

David C. Wyld et al. (Eds) : ITCS, CST, JSE, SIP, ARIA, DMS - 2015

pp. 71–79, 2015. © CS & IT-CSCP 2015 DOI : 10.5121/csit.2015.50108

COMPARATIVE PERFORMANCE ANALYSIS

OF MACHINE LEARNING TECHNIQUES

FOR SOFTWARE BUG DETECTION

Saiqa Aleem
1

, Luiz Fernando Capretz
1
 and Faheem Ahmed

2

1
Western University, Department of Electrical & Computer Engineering,

 London,Ontario, Canada, N6A5B9
{saleem4, lcapretz}@uwo.ca

2
Thompson Rivers University, Department of Computing Science,

Kamloops, British Columbia, Canada, V2C 6N6
fahmed@tru.ca

ABSTRACT

Machine learning techniques can be used to analyse data from different perspectives and enable

developers to retrieve useful information. Machine learning techniques are proven to be useful

in terms of software bug prediction. In this paper, a comparative performance analysis of

different machine learning techniques is explored for software bug prediction on public

available data sets. Results showed most of the machine learning methods performed well on

software bug datasets.

KEYWORDS

Machine Learning Methods, Software Bug Detection, Predictive Analytics.

1. INTRODUCTION

The advancement in software technology causes an increase in the number of software products,

and their maintenance has become a challenging task. More than half of the life cycle cost for a

software system includes maintenance activities. With the increase in complexity in software

systems, the probability of having defective modules in the software systems is getting higher. It

is imperative to predict and fix the defects before it is delivered to customers because the software

quality assurance is a time consuming task and sometimes does not allow for complete testing of

the entire system due to budget issue. Therefore, identification of a defective software module can

help us in allocating limited time and resources effectively. A defect in a software system can also

be named a bug.

A bug indicates the unexpected behaviour of system for some given requirements. The

unexpected behaviour is identified during software testing and marked as a bug. A software bug

can be referred to as” Imperfection in software development process that would cause software to

fail to meet the desired expectation” [1]. Moreover, the finding of defects and correcting those

results in expensive software development activities [2]. It has been observed that a small number

of modules contain the majority of the software bugs [3, 4]. Thus, timely identification of

software bugs facilitates the testing resources allocation in an efficient manner and enables

72 Computer Science & Information Technology (CS & IT)

developers to improve the architectural design of a system by identifying the high risk segments

of the system [5, 6, 7].

Machine learning techniques can be used to analyse data from different perspectives and enable

developers to retrieve useful information. The machine learning techniques that can be used to

detect bugs in software datasets can be classification and clustering. Classification is a data

mining and machine learning approach, useful in software bug prediction. It involves

categorization of software modules into defective or non-defective that is denoted by a set of

software complexity metrics by utilizing a classification model that is derived from earlier

development projects data [8]. The metrics for software complexity may consist of code size [9],

McCabe’s cyclomatic complexity [10] and Halstead’s Complexity [11].

Clustering is a kind of non-hierarchal method that moves data points among a set of clusters until

similar item clusters are formed or a desired set is acquired. Clustering methods make

assumptions about the data set. If that assumption holds, then it results into a good cluster. But it

is a trivial task to satisfy all assumptions. The combination of different clustering methods and by

varying input parameters may be beneficial. Association rule mining is used for discovering

frequent patterns of different attributes in a dataset. The associative classification most of the

times provides a higher classification as compared to other classification methods.

This paper explores the different machine learning techniques for software bug detection and

provides a comparative performance analysis between them. The rest of the paper is organized as

follows: Section II provides a related work on the selected research topic; Section III discusses

the different selected machine learning techniques, data pre-process and prediction accuracy

indicators, experiment procedure and results; Section VI provides the discussion about

comparative analysis of different methods; and Section V concludes the research.

2. RELATED WORK

Lessmann et al. [12] proposed a novel framework for software defect prediction by benchmarking

classification algorithms on different datasets and observed that their selected classification

methods provide good prediction accuracy and supports the metrics based classification. The

results of the experiments showed that there is no significant difference in the performance of

different classification algorithms. The study did not cover all machine learning techniques for

software bug prediction. Sharma and Jain [13] explored the WEKA approach for different

classification algorithms but they did not explore them for software bug prediction. Kaur and

Pallavi [14] explored the different data mining techniques for software bug prediction but did not

provide the comparative performance analysis of techniques. Wang et al. [15] provided a

comparative study of only ensemble classifiers for software bug prediction. Most of the existed

studies on software defect prediction are limited in performing comparative analysis of all the

methods of machine learning. Some of them used few methods and provides the comparison

between them and others just discussed or proposed a method based on existing machine learning

techniques by extending them [16, 17, 18].

