these two values, the chunk contains space for its key value, a random integer generated by

the key generator. This fragmentation of the data enables the parallel functioning of every step to

follow as discussed later in the paper.

14 Computer Science & Information Technology (CS & IT)

2.2.2. Generation of the random key for each chunk and thus that of the key matrix and key

radix:

A random number is to be generated (generation implementation specific) for each chunk and is

then assigned as the key for that chunk. The selected polynomials are provided with this key to

generate the key matrix and key radix for that chunk. The implementation must take care that the

generated matrix will be an invertible (non singular) matrix. After completion of this step we are

ready with required input values for the computation of the encrypted counterparts of each

element in the input data.

2.2.3. Operating each chunk with encryption operations:

2.2.3.1. Matrix transformation:

The chunk formed along with the source file identifier (A random no. assigned to the source-file)

and excluding the key is represented as a 3×1 matrix and is multiplied with the 3×3 matrix

generated using the key (key matrix) to get the transformed matrix of order 3×1.

2.2.3.2. Fractionification:

The term Fractionification is defined as the conversion function which maps an integer to a

fraction by dividing the integer by R
d
 where R is the radix of the number system under

consideration and d is no. of significant digits in the original integer and then adding to it the

integer value d. Thus, for an integer I in number system with radix R having d significant digits,

fractionification ƒ is defined as,

ƒ(I) = I ÷ (R
d
) + d

2.2.3.3. Random no. addition:

The fractionified no is then added with some random number multiplied by 10 to preserve the

value of d (the no of significant digits in original no.). Thus, the integer I when fractionified and

added with random no. becomes r(I) given by,

r(I) = ƒ(I) + n×10

where, n is the random number generated.

2.2.3.4. Change of radix:

Now that we have converted the integer I, representing s bytes of input data, to a floating point

equivalent r(I), the radix of the number system is to be changed as the outermost encoding

operation. It is defined as the combination of two simple radix conversion operations, one for the

integer part of the input floating point no. and other for its fraction part, represented as an integer.

The target radix selection is important task and is selected using a randomization polynomial

(implementation specific) with the key of corresponding chunk as its parameter. To use radix

greater than 10, the corresponding symbols used are capital and small scripts of English alphabets

and related numerical operations on them are to be defined.

 Computer Science & Information Technology (CS & IT) 15

2.2.4. Augmentation of encrypted chunk with corresponding key:

Once each element in the chunk except the key are encrypted, the chunk is augmented with the

key, applied with fractionification and random no. addition, and thus is ready for the

transmission.

2.2.5. Receipt of the encrypted chunk and separation of key:

The chunk when received on decryption end, it is to be stored in the buffer for unresolved

chunks. From the key field the value of key is found and separated out and the corresponding key

matrix and key radix are calculated exactly as explained above. The inverse of this matrix is

calculated by adjoint method to get the decryption matrix.

2.2.6. Operating each chunk with decryption operations:

2.2.6.1. Change of radix:

Each element in the received chunk is operated on by the inverse change of radix with source

radix as the one derived from the key and 10 as the target radix. Obviously, the integer and

fraction part are treated individually treated as different integers, and then combined back.

2.2.6.2. Random no. removal:

Each element of the chunk is then operated upon by the inverse of the random no. addition to get

the fractionified value using following function,

ƒ(I) = (r(I)%10)

2.2.6.3. Re-integerization:

The term Re-integerization is defined as the inverse function of Fractionification which maps to

an integer, its equivalent fractionified value, and is defined as,

I = (ƒ(I) %1) × 10
d

where,

d = ⌊ (ƒ (I)%10) ⌋

2.2.6.4. Matrix re-transformation:

The chunk received is in the form of 3×1 matrix. It is multiplied by the 3×3 decryption matrix

determined for that chunk according to the simple matrix multiplication to get the original data

chunk.

2.2.7. Reorganization of the chunks

Now that having done with the decryption operations on received chunks, they are to be

reorganized in the sequence of that of the data contained by them in the original source file. This

is achieved by sorting the randomly placed data chunks using the identifier and index fields as the

key. To boost the efficiency of sorting, author proposes to form a Binary Search Tree for each

identifier and then the chunks are to be added in it according to the index field values as the key.

