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ABSTRACT 

 
Machine learning techniques can be used to analyse data from different perspectives and enable 

developers to retrieve useful information. Machine learning techniques are proven to be useful 

in terms of software bug prediction. In this paper, a comparative performance analysis of 

different machine learning techniques is explored for software bug prediction on public 

available data sets. Results showed most of the machine learning methods performed well on 

software bug datasets.  
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1. INTRODUCTION 

 
The advancement in software technology causes an increase in the number of software products, 

and their maintenance has become a challenging task. More than half of the life cycle cost for a 

software system includes maintenance activities. With the increase in complexity in software 

systems, the probability of having defective modules in the software systems is getting higher. It 

is imperative to predict and fix the defects before it is delivered to customers because the software 

quality assurance is a time consuming task and sometimes does not allow for complete testing of 

the entire system due to budget issue. Therefore, identification of a defective software module can 

help us in allocating limited time and resources effectively. A defect in a software system can also 

be named a bug.  

 

A bug indicates the unexpected behaviour of system for some given requirements. The 

unexpected behaviour is identified during software testing and marked as a bug. A software bug 

can be referred to as” Imperfection in software development process that would cause software to 

fail to meet the desired expectation” [1]. Moreover, the finding of defects and correcting those 

results in expensive software development activities [2]. It has been observed that a small number 

of modules contain the majority of the software bugs [3, 4]. Thus, timely identification of 

software bugs facilitates the testing resources allocation in an efficient manner and enables 
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developers to improve the architectural design of a system by identifying the high risk segments 

of the system [5, 6, 7].  

 

Machine learning techniques can be used to analyse data from different perspectives and enable 

developers to retrieve useful information. The machine learning techniques that can be used to 

detect bugs in software datasets can be classification and clustering. Classification is a data 

mining and machine learning approach, useful in software bug prediction. It involves 

categorization of software modules into defective or non-defective that is denoted by a set of 

software complexity metrics by utilizing a classification model that is derived from earlier 

development projects data [8]. The metrics for software complexity may consist of code size [9], 

McCabe’s cyclomatic complexity [10] and Halstead’s Complexity [11].  

 

Clustering is a kind of non-hierarchal method that moves data points among a set of clusters until 

similar item clusters are formed or a desired set is acquired. Clustering methods make 

assumptions about the data set. If that assumption holds, then it results into a good cluster. But it 

is a trivial task to satisfy all assumptions. The combination of different clustering methods and by 

varying input parameters may be beneficial. Association rule mining is used for discovering 

frequent patterns of different attributes in a dataset. The associative classification most of the 

times provides a higher classification as compared to other classification methods.  

 

This paper explores the different machine learning techniques for software bug detection and 

provides a comparative performance analysis between them. The rest of the paper is organized as 

follows: Section II provides a related work on the selected research topic; Section III discusses 

the different selected machine learning techniques, data pre-process and prediction accuracy 

indicators, experiment procedure and results; Section VI provides the discussion about 

comparative analysis of different methods; and Section V concludes the research.  

 

2. RELATED WORK 
 
Lessmann et al. [12] proposed a novel framework for software defect prediction by benchmarking 

classification algorithms on different datasets and observed that their selected classification 

methods provide good prediction accuracy and supports the metrics based classification. The 

results of the experiments showed that there is no significant difference in the performance of 

different classification algorithms. The study did not cover all machine learning techniques for 

software bug prediction. Sharma and Jain [13] explored the WEKA approach for different 

classification algorithms but they did not explore them for software bug prediction. Kaur and 

Pallavi [14] explored the different data mining techniques for software bug prediction but did not 

provide the comparative performance analysis of techniques. Wang et al. [15] provided a 

comparative study of only ensemble classifiers for software bug prediction. Most of the existed 

studies on software defect prediction are limited in performing comparative analysis of all the 

methods of machine learning. Some of them used few methods and provides the comparison 

between them and others just discussed or proposed a method based on existing machine learning 

techniques by extending them [16, 17, 18].  

 

3. MACHINE LEARNING TECHNIQUES FOR SOFTWARE BUG 

DETECTION 
 
In this paper, a comparative performance analysis of different machine learning techniques is 

explored for software bug prediction on public available data sets. Machine learning techniques 

are proven to be useful in terms of software bug prediction. The data from software repository 

contains lots of information in assessing software quality; and machine learning techniques can be 

applied on them in order to extract software bugs information. The machine learning techniques 
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are classified into two broad categories in order to compare their performance; such as supervised 

learning versus unsupervised learning. In supervised learning algorithms such as ensemble 

classifier like bagging and boosting, Multilayer perceptron, Naive Bayes classifier, Support 

vector machine, Random Forest and Decision Trees are compared. In case of unsupervised 

learning methods like Radial base network function, clustering techniques such as K-means 

algorithm, K nearest neighbour are compared against each other.  

