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ABSTRACT 
 
The problem of  finding  maximum  flow  in  network graph is extremely interesting and 

practically applicable in many fields in our daily life, especially in transportation. Therefore, a 

lot of researchers have been studying this problem in various methods. Especially in 2013, we 

has developed a new algorithm namely, postflow-pull algorithm to find the maximum flow on  

traditional  networks.  In  this  paper,   we  revised postflow-push  methods  to  solve this 

problem of finding maximum flow on extended mixed  network. In addition, to take more   

advantage   of   multi-core   architecture   of   the   parallel computing system, we build this 

parallel algorithm. This is a completely new method not being announced in the world. The 

results of this paper are basically systematized and proven. The idea of this algorithm is using  

multi processors to  work in parallel by postflow_push algorithm. Among these processors, 

there is one main processor managing data, sending data to the sub processors, receiving data 

from the sub-processors. The sub-processors simultaneously execute their work and send their 

data to the main processor until the job is finished, the main processor will show the results of 

the problem. 
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1. INTRODUCTION 

 
The maximum flow problem on the network is one of the optimization problems on graphs 
that is widely applicable in practice as well as in combinatorial theory. The problem was 
proposed and solved by  two American mathematicians Ford and  Fulkerson  in  the  early  
1950  [2]  and  more  and  more scientists are interested in research. Edmonds and Karp gave 
method with complexity O(|V|.|E|2) [3]. In 1986, A. Goldberg and R.E. Tarjan  [4]  have  
developed  pre-flow  push method with  complexity  O(|V|2.|E|)  and  a  lot  of  paper  
concerning parallel algorithm are written by many interested researchers [6], [7], [8], [9]. 
Especially in 2013 we has developed a new algorithm  namely,  postflow-pull  algorithm  to  
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find  the maximum flow on traditional networks [10].  The work  of Naveen Garg  and  Jochen 
Konemann  in 2007  and  the  above  works  just  concentrate  on  traditional traffic  networks  
without  any  specific  steps  and  correct proof.  In  fact,  it  is  necessary  to  build  extended  
mixed networks. The problem of finding maximum flow in network mixed network is 
extremely interesting and practically applicable in many  fields  in  our  daily  life,  especially  
in  transportation. Therefore,  a  lot  of  researchers  have  been  studying  this problem  in  
various  methods.  In  an  ordinary  graph  the weights of edges and vertexes are considered  
independently where  the  length  of  a  path  is    the  sum  of   weights  of  the edges  and  the  
vertexes  on  this  path.  However,  in  many practical problems, weights at a vertex are not  
the  same  for all  paths  passing  this  vertex,  but  depend  on  coming  and leaving  edges.  
The  paper  develops  a  model  of  extended mixed  network  that  can  be  applied  to  
modelling  many practical problems more exactly and effectively. Currently, parallel 
processing method is a promising and effective  solution  for  the deadlock problems  that  
sequential method  encounters  such  as:  program  execution  time, processing  speed,  the  
ability  of  memory  storage,  the advantage  of  multi-core  architecture,  large-scale  data 
processing. The main contribution of this paper is the revised postflow-push  [10]  algorithm  
finding  maximal  flow  on extended mixed network and we build parallel algorithms on multi 
processors. This is a completely new approach aiming to take  advantage  of  multi-core  
architecture,  to  reduce computation  time  and  to  solve  the problem with  large-scale data 
[10].   
 

2. EXTENDED MIXED NETWORK 

 
Given a graph network G (V, E) with a set of vertices V and a set of edges E, where edges can be 
directed or undirected, with edge capacity ce:E→R*, so that ce(e) is adge capacity e ∈ E and 
vertices capacity cv:V→R*, so that cv(u) is vertices capacity u ∈ V. [12], [16]. 

With edge cost  be be:E→R*, be(e): cost must be return to transfer an unit transport on edge e.   

