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ABSTRACT 

 
In this paper, we focus on developing parallel algorithms for solving the traveling salesman 

problem (TSP) based on Nicos Christofides algorithm released in 1976. The parallel algorithm 

is built in the distributed environment with multi-processors (Master-Slave). The algorithm  is  

installed  on  the  computer  cluster system  of National  University  of  Education  in  Hanoi,  

Vietnam (ccs1.hnue.edu.vn) and uses the library PJ (Parallel Java). The results are evaluated 

and compared with other works. 
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1. INTRODUCTION 

 
Traveling  salesman  problem  (TSP)  is  a well  known problem.  The  problem  is  solved  in  
different  ways. Especially  in  1976,  Nicos  Christofides  introduced  new algorithms  called 
Christofedes’  algorithm  [3].  In  2003, Ignatios  Vakalis  built  Christofedes’  algorithms  on  
MPI environment [4]. In  this  paper,  we  build  Christofides’  traveling salesman  problem  in  
distributed  environment. Sequential algorithms are built thoroughly with illustrative examples. In  
addition,  parallel  algorithms  are  experimented  in different graphs.  

2. CHRISTOFIDES’ TRAVELING SALESMAN PROBLEM ALGORITHM 

 
Let G=(V,E) be a graph and let P=V1, V2,…, Vk be a path in G. This path is called a Hamiltonian 
path if and only P is containing every vertex in V. P is a Hamitonian cycle if and only if V1=Vk 
and P is a Hamiltonian path. Where G is a directed graph, the terms directed Hamiltonian path 
and directed Hamiltonian cycle are used. The problem of determining a shortest directed  in a 
weighted directed graph G is called the Traveling Salesman Problem (TSP) [1]. 

Consider an n x n distance matrix D with positive entries; for example, the distance between the 
cities the traveling salesman is visiting. We assume D is symmetric, meaning that dij=dji for all i 
and j and dii=0 for i=1,2,…,n. We claim that [dij] satisfies the triangle inequality if 
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What the triangle inequality constraint essentially says is that going from city i to city k through 
city j can not be cheaper than going directed from city i to city k. This is a reasonable assumption, 
sine the imposed visit to city j appears to be an additional constraint, meaning that can only 
increase the cost. As a rule of thumb, whenever the entries of the distance matrix represent cost, 
the triangle inequality is satisfied. 

Notice that the graph in this variant of the problem undirected. If we remove any edge from an 
optimal path for such a graph, we have a spanning tree for the graph. Thus, we can use a algorithm 
to obtain a minimum spanning tree, then by going twice around the spanning tree, we can convert 
it to a path that visits every city. Recalling the transformation from Hamiltonian cycle to traveling 
salesman problem. Christofides [3] introduced a heuristic algorithm based on the minimum 
spanning tree for this problem. 

Definition 2.1. Hamiltonian Cycle is a cycle in an undirected graph that passes through each node 
exactly once [7]. 

Definition 2.2. Given an undirected complete weighted graph, TSP is the problem of finding a 
minimum cost Hamiltonian Cycle [7]. 

Christofides’ Traveling Salesman Problem (Algorithm 1) 

Step 1: Find the minimum spanning tree T using the distance matrix D. 

Step 2: Find the nodes of T having odd degree and find the shortest complete matching M in 
the completed graph consisting of these nodes only. Let G’ be the graph with nodes 
{1,2,…,n} and edges  in T and M. 

Step 3: Find a Hamiltonian cycle in G’.  

3.1: Find an Euler cycle C0=(x,y,z,…,x) in G’. 

3.2: Starting at vertex x, we trace C0 and delete the vertex that has visited before in 
turn. Then remaining vertices, in the original order in C0, determine a Hamilton cycle 
C, which is a required approximation optimal cycle. 

The Prim’s algorithm can be used in Step 1. 

The number of odd-degree nodes in a graph is even. It’s easy to see why this is the case: The sum 
of the degrees of all nodes in a graph is twice the number of edges in the graph, because each edge 
increases the degree of both its attached nodes by one. Thus, the sum of degrees of all nodes is 
even. For a sum of integers to be even it must have an even number of odd terms, so we have an 
even number of odd-degree nodes. 

A matching is a subset of a graph’s edges that do not share any nodes as endpoints. A perfect 
matching is a matching containing all the nodes in a graph (a graph may have many perfect 
matchings). A minimum cost perfect matching is a perfect matching for which the sum of edge 
weights is minimum. A minimum cost perfect matching of a graph can be found in polynomial 
time. 

Finding a shortest complete matching in a graph is a version of the minimal weight matching 
problem, in which the total weight of the edges obtained from the matching is minimal. Edmonds 
and Johnson (1970) [5]; William Cook and André Rohe [6] have presented an efficient algorithm 
for finding minimum weight perfect in any weighted graph.    

The Fleury’s algorithm [19] can be used in Step 3.1 for finding Euler cycle. 
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          Fỉgure 1. G(V,E) graph                                     Figure 2. Distance matrix D 

Determining whether a graph contains a Hamiltonian cycle is a computationally difficult problem. 
In fact, the fastest algorithm known has a worst-case time complexity of  O(n22n) in the case of n 
points. Therefore, the TSP exhibits an exponential worst-case complexity of  O(n22n). Proof [4]. 