 

3.1 Datasets & Pre-processing  

 
The datasets from PROMISE data repository [20] were used in the experiments. Table 1 shows 

the information about datasets. The datasets were collected from real software projects by NASA 

and have many software modules. We used public domain datasets in the experiments as this is a 

benchmarking procedure of defect prediction research, making easier for other researcher to 

compare their techniques [12, 7]. Datasets used different programming languages and code 

metrics such as Halstead’s complexity, code size and McCabe’s cyclomatic complexity etc. 

Experiments were performed by such a baseline.  

 

Waikato Environment for Knowledge Analysis (WEKA) [20] tool was used for experiments. It is 

an open source software consisting of a collection of machine learning algorithms in java for 

different machine learning tasks. The algorithms are applied directly to different datasets. Pre-

processing of datasets has been performed before using them in the experiments. Missing values 

were replaced by the attribute values such as means of attributes because datasets only contain 

numeric values. The attributes were also discretized by using filter of Discretize (10-bin 

discretization) in WEKA software. The data file normally used by WEKA is in ARFF file format, 

which consists of special tags to indicate different elements in the data file (foremost: attribute 

names, attribute types, and attribute values and the data).  

 

3.2 Performance indicators 

 
For comparative study, performance indicators such as accuracy, mean absolute error and F-

measure based on precision and recall were used. Accuracy can be defined as the total number of 

correctly identified bugs divided by the total number of bugs, and is calculated by the equations 

listed below:  

 

Accuracy = (TP + TN) / (TP+TN+FP+FN) 

Accuracy (%) = (correctly classified software bugs/ Total software bugs) * 100  

 

Precision is a measure of correctness and it is a ratio between correctly classified software bugs 

and actual number of software bugs assigned to their category. It is calculated by the equation 

below:  

 

Precision = TP /(TP+FP)  
Table 1. Datasets Information 

 CM1 JM1 KC1 KC2 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 AR1 AR6 

Language C C C++ C++ Java C++ C C C C C C C++ C C 

LOC 20k 315k 43k 18k 18k 63k 6k 8k 40k 26k 40k 36k 164k 29k 29 

Modules 505 10878 2107 522 458 9466 161 403 1107 5589 1563 1458 17186 121 101 

Defects 48 2102 325 105 43 68 52 31 76 23 160 178 516 9 15 
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Table 2. Performance of different machine learning methods with cross validation test mode based on 

Accuracy 

 

 
   Supervised learning  

  Unsupervised learning 

Datasets 
Naye 

Bayes 
MLP SVM 

Ada 

Boost 
Bagging 

Decision 

Trees 

Random 

Forest 
J48 KNN RBF K-means 

AR1 83.45 89.55 91.97 90.24 92.23 89.32 90.56 90.15 65.92 90.33 90.02 

AR6 84.25 84.53 86.00 82.70 85.18 82.88 85.39 83.21 75.13 85.38 83.65 

CM1 84.90 89.12 90.52 90.33 89.96 89.22 89.40 88.71 84.24 89.70 86.58 

JM1 81.43 89.97 81.73 81.70 82.17 81.78 82.09 80.19 66.89 81.61 77.37 

KC1 82.10 85.51 84.47 84.34 85.39 84.88 85.39 84.13 82.06 84.99 84.03 

KC2 84.78 83.64 82.30 81.46 83.06 82.65 82.56 81.29 79.03 83.63 80.99 

KC3 86.17 90.04 90.80 90.06 89.91 90.83 89.65 89.74 60.59 89.87 87.91 

MC1 94.57 99.40 99.26 99.27 99.42 99.27 99.48 99.37 68.58 99.27 99.48 

MC2 72.53 67.97 72.00 69.46 71.54 67.21 70.50 69.75 64.49 69.51 69.00 

MW1 83.63 91.09 92.19 91.27 92.06 90.97 91.29 91.42 81.77 91.99 87.90 

PC1 88.07 93.09 93.09 93.14 93.79 93.36 93.54 93.53 88.22 93.13 92.07 

PC2 96.96 99.52 99.59 99.58 99.58 99.58 99.55 99.57 75.25 99.58 99.21 

PC3 46.87 87.55 89.83 89.70 89.38 89.60 89.55 88.14 64.07 89.76 87.22 

PC4 85.51 89.11 88.45 88.86 89.53 88.53 89.69 88.36 56.88 87.27 86.72 

PC5 96.93 97.03 97.23 96.84 97.59 97.01 97.58 97.40 66.77 97.15 97.33 

Mean 83.47 89.14 89.29 88.59 89.386 88.47 89.08 88.33 71.99 88.87 87.29 

 

Recall is a ratio between correctly classified software bugs and software bugs belonging to their 

category. It represents the machine learning method’s ability of searching extension and is 

calculated by the following equation.  