 With each v∈V, Set Ev are set edge of vertice v. 

Vertice cost bv:V×Ev×Ev→R*,  bv(u,e,e’): cost must be return to transfer an unit transport from 
edge e to vertice u to edge e’. 

A set (V, E, ce, cv, be, bv) is called extended mixed network. 

 

3. FLOW EDGE ON EXTENDED MIXED NETWORK 

Given an extended mixed network G = (V, E, ce, cv, be, bv). where s is source vertex, t is sink 
vertex. A set of flows on the edges f = {f(x,y) | (x,y)∈E} is called flow edge on extended mixed 
network. So that 

(i) 0 ≤f(x,y) ≤ce(x,y) ∀(x,y)∈E 

(ii) For any vertex k is not a source or sink 

( )∑
∈Ekv

kvf
),(

, = ( )∑
∈Evk

vkf
),(

,  

(iii) For any vertex k is not a source or sink 
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( )∑
∈Ekv

kvf
),(

, ≤cv(k) 

•••• Theorem 3.1 Given f = {f(x,y) | (x,y)∈E} is flow edge on extended mixed network G, where s 
is source vertex, t is sink vertex, that is 

( )∑
∈Evs

vsf
),(

, − ( )∑
∈Esv

svf
),(

, = ( )∑
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),(

, − ( )∑
∈Evt

vtf
),(

,  

Namly  total flow go from source vertex equal to total flow going to sink vertex 

Proof.  ∀ x,y∈V|∄ (x,y) ∈E, then assign f(x,y)= 0, where 

( ) ( )∑∑∑∑
∈ ∈∈ ∈

=
Vv VuVu Vv

uvfvuf ,, ⇔ ( ) ( )∑ ∑ ∑
∈ ∈ ∈









−

Vv Vu Vu

uvfvuf ,, = 0 

⇔ ( ) ( )
{ }
∑ ∑ ∑

∈ ∈ ∈









−

tsVv Vu Vu

uvfvuf
,\

,,  + ( ( )∑
∈Esu

suf
),(

, − ( )∑
∈Eus

usf
),(

, )  + ( ( )∑
∈Etu

tuf
),(

, −

( )∑
∈Eut

utf
),(

, )    = 0 

From (ii) in section 3, the first term equal to zero, so 
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The value of flow: 

val(f) = ( )∑
∈Eus

usf
),(

, − ( )∑
∈Esu

suf
),(

,  is called value of flow f. 

The maximum problem:  

Given  an  extended mixed network G(V, E, ce, cv, be, bv), where s is source vertex, t is sink 
vertex. The task  required  by  the  problem  is  finding  the flow which  has  a maximum  value. 
The  flow value  is  limited  by  the  total  amount  of  the circulation  possibility  on  the  roads  
starting from  source  vertex. As  a  result  of  this,  there could  be  a  confirmation  on  the  
following theorem.  
 
•••• Theorem 3.2. Given an extended mixed network G(V, E, ce, cv, be, bv), where s is source 
vertex, t is sink vertex , then exist is the maximal flow. 
 

 

 

 

 



32  Computer Science & Information Technology (CS & IT) 

 

4. MAXIMUM FLOW AND THE MINIMUM CUT 
 
Given  an  extended mixed network G(V, E, ce, cv, be, bv), where s is source vertex, t is sink 
vertex. For any set S, T ⊂V, symbol  (S, T) is a set of all edges reached and an unreached going 
from S input T, (S,T) = {(x, y) ∈ E |x∈ S &y∈ T}. 

If  S, T ⊂ V| S∪T = V & S∩T = ∅ and s∈ S, t∈T, then (S, T) is called cut (source-sink) of G. 

Given  f = {f(x,y) | (x,y)∈E} is flow edge on extended mixed network G. Symbols 

f(S,T) = ( )∑
∈ ),(),(

,
TSyx

yxf

 

•••• Theorem 4.1. Given  an  extended mixed network G(V, E, ce, cv, be, bv), where s is source 
vertex, t is sink vertex. 