3. MACHINE LEARNING TECHNIQUES FOR SOFTWARE BUG

DETECTION

In this paper, a comparative performance analysis of different machine learning techniques is

explored for software bug prediction on public available data sets. Machine learning techniques

are proven to be useful in terms of software bug prediction. The data from software repository

contains lots of information in assessing software quality; and machine learning techniques can be

applied on them in order to extract software bugs information. The machine learning techniques

Computer Science & Information Technology (CS & IT) 73

are classified into two broad categories in order to compare their performance; such as supervised

learning versus unsupervised learning. In supervised learning algorithms such as ensemble

classifier like bagging and boosting, Multilayer perceptron, Naive Bayes classifier, Support

vector machine, Random Forest and Decision Trees are compared. In case of unsupervised

learning methods like Radial base network function, clustering techniques such as K-means

algorithm, K nearest neighbour are compared against each other.

3.1 Datasets & Pre-processing

The datasets from PROMISE data repository [20] were used in the experiments. Table 1 shows

the information about datasets. The datasets were collected from real software projects by NASA

and have many software modules. We used public domain datasets in the experiments as this is a

benchmarking procedure of defect prediction research, making easier for other researcher to

compare their techniques [12, 7]. Datasets used different programming languages and code

metrics such as Halstead’s complexity, code size and McCabe’s cyclomatic complexity etc.

Experiments were performed by such a baseline.

Waikato Environment for Knowledge Analysis (WEKA) [20] tool was used for experiments. It is

an open source software consisting of a collection of machine learning algorithms in java for

different machine learning tasks. The algorithms are applied directly to different datasets. Pre-

processing of datasets has been performed before using them in the experiments. Missing values

were replaced by the attribute values such as means of attributes because datasets only contain

numeric values. The attributes were also discretized by using filter of Discretize (10-bin

discretization) in WEKA software. The data file normally used by WEKA is in ARFF file format,

which consists of special tags to indicate different elements in the data file (foremost: attribute

names, attribute types, and attribute values and the data).

3.2 Performance indicators

For comparative study, performance indicators such as accuracy, mean absolute error and F-

measure based on precision and recall were used. Accuracy can be defined as the total number of

correctly identified bugs divided by the total number of bugs, and is calculated by the equations

listed below:

Accuracy = (TP + TN) / (TP+TN+FP+FN)

Accuracy (%) = (correctly classified software bugs/ Total software bugs) * 100

Precision is a measure of correctness and it is a ratio between correctly classified software bugs

and actual number of software bugs assigned to their category. It is calculated by the equation

below:

Precision = TP /(TP+FP)
Table 1. Datasets Information

 CM1 JM1 KC1 KC2 KC3 MC1 MC2 MW1 PC1 PC2 PC3 PC4 PC5 AR1 AR6

Language C C C++ C++ Java C++ C C C C C C C++ C C

LOC 20k 315k 43k 18k 18k 63k 6k 8k 40k 26k 40k 36k 164k 29k 29

Modules 505 10878 2107 522 458 9466 161 403 1107 5589 1563 1458 17186 121 101

Defects 48 2102 325 105 43 68 52 31 76 23 160 178 516 9 15

74 Computer Science & Information Technology (CS & IT)

Table 2. Performance of different machine learning methods with cross validation test mode based on