 

Recall = TP / (TP + FN) 

 

F-measure is a combined measure of recall and precision, and is calculated by using the following 

equation. The higher value of F-measure indicates the quality of machine learning method for 

correct prediction.  

 

F = (2 * precision * recall ) / (Precision + recall)  

 

3.3 Experiment Procedure & Results  

 
For comparative performance analysis of different machine learning methods, we selected 15 

software bug datasets and applied machine learning methods such as NaiveBayes, MLP, SVM, 

AdaBoost, Bagging, Decision Tree, Random Forest, J48, KNN, RBF and K-means. We employed 

WEKA tool for the implementation of experiments. The 10- fold cross validation test mode was 

selected for the experiments.  

 
Table 3. Performance of different machine learning methods with cross validation test mode based on mean 

absolute error 

 

 

 

Supervised learning 

 

Unsupervised learning 

Datasets 
NayeB

ayes 

ML

P 
SVM AdaBoost Bagging 

Decision 

Trees 

Random 

Forest 
J48 KNN RBF 

K-

means 

AR1 0.17 0.11 0.08 0.12 0.13 0.12 0.13 0.13 0.32 0.13 0.11 

AR6 0.17 0.19 0.13 0.22 0.24 0.25 0.22 0.23 0.25 0.22 0.17 

CM1 0.16 0.16 0.10 0.16 0.16 0.20 0.16 0.17 0.16 0.17 0.14 

JM1 0.19 0.27 0.18 0.27 0.25 0.35 0.25 0.26 0.33 0.28 0.23 
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KC1 0.18 0.21 0.15 0.22 0.20 0.29 0.19 0.20 0.18 0.23 0.17 

KC2 0.16 0.22 0.17 0.22 0.22 0.29 0.22 0.23 0.21 0.23 0.21 

KC3 0.15 0.12 0.09 0.14 0.14 0.17 0.14 0.13 0.39 0.15 0.12 

MC1 0.06 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.31 0.01 0.01 

MC2 0.27 0.32 0.28 0.39 0.37 0.40 0.35 0.32 0.35 0.41 0.31 

MW1 0.16 0.11 0.08 0.12 0.12 0.15 0.12 0.12 0.18 0.12 0.13 

PC1 0.11 0.11 0.07 0.11 0.10 0.14 0.09 0.10 0.12 0.12 0.08 

PC2 0.03 0.01 0.00 0.01 0.01 0.02 0.01 0.01 0.18 0.01 0.01 

PC3 0.51 0.14 0.10 0.16 0.15 0.21 0.15 0.15 0.36 0.18 0.13 

PC4 0.14 0.12 0.11 0.15 0.14 0.16 0.14 0.12 0.43 0.20 0.13 

PC5 0.04 0.03 0.03 0.04 0.03 0.06 0.03 0.03 0.33 0.05 0.03 

Mean 0.16 0.14 0.10 0.15 0.15 0.18 0.14 0.14 0.27 0.16 0.13 

 

Table 4. Performance of different machine learning methods with cross validation test mode based 

on F-measure 

 