 Given f = {f(x,y) | (x,y)∈E} is flow edge on extended mixed network G and (S, T) is cut of G. 
Where, val(f) = f(S,T)−f(T,S) 

Proof.  ∀ x,y∈V|∄ (x,y) ∈E, then assign f(x,y)= 0, we have 
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Given (S,T) is cut. Symbol S(T) = {u∈S| ∃v∈T, (u,v)∈(S,T)} 

•••• Theorem 4.2.  Given  an  extended mixed network G(V, E, ce, cv, be, bv), where s is source 
vertex, t is sink vertex. 

Given f = {f(x,y) | (x,y)∈E} is flow edge on extended mixed network G and (S, T) is cut of G. 
Where, ∀S’⊂S(T) we have 
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The capacity of slice cut 

Given (S, T) is slice cut of G. Symbol cap(S, T) is capacity of (S, T) slice cut. We have 

cap(S,T) = min{ ( )∑
∈ 'Sv

vcv + ( )∑
∈ )',(\),(),(

,
TSTSyx

yxce |S’⊂S(T)} 

From Theorem 4.1 and Theorem 4.2  infered that Theorem 4.3   

•••• Theorem 4.3. Given  f = {f(x,y) | (x,y)∈E} is flow edge on extended mixed network G and (S, 
T) is cut of G. Where val(f) ≤cap(S,T). 

 

5. POSTFLOW-PULL METHODS 

5.1. Some basic concept 

5.1.1. Residual extended mixed network Gf 

For flow f on G = (V, E, ce, cv, be, bv), where s is source vertex, t is sink vertex. Residual 
extended network, denoted Gf is defined as the extended mixed network with a set of vertices V 
and  a set of edge Ef with the edge capacity is cef and vertices capacity is cvf as follows: 

- For  any edge (u, v) ∈ E, if f(u, v)> 0, then (v, u) ∈Ef  with edge capacity is  cef (v,u)=f(u, v) 

- For  any edge (u,v) ∈ E, if c(u,v) -f(u, v)> 0, then (u, v) ∈Ef with edge capacity is cef(u,v) = 
ce(u,v) - f(u,v) 

- For any vertices v∈ V then cvf(v)= cv(v)− ( )∑
∈Evx

vxf
),(

, . 

5.1.2. Preflow 

For extended mixed network G = (V, E, ce, cv, be, bv). Preflow is a set of flows on the edges f = 
{f(x, y) | (x, y)∈ G} So that 

        (i) 0 ≤ f(x, y) ≤ ce(x, y) ∀(x, y) ∈ E 

     (ii) for any vertex k is not a source or sink, inflow is not smaller than outflow, that is 

( )∑
∈Ekv

kvf
),(

, ≥ ( )∑
∈Evk

vkf
),(

,
                  

 

 (iii) for any vertex k is not a source or sink 

             
( )∑

∈Ekv

kvf
),(

, ≤ cv(k) 

5.1.3. Postflow 

For extended mixed network G = (V, E, ce, cv, be, bv). Postflow is a set of flows on the edges f = 
{f(x, y) | (x, y)∈ G} So that 

      (i) 0 ≤ f(x, y) ≤ ce(x, y) ∀(x, y) ∈ E 

     (ii) for any vertex k is not a source or sink, outflow is not smaller than inflow, that is 

( )∑
∈Ekv

kvf
),(

, ≤ ( )∑
∈Evk

vkf
),(

,  
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 (iii) for any vertex k is not a source or sink 

( )∑
∈Ekv

kvf
),(

, ≤ cv(k) 

Each vertex whose outflow is larger than its inflow is called the unbalanced vertex. The 
difference between a vertex’s inflow and outflow is called excess. The concept of residual 
extended mixed network Gf is similarly defined as flow. 