Accuracy

 Supervised learning

 Unsupervised learning

Datasets
Naye

Bayes
MLP SVM

Ada

Boost
Bagging

Decision

Trees

Random

Forest
J48 KNN RBF K-means

AR1 83.45 89.55 91.97 90.24 92.23 89.32 90.56 90.15 65.92 90.33 90.02

AR6 84.25 84.53 86.00 82.70 85.18 82.88 85.39 83.21 75.13 85.38 83.65

CM1 84.90 89.12 90.52 90.33 89.96 89.22 89.40 88.71 84.24 89.70 86.58

JM1 81.43 89.97 81.73 81.70 82.17 81.78 82.09 80.19 66.89 81.61 77.37

KC1 82.10 85.51 84.47 84.34 85.39 84.88 85.39 84.13 82.06 84.99 84.03

KC2 84.78 83.64 82.30 81.46 83.06 82.65 82.56 81.29 79.03 83.63 80.99

KC3 86.17 90.04 90.80 90.06 89.91 90.83 89.65 89.74 60.59 89.87 87.91

MC1 94.57 99.40 99.26 99.27 99.42 99.27 99.48 99.37 68.58 99.27 99.48

MC2 72.53 67.97 72.00 69.46 71.54 67.21 70.50 69.75 64.49 69.51 69.00

MW1 83.63 91.09 92.19 91.27 92.06 90.97 91.29 91.42 81.77 91.99 87.90

PC1 88.07 93.09 93.09 93.14 93.79 93.36 93.54 93.53 88.22 93.13 92.07

PC2 96.96 99.52 99.59 99.58 99.58 99.58 99.55 99.57 75.25 99.58 99.21

PC3 46.87 87.55 89.83 89.70 89.38 89.60 89.55 88.14 64.07 89.76 87.22

PC4 85.51 89.11 88.45 88.86 89.53 88.53 89.69 88.36 56.88 87.27 86.72

PC5 96.93 97.03 97.23 96.84 97.59 97.01 97.58 97.40 66.77 97.15 97.33

Mean 83.47 89.14 89.29 88.59 89.386 88.47 89.08 88.33 71.99 88.87 87.29

Recall is a ratio between correctly classified software bugs and software bugs belonging to their

category. It represents the machine learning method’s ability of searching extension and is

calculated by the following equation.

Recall = TP / (TP + FN)

F-measure is a combined measure of recall and precision, and is calculated by using the following

equation. The higher value of F-measure indicates the quality of machine learning method for

correct prediction.

F = (2 * precision * recall) / (Precision + recall)

3.3 Experiment Procedure & Results

For comparative performance analysis of different machine learning methods, we selected 15

software bug datasets and applied machine learning methods such as NaiveBayes, MLP, SVM,

AdaBoost, Bagging, Decision Tree, Random Forest, J48, KNN, RBF and K-means. We employed

WEKA tool for the implementation of experiments. The 10- fold cross validation test mode was

selected for the experiments.

Table 3. Performance of different machine learning methods with cross validation test mode based on mean

absolute error

Supervised learning

Unsupervised learning

Datasets
NayeB

ayes

ML

P
SVM AdaBoost Bagging

Decision

Trees

Random

Forest
J48 KNN RBF

K-

means

AR1 0.17 0.11 0.08 0.12 0.13 0.12 0.13 0.13 0.32 0.13 0.11

AR6 0.17 0.19 0.13 0.22 0.24 0.25 0.22 0.23 0.25 0.22 0.17

CM1 0.16 0.16 0.10 0.16 0.16 0.20 0.16 0.17 0.16 0.17 0.14

JM1 0.19 0.27 0.18 0.27 0.25 0.35 0.25 0.26 0.33 0.28 0.23

Computer Science & Information Technology (CS & IT) 75

KC1 0.18 0.21 0.15 0.22 0.20 0.29 0.19 0.20 0.18 0.23 0.17

KC2 0.16 0.22 0.17 0.22 0.22 0.29 0.22 0.23 0.21 0.23 0.21

KC3 0.15 0.12 0.09 0.14 0.14 0.17 0.14 0.13 0.39 0.15 0.12

MC1 0.06 0.01 0.01 0.01 0.01 0.03 0.01 0.01 0.31 0.01 0.01

MC2 0.27 0.32 0.28 0.39 0.37 0.40 0.35 0.32 0.35 0.41 0.31

MW1 0.16 0.11 0.08 0.12 0.12 0.15 0.12 0.12 0.18 0.12 0.13

PC1 0.11 0.11 0.07 0.11 0.10 0.14 0.09 0.10 0.12 0.12 0.08

PC2 0.03 0.01 0.00 0.01 0.01 0.02 0.01 0.01 0.18 0.01 0.01

PC3 0.51 0.14 0.10 0.16 0.15 0.21 0.15 0.15 0.36 0.18 0.13

PC4 0.14 0.12 0.11 0.15 0.14 0.16 0.14 0.12 0.43 0.20 0.13

PC5 0.04 0.03 0.03 0.04 0.03 0.06 0.03 0.03 0.33 0.05 0.03

Mean 0.16 0.14 0.10 0.15 0.15 0.18 0.14 0.14 0.27 0.16 0.13

Table 4. Performance of different machine learning methods with cross validation test mode based