    Supervised learning    Unsupervised learning 

Datas

ets 
NayeBay 

es MLP SVM AdaBoo 
st Bagging Decision 

Trees 
Random 
Forest J48 KNN RBF K-

means 
AR1 0.90 0.94 0.96 0.95 0.96 0.94 0.96 0.95 0.79 0.95 0.94 

AR6 0.90 0.91 0.93 0.90 0.92 0.90 0.92 0.90 0.84 0.92 0.90 

CM1 0.91 0.94 0.95 0.95 0.95 0.94 0.94 0.94 0.91 0.95 0.93 
JM1 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.88 0.80 0.90 0.86 
KC1 0.90 0.92 0.92 0.91 0.92 0.92 0.92 0.91 0.89 0.92 0.91 
KC2 0.90 0.90 0.90 0.88 0.90 0.89 0.89 0.88 0.86 0.90 0.88 
KC3 0.91 0.94 0.95 0.95 0.95 0.95 0.94 0.94 0.72 0.95 0.93 
MC1 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 1.00 1.00 
MC2 0.82 0.78 0.82 0.80 0.81 0.77 0.80 0.78 0.76 0.81 0.77 
MW1 0.90 0.95 0.96 0.95 0.96 0.95 0.95 0.95 0.89 0.96 0.93 
PC1 0.94 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.94 0.96 0.96 
PC2 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00 
PC3 0.60 0.94 0.95 0.95 0.94 0.95 0.94 0.94 0.77 0.95 0.93 
PC4 0.92 0.94 0.94 0.94 0.94 0.93 0.94 0.93 0.72 0.93 0.92 
PC5 0.98 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.80 0.99 0.99 

Mean 0.89 0.93 0.942 0.93 0.94 0.93 0.93 0.93 0.82 0.93 0.92 

 

 

i) The software bug repository datasets:  

 D= {AR1, AR6, CM1, JM1, KC1, KC2, KC3, MC1, MC2, MW1, PC1, PC2, PC3, PC4, PC5}  

 ii) Selected machine learning methods  

M = {Nayes Bayes, MLP, SVM, AdaBoost, Bagging, Decision Tree, Random Forest, J48, KNN, 

RBF, K-means}  

 

Data pre-process:  

a) Apply Replace missing values to D  

b) Apply Discretize to D  

Test Model - cross validation (10 folds):  
for each D do for each M do  

 Perform cross-validation using 10-folds  

end for  

Select accuracy  

Select Mean Absolute Error (MAE) Select F-measure end for  

 

Experiment procedure:  

Input:  
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Output:  
a) Accuracy  

b) Mean Absolute Error  

c) F-measure  

 

 

3.4 Experiment results  

 
Table 2, 3 & 4 show the results of the experiment. Three parameters were selected in order to 

compare them such as Accuracy, Mean absolute error and F-measure. In order to compare the 

selected algorithms the mean was taken for all datasets and the results are shown in Figure 1, 2 & 

3.  

 

 

Figure 1. Accuracy results for selected machine learning methods  

 

 

 

Figure 2. MAE results for selected machine learning methods 

  



Computer Science & Information Technology (CS & IT)                                   77 

 

 

 

Figure 3. F-measure results for selected machine learning methods 

 

4. DISCUSSION & CONCLUSION  
 
Accuracy, F-measure and MAE results are gathered on various datasets for different algorithms 

as shown in Table 2, 3 & 4. The following observations were drawn from these experiment 

results:  

 

NaiveBayes classifier for software bug classification showed a mean accuracy of various datasets 

83.47. It performed really well on datasets MC1, PC2 and PC5, where the accuracy results were 

above 95%. The worst performance can be seen on dataset PC3, where the accuracy was less than 

50%. MLP also performed well on MC1 and PC2 and got overall accuracy on various datasets 

89.14 %. SVM and Bagging performed really well as compared to other machine learning 

methods, and got overall accuracy of around 89 %. Adaboost got accuracy of 88.59, Bagging got 

89.386, Decision trees achieved accuracy around 88.47, Random Forest got 89.08, J48 got 88.33 

and in the case of unsupervised learning KNN achieved 71.99, RBF achieved 88.87 and K-means 

achieved 87.29. MLP, SVM and Bagging performance on all the selected datasets was good as 

compared to other machine learning methods. The lowest accuracy was achieved by KNN 

method.  

 

The best MAE achieved by SVM method which is 0.10 on various datasets and got 0.00 MAE for 

PC2 dataset. The worst MAE was for KNN method which was 0.27. K-means, MLP, Random 

Forest and J48 also got better MAE around 0.14. In the case of F-measure, higher is better. 

Higher F-measure was achieved by SVM and Bagging methods which were around 0.94. The 

worst F-measure as achieved by KNN method which was 0.82 on various datasets. 

 

Software bugs identification at an earlier stage of software lifecycle helps in directing software 

quality assurance measures and also improves the management process of software. Effective 

bug’s prediction is totally dependent on a good prediction model. This study covered the different 

machine learning methods that can be used for a bug’s prediction. The performance of different 

algorithms on various software datasets was analysed. Mostly SVM, MLP and bagging 

techniques performed well on bug’s datasets. In order to select the appropriate method for bug’s 

prediction domain experts have to consider various factors such as the type of datasets, problem 

domain, uncertainty in datasets or the nature of project. Multiple techniques can be combined in 

order to get more accurate results.  
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