The idea of this  methods is balancing inflow and outflow at the balanced vertices by pushing 
along an outgoing edge and pushing against an incoming edge. Process of balancing is repeated 
until no more the unbalanced vertex then we get maximum flow. We store the unbalanced 
vertices on a generalized queue. A tool called a depth function is used to help select the edge 
available in residual network to eliminate the unbalanced vertices. Now we assume that a set of 
the network is denoted as V={0,1,...,|V|-1}. 

5.1.4. Depth function 

Depth function of the Postflow in the extended mixed network G = (V, E, ce, cv, be, bv), is a set 
of non-negative vertex weights d(0), ..., d(|V| −1) such that d(s) = 0(s is source vertex) and d(u)+1 
≥  d(v) for every edge (u,v) in the residual extended mixed network for the flow.  An eligible 
edge is  an edge (u,v) in the residual extended mixed network with d(u)+1=d(v). 

A trivial depth function is  d(0) = d(1) = ... = d(|V| − 1) = 0. Then if we set d(u)= 1, any positive 
edge to u is the priority edge. 

We define a more interesting depth function by assigning to each vertex the latter’s shortest–path 
distance to the sink (its distance to the root in any BFS tree of the network rooted at s. This depth 
function is valid because d(s)= 0, and for any pair of vertices u and v connected by an edge (u,v) 
in residual mixed network Gf, then d(u)+1≥  d(v), because the path from a to v with edge (u,v) 
(d(u)+1 must be not shorter than the shortest path from s to v i.e d(v)). 

Property 5.1. For any flow f in extended mixed network G and associated depth function d. a 
vertex’s depth d(v) is not larger than the length of the shortest path from vertex s to vertex v in 
residual extended mixed network Gf . 

Proof: For any given vertex v, assume l be the shortest-path length from s to v in the residual 
extended mixed network Gf. And let (s=v1, v2, ..., vl=v) from s to v. then 

d(v) = d(v1)  ≤ d(vl-1) + 1 

           ≤ d(vl-2) + 2                                     

             : 

           ≤  d(v1) + l  = d(s) + l = l (because d(s)=0) 

The intuition behind depth function is the following: when an unbalanced node’s depth is less 
then the depth of the sink, it is possible that there is some way to push flow from that node down 
to the source; else, if an unbalanced node’s depth exceeds the depth of the sink, we know that  
node’s flow needs to be pushed back to the sink. 

Corollary: if a vertex’s depth is greater then |V|, then there is no path from the source to that 

vertex in the residual extended mixed network Gf. 
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5.2. General Postflow-pull methods 

General Postflow-push methods is briefly described as follows: 

Step1: 

Initialize: the only Postflow is in the edges leaving for the sink vertices is the following: 

 f(v,t)=min{ce(v,t), cv(v)}          

The other flows are 0.  

Select any available depth function d in the extended mixed  network G. 

Step 2: 

Condition to terminate : If there are no available unbalanced vertices, then postflow f  
becomes max flow. 

Step 3: (pull flow) 

Choose unbalanced vertex v.  

If exists priority edge (u, v) ∈Ef then  

If  f(v,u)>0, then pull along the edge (u,v) a flow with value min{-delta,cef(u,v)}(where 
delta<0  is the excess of the vertex v). 

If (u,v)∈E and cvf(u)>0, then pull along the edge (u,v) a flow with value min{-delta, cef(u,v), 
cvf(u)}(where delta<0  is the excess of the vertex v). 

If it does not exists the priority edge from v, then increased the depth of the vertex v as 
follows: 

     d(v): = 1 + min {d(u) | (u, v) ∈ Ef}  

Back to step 2. 

◊ Note. In the general Postflow-pull methods, we do not give the detailed steps how to select the 
initial depth function, how to choose the unbalanced vertices as well as how to choose the priority 
edges. Performing these detailed steps for many algorithms belongs to the general Postflow-pull 
methods. 