on F-measure

 Supervised learning Unsupervised learning

Datas

ets
NayeBay

es MLP SVM AdaBoo
st Bagging Decision

Trees
Random
Forest J48 KNN RBF K-

means
AR1 0.90 0.94 0.96 0.95 0.96 0.94 0.96 0.95 0.79 0.95 0.94

AR6 0.90 0.91 0.93 0.90 0.92 0.90 0.92 0.90 0.84 0.92 0.90

CM1 0.91 0.94 0.95 0.95 0.95 0.94 0.94 0.94 0.91 0.95 0.93
JM1 0.89 0.90 0.90 0.90 0.90 0.90 0.90 0.88 0.80 0.90 0.86
KC1 0.90 0.92 0.92 0.91 0.92 0.92 0.92 0.91 0.89 0.92 0.91
KC2 0.90 0.90 0.90 0.88 0.90 0.89 0.89 0.88 0.86 0.90 0.88
KC3 0.91 0.94 0.95 0.95 0.95 0.95 0.94 0.94 0.72 0.95 0.93
MC1 0.97 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.81 1.00 1.00
MC2 0.82 0.78 0.82 0.80 0.81 0.77 0.80 0.78 0.76 0.81 0.77
MW1 0.90 0.95 0.96 0.95 0.96 0.95 0.95 0.95 0.89 0.96 0.93
PC1 0.94 0.97 0.96 0.96 0.97 0.97 0.97 0.97 0.94 0.96 0.96
PC2 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.90 1.00 1.00
PC3 0.60 0.94 0.95 0.95 0.94 0.95 0.94 0.94 0.77 0.95 0.93
PC4 0.92 0.94 0.94 0.94 0.94 0.93 0.94 0.93 0.72 0.93 0.92
PC5 0.98 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.80 0.99 0.99

Mean 0.89 0.93 0.942 0.93 0.94 0.93 0.93 0.93 0.82 0.93 0.92

i) The software bug repository datasets:

 D= {AR1, AR6, CM1, JM1, KC1, KC2, KC3, MC1, MC2, MW1, PC1, PC2, PC3, PC4, PC5}

 ii) Selected machine learning methods

M = {Nayes Bayes, MLP, SVM, AdaBoost, Bagging, Decision Tree, Random Forest, J48, KNN,

RBF, K-means}

Data pre-process:

a) Apply Replace missing values to D

b) Apply Discretize to D

Test Model - cross validation (10 folds):
for each D do for each M do

 Perform cross-validation using 10-folds

end for

Select accuracy

Select Mean Absolute Error (MAE) Select F-measure end for

Experiment procedure:

Input:

76 Computer Science & Information Technology (CS & IT)

Output:
a) Accuracy

b) Mean Absolute Error

c) F-measure

3.4 Experiment results

Table 2, 3 & 4 show the results of the experiment. Three parameters were selected in order to

compare them such as Accuracy, Mean absolute error and F-measure. In order to compare the

selected algorithms the mean was taken for all datasets and the results are shown in Figure 1, 2 &

3.

Figure 1. Accuracy results for selected machine learning methods

Figure 2. MAE results for selected machine learning methods

Computer Science & Information Technology (CS & IT) 77

Figure 3. F-measure results for selected machine learning methods

4. DISCUSSION & CONCLUSION

Accuracy, F-measure and MAE results are gathered on various datasets for different algorithms

as shown in Table 2, 3 & 4. The following observations were drawn from these experiment

results:

NaiveBayes classifier for software bug classification showed a mean accuracy of various datasets

83.47. It performed really well on datasets MC1, PC2 and PC5, where the accuracy results were

above 95%. The worst performance can be seen on dataset PC3, where the accuracy was less than

50%. MLP also performed well on MC1 and PC2 and got overall accuracy on various datasets

89.14 %. SVM and Bagging performed really well as compared to other machine learning

methods, and got overall accuracy of around 89 %. Adaboost got accuracy of 88.59, Bagging got

89.386, Decision trees achieved accuracy around 88.47, Random Forest got 89.08, J48 got 88.33

and in the case of unsupervised learning KNN achieved 71.99, RBF achieved 88.87 and K-means

achieved 87.29. MLP, SVM and Bagging performance on all the selected datasets was good as

compared to other machine learning methods. The lowest accuracy was achieved by KNN

method.