Once the no. of nodes in the tree approaches to the total count of chunks present in the index field

16 Computer Science & Information Technology (CS & IT)

of identifier node, i.e. the root, the tree is traversed in In-order manner (left-root-right) and data

field contents of each node are written into the destination file during traversal.

3. SECURITY FACTORS

The security and confidentiality of the data are the fundamental goals of any cryptosystem. In

case of the proposed system, though all of such factors already have appeared in the discussion

up till now, in this section we identify and enlist each of them for the getting the view of the

security provided by the system as a whole.

1. Randomness of the key

2. Secrecy and complexity of the polynomials used for matrix and radix generation

3. Individual random key for each chunk: This removes the threat by many of the pattern

analysis and known text attacks

4. Matrix Transformation: This transforms chunk into an integral unit whose meaning cannot be

derived without accurate inverse of key matrix

5. Fractionification and Random no. addition: This covers the transformation and makes it too

complex to analyze the resultant patterns and detect the transformation

6. Change of Radix: This changes the representation of the numbers and thus adding to the

complexity of analysis of interrelations of elements in resultant values.

4. THE PARALLEL PROGRAMMING APPROACH

The important feature of proposed design of cryptosystem in this paper is the fragmentation of

data and independency of the key for each fragment. This independence allows the parallel

functioning of different modules in of cryptosystem. Each node follows the same path after the

fragmentation is done. Thus after completion of Task 1on encryption side, each chunk is

proposed to be processed in parallel through the completion of encryption. Also on decryption

side, the received nodes are proposed to get processed in parallel till their addition to

corresponding BST. This will reduce the time complexity of the cryptosystem application by the

factor of n
-1

 where, n is the no. of fragments.

Along with this first level of parallel programming, the efficiency can further be increased by

incorporating the second level of the same. In the second level, within each fragment the different

elements are proposed to be operated with all the encryption as well as decryption functions

independently except the matrix transformation. This will bring the time complexity to Time

complexity of matrix multiplication + 3
-1

 (time complexity of rest of the operations with

sequential approach), Thus reducing it roughly by factor of 3-1.

The author further proposes the third level of parallel programming, involving the parallel

implementation of the matrix multiplication itself to further boost the efficiency. Thus the parallel

programming approach adds to the efficiency significantly.

 Computer Science & Information Technology (CS & IT) 17

5. FLOWCHARTS

4.1. Encryption Flowchart:

Start

Fragment and store data to indexed linear list

Perform in parallel

for each not of

the list

Stop

Form the key, key matrix and key radix for the chunk

Encrypt the node data by matrix transformation

Convert each entry to the number system with radix = ‘key radix’

Fractionify each entry

Add randomly generated integer to each fractionified entry

Return encrypted chunk of data

18 Computer Science & Information Technology (CS & IT)

4.2. Decryption Flowchart:

Start

Receive encrypted chunk, spawn new thread and separate key

Stop

Remove random number addition

Re-integerize each entry and convert to decimal system

Create new BST

Retrieve data in sequence from BST by in-order traversal

Is first row of

decrypted

matrix

NULL?

Insert 2
nd

 and 3
rd

elements of

decrypted array to

data and index

attributes resp. of

new node of the BST

indicated by the 1
st

 Computer Science & Information Technology (CS & IT) 19

5. CONCLUSIONS

The cryptosystem proposed in the paper works on four different layers of the encryption. All the

layers cover the possible attacks on its inner layer making the encryption extremely complex to

crack. The security factors of the system protect it against the cracking attacks. The polynomials

and random number generators are left to the implementation for making the system flexible.

This incurs the variation of complexity of encryption depending on the implementation. The

parallel approach of programming adds to the efficiency of application significantly, as discussed

in the section II.

REFERENCES

[1] Yi-Shiung Yeh, Tzong –Chen Wu, Chin Chen Chang and Wei Chizh Yang “A New Cryptosystem

using Matrix Transformation”, Proceedings. 25th Annual IEEE International Carnahan Conference

on Security Technology 1991 (Cat. No.91CH3031-2)

[2] D. C. Lay “Linear Algebra” ISBN: 9781405846219, Chapters 1, 2 and 3

AUTHORS

Parag A. Guruji

Earned Bachelor of Technology degree in

Computer Science and Engineering from

Walchand College of Engineering, Sangli, India

in May 2014.

Working at ZLemma Analytics in Data Science

team since June 2014