Property 5.2. Postflow-pull methods always preserve the validity of the depth function. 

Proof: 

(i) Where it exists priority edge (u,v) ∈ Ef: We have d(u)+1 = d (v). After pulling along edge 
(u,v) a flow, we still have d(v) +1= d(u) +2≥d(u). 

       (ii)  if it does not exist priority edges to v: we have∀u: (u,v) ∈ Ef⇒ d(u)+1 >d(v).  After 
incrementing d(v):d(v):=1+min{d(u)|(u,v)∈Ef} then d(v) still satisfied ∀u, (u,v) ∈Ef : d(u)+1 ≥  
d(v). 

Property 5.3. While Postflow-pull algorithm is in execution, there always exists a directed path 
from sink vertex to the unbalanced vertex in the residual extended mixed network, and there are 
no directed paths from source vertex to sink vertex in the residual extended mixed network. 
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Proof.  (by induction)  

Initially, the only Postflow is in the edges leaving for the sink vertices is the following: 
f(v,t)=min{ce(v,t),cv(v)} and other flows are 0. Then the first vertices of those edges directed to 
the sink are unbalanced. With any unbalanced vertex u, we have  (t, u) ∈Ef and (u,t) ∉Ef, inferred 
there exists paths from t to u, and there are no directed paths from source vertex a to sink vertex 
in the residual extended mixed network Gf. So the properity is true with the initial flow. 

Next, the new unbalanced vertex u only appears when a flow is pushed to the old unbalanced 
vertex v on the priority edge (u,v). Then the residual extended mixed network will have more 
edge (v,u). Due to exist of the path from residual extended mixed network from t to v based on 
inductive hypothesis, there exists a path from t to u in the residual extended network. 

To prove that there are no paths from source vertex s to sink t in the residual extended mixed 
network. It can be argued as follows. 

First, vertices u adcajent to sink vertices t, (u, t) ∈ E, since the initial flow on the edge (u,t) is 
f(u,t)=min{ce(u,t),cv(u)}, if (u,t) ∈Gf, then the flow pushed back along t to u. Where (t, u) is the 
priority edge, d(t)+1 = d(u) > t(t). Thus each vertex a can reach to t in the residual extended 
mixed network must have the depth which is greater than the depth of t. 

For any u to t in the residual extended mixed network. There exists paths from u to t in the 
residual extended mixed network: (u→u1→u2→ ... uk→t). Similarly argued as above we have 
d(u) > d(u1) > ... > d(uk-1) > d(uk) > d(t) 

Thus each vertex to t must have a depth which is greater than t. Besides, the depth of the source 
vertex is 0, so it's impossible to reach to t. So there are no directed paths from source vertex to 
sink vertex in the residual extended network.                        

• Corollary. Vertex’s depth is always less than 2.|V|.  

Proof. We need to consider only unbalanced vertices, the depth  of each unbalanced vertex is 
either the same as or 1 greater than it was the last time that the vertex was balanced. By the same 
argument as in the proof of Property 5.1, the path from s source vertex to a given unbalanced  
vertex in the residual extended mixed network Gf implies that unbalanced vertex’s depth is not 
greater than the sink vertex’s depth plus |V| -2 (the source vertex can not be on the path). Since 
the depth of the sink never changes, and it is initially not greater than |V|, the given unbalanced 
vertex’s depth is not greater than 2.|V| - 2, and no vertex has depth 2|V| or greater. 

• Theorem 5.4 General Postflow-pull methods is true. 

Proof. First we prove the general Postflow-pull method that terminates after perforing some 
finite steps. We confirm that after implementing these finite steps there is not any unbalanced 
vertex. Proof by contradiction method is used. Assume that the set of vertices are infinite, there 
will exist vertex u that appears infinite times in that set. Since the number of vertices in the 
network is finite so there exists vertex v≠ u so that the flow is pulled on along (u,v) and (v,u) in 
infinite times. Since edge (u,v) and edge(v,u) are the priority ones in  infinite residual network 
and  d(u)+1= d(v) and d(v)+1=d(u), then the depth of u and v will increment indefinitely, and this 
conflicts with the above corollary. 