The best MAE achieved by SVM method which is 0.10 on various datasets and got 0.00 MAE for

PC2 dataset. The worst MAE was for KNN method which was 0.27. K-means, MLP, Random

Forest and J48 also got better MAE around 0.14. In the case of F-measure, higher is better.

Higher F-measure was achieved by SVM and Bagging methods which were around 0.94. The

worst F-measure as achieved by KNN method which was 0.82 on various datasets.

Software bugs identification at an earlier stage of software lifecycle helps in directing software

quality assurance measures and also improves the management process of software. Effective

bug’s prediction is totally dependent on a good prediction model. This study covered the different

machine learning methods that can be used for a bug’s prediction. The performance of different

algorithms on various software datasets was analysed. Mostly SVM, MLP and bagging

techniques performed well on bug’s datasets. In order to select the appropriate method for bug’s

prediction domain experts have to consider various factors such as the type of datasets, problem

domain, uncertainty in datasets or the nature of project. Multiple techniques can be combined in

order to get more accurate results.

78 Computer Science & Information Technology (CS & IT)

ACKNOWLEDGEMENT

The authors would like to thank Dr. Jagath Samarabandu for his constructive comments

which contributed to the improvement of this article as his course work.

REFERENCES

[1] Kumaresh, Sakhti and Baskaran, R. (2010) “Defect analysis and prevention for software process

quality improvement”, International Journal of Computer Applications, Vol. 8, Issue 7, pp. 42-47.

[2] Ahmad, Khalil and Varshney, Natasha (2012)“On minimizing software defects during new product

development using enhanced preventive approach”, International Journal of Soft Computing and

Engineering, Vol. 2, Issue 5, pp. 9-12.

[3] Andersson, Carina (2007) “A replicated empirical study of a selection method for software reliability

growth models”, Empirical Software Engineering, Vol.12, Issue 2, pp. 161-182.

[4] Fenton, Norman E. & Ohlsson, Nichlas (2000) “Quantitative analysis of faults and failures in a

complex software system”, IEEE Transactions on Software Engineering, Vol. 26, Issue 8, pp. 797-

814.

[5] Khoshgoftaar, Taghi M. & Seliya, Naeem (2004) “Comparative assessment of software quality

classification techniques: An empirical case study”, Empirical Software Engineering, Vol. 9, Issue 3,

pp. 229-257.

[6] Khoshgoftaar, Taghi M., Seliya, Naeem & Sundaresh, Nandani (2006) “An empirical study of

predicting software faults with case-based reasoning”, Software Quality Journal, Vol. 14, Issue 2, pp.

85-111.

[7] Menzies, Tim., Greenwald, Jeremy & Frank, Art (2007) “Data mining static code attributes to learn

defect predictors”, IEEE Transaction Software Engineering., Vol. 33, Issue 1, pp. 2-13.

[8] Spiewak, Rick & McRitchie, Karen (2008) “Using software quality methods to reduce cost and

prevent defects”, Journal of Software Engineering and Technology, pp. 23-27.

[9] Shiwei, Deng (2009) “Defect prevention and detection of DSP-Software”, World Academy of

Science, Engineering and Technology, Vol. 3, Issue 10, pp. 406-409.

[10] Trivedi, Prakriti & Pachori, Som (2010) “Modelling and analyzing of software defect prevention

using ODC”, International Journal of Advanced Computer Science and Applications, Vol. 1, No. 3,

pp. 75- 77.

[11] Nair, T.R. Gopalakrishan & Suma, V. (2010) “The pattern of software defects spanning across size

complexity”, International Journal of Software Engineering, Vol. 3, Issue 2, pp. 53- 70.

[12] Lessmann, Stephen., Baesens, Bart., Mues, Christopher., & Pietsch, Swantje (2008) “Benchmarking

classification models for software defect prediction: A proposed framework and novel finding”, IEEE

Transaction on Software Engineering, Vol. 34, Issue 4, pp. 485-496.