Example:  G(V,E) graph  is illustrated in Figure 1 

 
Figure 3. The minimum spanning tree T with the odd-degree vertices encircled 

 

Figure 4. Shows the shortest complete matching M of these odd-degree verteces. 
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Figure 5. G’(V, E’), E’ is edges in T and M 

We have Euler cycle C0 = (a, e, b, c, b, d, f, a). Deleting a repeated vertex b from C0 results in a 
Hamilton cycle  
 
C = (a, e, b, c, d, f, a) in G with w(C) = 12. Because the edge (c, d) of C is not in G’, C 
corresponds a salesman route P = (a, e, b, c, b, d, f, a) with w(P ) = 12 which visits each vertex of 
G at least once (Figure 6). 

 
Figure 6. Traveling Salesman tour 

 
For large n, the sequential version of a TSP algorithm becomes impractical. Thus, the need arises 
to examine a parallel approach in obtaining exact solutions to the TSP problem. 

3. THE PARALLEL TRAVELING SALESMAN ALGORITHM 

We carry out parallel algorithms on k processors. The parallel is performed in step 1 of the 
algorithm TSP. Slave processors perform to find MST T. Master processor performs step 2 and 
step 3 of the algorithm TSP. 
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Prim’s algorithm (Algorithm 2): 

 

Parallel Traveling Salesman Problem algorithm (Algorithm 3) 

Step 1: Create k numbers of Slave processes. 

Step 2: Master node send n/k vertex and weight  

     matrix D(n x n/k) to Slave. 

Step 3: k Slave receives n/k vertex and D(n x n/k) 

from the master node. 

Step 4: Master node performs: 

  If T(B, E’) has n-1 edges, then T becomes Minimum Spanning Tree. 

Otherwise, then go to Step 5. 

 

Step 7: Master node receives T which is MST, then go to Step 8. 
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Step 8: Master node finds the shortest complete matching M 

Step 9: Master node finds the Hamiltonian cycle in G’. 

The main loop of the Prim algorithm is executed (n-1) times. In each n iteration it scans through 
all the m edges and tests whether the current edge joins a tree with a nontree vertex and whether 
this is a smallest edge found so far. Thus, the enclosed loop takes time O(n), yielding the worst-
case time complexity of the Prim algorithm as O(n2). Total parallel time O(n2/k + n log k). 

Therefore, algorithm 3 reduces more computation time than algorithm 1. 

Parallel computing- Brief Overview: 

The development of a wide range of parallel machines with large processing capacities high 
reliability, and low costs, have brought parallel processing into reality as an efficient way for 
implementing techniques to solve large scale optimization problems. A good choice of the 
programming environment is essential to the development of a parallel program.   

The processes that are executed on parallel machines, are based on different memory organization 
methods: shared memory; or distributed memory.  In shared memory machines, all processors are 
able to address the whole memory space. The processors can communicate through operations 
performed by the parallel tasks on the shared memory. Each task shares a common address space. 
The advantage of this approach is that the communication can be easy and fast. However, the 
system is limited by the number of paths between the memory and the processors.   

An alternative to the shared memory organization is the distributed memory paradigm. In the 
framework of the distributed memory organization, the memory is physically distributed among 
the processors. Each processor can only access its own memory, and communication between 
processors is performed by messages passed through a communication network. A number of 
parallel programming tools are available to implement parallel programs for distributed memory 
environments. 

 
Figure 7. Create database (Graph) 
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So, in this paper we choose the system's computing cluster of Hanoi National University of 
Education (ccs1.hnue.edu.vn) and use Parallel java library_PJ [8], [9]. 

 

Figure 8. Parallel Computing Cluster (ccs1.hnue.edu.vn) 

Parallel TSP algorithm is built on ccs1.hnue.edu.vn. The program written in Java and use 
Parallel java library (PJ). We experimentally sampled nodes as follows: The graph corresponds 
to 20000 nodes and 30000 nodes. The simulation result is shown in figure 9 and figure 10. This 
result demonstrates that the runtime of parallel algorithms is better than sequential algorithm. 

 
Figure 9. Chart performs the speedup of graph having 20000 nodes 
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Figure 10. Chart performs the speedup of graph having 30000 nodes 
 

4. CONCLUSION 
 
The detail result of this paper is building sequential and parallel Traveling Salesman Problem 
algorithm.In addition, to take more advantage of multi-core architecture of the parallel computing 
system and reduce the computing time of this algorithm, we build this algorithm on multiple 
processors. Parallel algorithms in this paper are processed at step 1 of the algorithm 1. Ignatios 
Vakalis 2003 [4] built parallel algorithms by simultaneously looking for DFS (Depth First 
Search) in step 3 of algorithm 1 to resolve TSP. Random graphs (Figure 7) are created as our 
database to test the algorithms. As in [4] a small number of vertices graph (less than 12 vertices) 
are tested. Our algorithms are installed in computer cluster using Parallel Java (PJ) whereas in [4] 
using MPI. Therefore, our paper has made great contribution to building parallel algorithms using 
many different libraries. 
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