When this method terminates, we receive the flow. Based on property 5.3, it does not exist a path 
from the source to the sink in the residual network. According to augmenting-path algorithm, it is 
max flow. 
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The complexity of the following method  is O(|V|2|E|) [10]. 

5.3. Postflow-pull algorithm 

This is a particular algorithm in Postflow-pull method. Here the unbalanced vertices are pushed 
into the queue. With each vertex from the queue, we will pull the flow in the priority edge until 
the flow becomes either balanced or does not have any priority edge. If it does not exist priority 
edge but there are unbalanced vertices, then we increase the depth and push it into the queue. 

Now we can describe the Postflow-pull algorithm as follows: 

Inputs: Extended mixed network G with source s, sink t,   

Output: Maximum flow  

                            
        

 
Step 1: Initialized:  

Initialize: the only postflow is in the edges for the source vertices is the following: 

 f(v,t)=min{ce(v,t), cv(v)}    

The other flows are 0.  

Choose depth function d(v) which is the length of the shortest path from source s to 
vertex v. 

Push all unbalanced vertices into the queue Q. 

Step 2: Condition to terminate: If Q = ∅, then postflow f becomes maximum flow, end.  

Step 3:  

Get unbalanced vertex v from the queue Q.  

Browsing the priority edge (u, v) ∈Ef   

- If  f(v,u)>0, then pull along the edge (u,v) a flow with value min{-delta,cef(u,v)}(where 
delta<0  is the excess of the vertex v). 

- If (u,v)∈E and cvf(u)>0, then pull along the edge (u,v) a flow with value min{-
delta,cef(u,v),cvf(u)} (where delta<0  is the excess of the vertex v). 

- If vertex u is the new unbalanced vertex, then push this vertex u into queue Q. 

- If  vertex v is still unbalanced, then increased the depth of the vertex v as follows: 

     d(v): = 1 + min {d(u) | (u, v) ∈ Ef}  

Back to step 2. 

6. POSTFLOW-PULL PARALLEL ALGORITHM TO FIND THE MAXIMUM 

FLOW 

6.1. The idea of the algorithm 

Based on the parallel algorithm [10], we build parallel algorithms on m processors. In m 
processors, there will be a main processor to manage data, divide the set of vertex V of the graph 
into m-1 sub-processors, and send data to the sub-processors as well as receive data from the sub-
processors sending to [6],[7],[8],9], [10]. 

( ) ( ) EfF ij ∈= ji, ,
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Sub-processors receive the values from the main processor, then proceed to pull and replace label 
(pull_relabel) and transfer the results to the main processor. 

The main processor after receiving the results from the sub-processors will perform replacement 
label (Relabel) until finding the maximum flow 

6.2. Building the parallel algorithm 

Inputs: Extended mixed network G with source s, sink t m processors (P0, P1,…, Pm-1), where P0 
is the main processor 

Output: Maximum flow  

 
 

Step 1: The main processor P0  performs 

(1.1). initialize: e, d, f, cf, Q: set of unbalanced vertices (excluding the vertices s and t) 
are the vertices with positive excess. 

 (1.2). divide set of vertices V into sub-processors: 

 Let Pi be the ith sub-processor (i = 1,2, ..., m-1) 

 Pi will receive the set of vertices Vi  so that     

       
 (1.3). The main processor sends e, cf  to sub-processors 

Step 2: The Condition to terminate: If Q = ∅, then postflow f  becomes maximum flow, end. 
Else, go to step 3. 