[13] Sharma, Trilok C. & Jain, Manoj (2013) “WEKA approach for comparative study of classification

algorithm”, International Journal of Advanced Research in Computer and Communication

Engineering, Vol. 2, Issue 4, 7 pages.

[14] Kaur, Puneet Jai & Pallavi, (2013) “Data mining techniques for software defect prediction”,

International Journal of Software and Web Sciences (IJSWS), Vol. 3, Issue 1, pp. 54-57.

[15] Wang, Tao., Li, Weihua., Shi, Haobin., & Liu, Zun. (2011) “Software defect prediction based on

classifiers ensemble”, Journal of Information & Computational Science, Vol. 8, Issue 1, pp. 4241–

4254.

[16] Adiu, Surendra & Geethanjali, N. (2013) “Classification of defects in software using decision tree

algorithm”, International Journal of Engineering Science and Technology (IJEST), Vol. 5, Issue 6, pp.

1332-1340.

[17] Dommati, Sunil J., Agrawal, Ruchi., Reddy, Ram M. & Kamath, Sowmya (2012) “Bug classification:

Feature extraction and comparison of event model using Naïve Bayes approach”, International

Conference on Recent Trends in Computer and Information Engineering (ICRTCIE'2012), pp. 8-12.

[18] Xu Jie., Ho Danny. and Capretz Luiz Fernando (2010) "An empirical study on the procedure to derive

software quality estimation models", International Journal of Computer Science & Information

Technology (IJCSIT), AIRCC Digital Library, Vol. 2, Number 4, pp. 1-16.

Computer Science & Information Technology (CS & IT) 79

[19] G. Boetticher, Menzies, Tim & T. Ostrand, (2007) PROMISE Repository of Empirical Software

Engineering Data, http://promisedata.org/, West Virginia University, Department of Computer

Science.

[20] WEKA, http://www.cs.waikato.ac.nz/~ml/weka, accessed on December 13th, 2013.

AUTHORS

Saiqa Aleem received her MS in Computer Science (2004) from University of Central

Punjab, Pakistan and MS in Information Technology (2013) from UAEU, United Arab

Emirates. Currently, she is pursuing her PhD. in software engineering from University

of Western Ontario, Canada. She had many years of academic and industrial

experience holding various technical positions. She is Microsoft, CompTIA, and

CISCO certified professional with MCSE, MCDBA, A+ and CCNA certifications.

Dr. Luiz Fernando Capretz has vast experience in the software engineering field as

practitioner, manager and educator. Before joining the University of Western Ontario

(Canada), he worked at both technical and managerial levels, taught and did research

on the engineering of software in Brazil, Argentina, England, Japan and the United

Arab Emirates since 1981. He is currently a professor of Software Engineering and

Assistant Dean (IT and e-Learning), and former Director of the Software Engineering

Program at Western. He was the Director of Informatics and Coordinator of the

computer science program in two universities in Brazil. He has published over 200

academic papers on software engineering in leading international journals and conference proceedings, and

co-authored two books: Object-Oriented Software: Design an Maintenance published by World Scientific,

and Software Product Lines published by VDM-Verlag. His current research interests are software

engineering, human aspects of software engineering, software analytics, and software engineering

education. Dr. Capretz received his Ph.D. from the University of Newcastle upon Tyne (U.K.), M.Sc. from

the National Institute for Space Research (INPE-Brazil), and B.Sc. from UNICAMP (Brazil). He is a senior

member of IEEE, a distinguished member of the ACM, a MBTI Certified Practitioner, and a Certified

Professional Engineer in Canada (P.Eng.). He can be contacted at lcapretz@uwo.ca; further information

can be found at: http://www.eng.uwo.ca/people/lcapretz/

Dr. Faheem Ahmed received his MS (2004) and Ph.D. (2006) in Software

Engineering from the Western University, London, Canada. Currently he is Associate

Professor and Chair at Thompson Rivers University, Canada. Ahmed had many years

of industrial experience holding various technical positions in software development

organizations. During his professional career he has been actively involved in the life

cycle of software development process including requirements management, system

analysis and design, software development, testing, delivery and maintenance. Ahmed

has authored and co-authored many peer-reviewed research articles in leading journals

and conference proceedings in the area of software engineering. He is a senior member of IEEE.