Step 3: The main processor sends d to sub-processors 

Step 4: m-1 sub-processors (P1, P2, …,Pm-1)  implement 

(4.1) Receive e, cf, d and the set of vertices  from the main processor 

(4.2) Handling unbalanced vertice v (pull and replace label). Get unbalanced vertexs v 
from Q and v∈Vi (i= 1,2, ..., m-1). Browsing the priority edge (u, v) ∈Ef   

- If  f(v,u)>0, then pull along the edge (u,v) a flow with value min{-delta,cef(u,v)}(where 
delta<0  is the excess of the vertex v). 

- If (u,v)∈E and cvf(u)>0, then pull along the edge (u,v) a flow with value min{-delta, 
cef(u,v), cvf(u)}. (where delta<0  is the excess of the vertex v). 

 If  vertex v is still unbalanced, then increased the depth of the vertex v as follows: 

       d(v): = 1 + min {d (u) | (u, v) ∈ Ef}  

( 4.3) Send e, cf, d to the main processor 

Step 5: The main processor implements 

  (5.1) Receive e, cf, d  from step 4.3 

( ) ( ) EfF ij ∈= ji, ,

{ } )  and j,i if ( i VVVV iji =∪≠=∩ φ
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 (5.2) This step is distinctive from the sequential algorithms to synchronize our data, after 
receiving the data in (5.1), the main processor checks if all the edges  ( ) Evu ∈, that have 
d(v)> d(u)+1, the main processor will relabel for  vertices u, v as follows: 

- e(u):= e(u)-cef(u,v), e(v):= e(v)+cef(u,v)  

- If f(v,u)>0, then  f(u,v):= min{-delta,cef(u,v)} (where delta<0  is the excess of the vertex 
v). 

- If (u,v)∈E and cvf(u)>0, then f(u,v):= min{-delta, cef(u,v), cvf(u)} (where delta<0 is the 
excess of the vertex v). Put the new unbalanced vertex into set Q 

(5.3) If Vu ∈∀ e(u)=0, eliminate u from active set Q. Back to step 2. 

Theorem 3.1. Postflow-pull parallel algorithm is true and has complexity O(|V|2 |E|). 

Proof: Similar to [10]. postflow-pull parallel algorithm is build in accordance with other parallel 
computing system such as: PRAM, Cluster system, CUDA, RMI, threads,… Push and replace 
label using atomic, due to support of atomic ‘read-modify-write’ instructions, are executed 
atomically by the architecture. Other than the two execution characteristics provided by the 
architecture, we do not impose any order in which executions from multiple sub-processors can 
or should be interleaved, as it will be left for the sequential consistency property of the 
architecture to decide.  

The outcome of the execution reduces to only a few simplified scenarios. By analyzing these 
scenarios, we can show that function f is maintained as a valid depth function. A valid d 
guarantees that there does not exist any paths from s to t throughout the execution of the 
algorithm, and hence guarantees the optimality of the final solution if the algorithm terminates. 
The termination of the algorithm is also guaranteed by the validatity of d, as it bounds the number 
of pull and relabel operations to O(|V |2|E|).   

Parallel algorithm for finding maximum flow in the extended mixed network is built on m 
processors. The program written in Java with database administration system MySQL We 
experimentally sampled nodes as follows: The extended mixed graph corresponds to 18000 nodes 
and 25000 edge. The simulation result is shown in figure 1. This result demonstrates that the 
runtime of parallel algorithms is better than sequential algorithm. 

 
Figure 1. Chart performs the speedup of extended Mixed graph having 18000 nodes and 25000 edge 
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7. CONCLUSION 

The detail result of this paper is building sequential and parallel algorithm by postflow-pull 
methods to find maximum flow in extended mixed network. In addition, to take more advantage 
of multi-core architecture of the parallel computing system and reduce the computing time of this 
algorithm, we build this algorithm on multiple processors. This is a completely new method not 
being announced in Vietnam and in the world. The results of this paper are basically systematized 
and proven.  
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