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ABSTRACT 

 

Single-channel speech intelligibility enhancement is much more difficult than multi-channel 

intelligibility enhancement. It has recently been reported that machine learning training-based 

single-channel speech intelligibility enhancement algorithms perform better than traditional 

algorithms. In this paper, the performance of a deep neural network method using a multi-

resolution cochlea-gram feature set recently proposed to perform single-channel speech 

intelligibility enhancement processing is evaluated. Various conditions such as different 

speakers for training and testing as well as different noise conditions are tested. Simulations 

and objective test results show that the method performs better than another deep neural 

networks setup recently proposed for the same task, and leads to a more robust convergence 

compared to a recently proposed Gaussian mixture model approach. 
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1. INTRODUCTION 
 

Single-channel speech intelligibility enhancement is more challenging than multi-channel speech 

intelligibility enhancement, because information about the spatial sound propagation is not 

available.  In most cases, it is hard for a single-channel noise-reduction algorithm to know how 

and to what extent to modify a specific parameter to improve speech intelligibility [1]. 

 

A lot of previous work has been designed on the prior knowledge or estimation of noise, such as 

the a priori Signal-to-Noise Ratio (SNR) algorithm, the Minimum Mean-Square Error (MMSE) 

approach, the log-MMSE approach, the Wiener filter, and so on. They have all been shown to be 

ineffective for intelligibility enhancement [1].  

 

Two machine learning training-based methods have recently been proposed for intelligibility 

improvement: the Gaussian Mixture Models (GMM)-based approach [2] and the Deep Neural 
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Networks (DNN)-based approach [3]. In 2006, an efficient way to train a multilayer neural 

network was proposed [4] and a new area of machine learning emerged, which is called deep 

learning, deep hierarchical learning or DNN [5],[6]. Key aspects of machine learning and 

artificial intelligence have been widened by the techniques developed from deep learning [7]-[9], 

and there are several active researchers in this area [10]. For speech intelligibility processing 

using DNNs, in 2013 a DNN using 85 features as inputs was proposed for a speech recognition 

task with hearing-impaired listeners [11]. In 2014, it was reported that the Multi-Resolution 

CochleaGram (MRCG) feature set produced a better result in a multilayer perceptron neural 

network, which is a simpler type of neural network [3].  

 

Under some conditions, it has been reported that the DNN approach, which better represents the 

state of the art in machine learning, generalizes better and better processes previously unseen data 

patterns compared to the GMM method. The main goal of this paper is to evaluate the 

performance of the DNN method proposed in [3] using objective measures under different 

conditions (different types and levels of noise, mismatch between training set and testing set, etc.) 

and to compare the performance with the GMM approach previously proposed for the same task 

[2]. 

 

2. DEEP NEURAL NETWORKS 
 

2.1 Pretraining DNN with a Restricted Boltzmann Machine 

 

 
Figure 1. RBM with 4 visible units and 3 hidden units. 

 

Training deep neural networks is challenging, because training can easily get stuck in undesired 

local optima which prevent the deeper layers from learning useful features. This problem can be 

partially circumvented by pretraining, i.e., performing a step of unsupervised training before the 

supervised learning step. The Restricted Boltzmann Machine (RBM) method is a useful way to 

conduct DNN training. A RBM is a simplified kind of a Boltzmann Machine with no visible-

visible units connections and hidden-hidden units connections. In a Restricted Boltzmann 

Machine, a visible unit only has connections to hidden units, and reversely a hidden unit only has 

connections to visible units. This special kind of structure provides the advantage that when a 

visible unit is learning its optimal weights corresponding to a set of hidden units, the learning is 

independent to other visible units. This advantage also applies to the training of hidden units. 

Then the whole network can be trained in parallel. With the great progress made in graphics 

processing unit processors (GPU), i.e., in parallel computing, this can become a great advantage. 

Figure 1 shows a simple Restricted Boltzmann Machine with 4 visible units and 3 hidden units. 

 
The "energy" of a Restricted Boltzmann Machine can be written as below: 
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where s   is the state vector s ={ 1v , 2v  , 3v  , … , nv , 1h  , 2h  , … , mh }, n is the number of 

visible units, m is the number of hidden units,  and is  is a component of s  that can be a visible 

unit or a hidden unit. If js  is the unit connected to is , then ijw  is the weight between is   and js  

2.2 Restricted Boltzmann Machine Learning 

Let unit i  be a unit to update its binary state. The total input iz  for this unit i  is the sum of its 

bias ib  and the weighted products from connections to other units: 
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The probability for this unit to turn on or off is given by a logistic function: 
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As mentioned earlier, the visible units only connect to hidden units. For a given state vector s , no 
matter if the network is updated in any order, the network will eventually reach a stationary 
distribution (equilibrium).  Then for all possible binary state vectors u , the probability of vector 

s  can be given by the energy: 
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Given a training set of state vectors (data), the goal of the learning is to find the optimal weights 
and biases to make the state vectors maximize the product of the probabilities that the Boltzmann 
machine assigns to the binary vectors in the training set. By differentiating (4) using

jiij sswE −=∂∂ /)(s , it can be shown that: 
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where 
data

jiss  is the state value of the data distribution and 
model

jiss  is the state value when 

the Boltzmann machine is sampling state vectors from its equilibrium distribution. Then the 

gradient ascent is surprisingly simple, because the differentiation ∑ ∂
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The update value ijw∆  is the product of 
modeljidataji ssss −  and the learning rate. The 

learning rate can be constant or it can vary during the training steps to satisfy different situations. 

To get the Boltzmann equilibrium distribution, we can follow the steps below: 

 

1) Starting with a data vector on visible units, update all of the hidden units in parallel; 

 

2) Update all of the visible units in parallel to get a “reconstruction” of the visible units; 

 

3) Update all of the hidden units again until it is the equilibrium distribution. 

 

This algorithm may take a long time to get to the equilibrium. It can be stopped at step 3) or 

continue iteratively to update 1) and 2), this is called “contrastive divergence” and has been found 

to work well in practice [12]. 

 

3. MULTI-RESOLUTION COCHLEAGRAM FEATURE 

 
The multi-resolution cochleagram (MRCG) feature was originally proposed in [3]. The MRCG 

feature is a multi-resolution power distribution of an acoustic signal in the time-frequency 

representation. The cochleagram represents the excitation pattern on the basilar membrane in the 

inner ear as a function of time. Four cochleagrams at different frequency resolutions are combined 

to form the MRCG feature, including one high resolution cochleagram and three low resolution 

cochleagrams.   

 

The cochleagram is calculated in two steps. The input signal is first filtered by a gammatone filter 

bank:  

 
1( ) exp[ 2 ( )]cos(2 ) ( )N
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= −     (7) 

where cf  , the center frequencies, are uniformly spaced on the equivalent rectangular bandwidth 

(ERB) scale, N  is the order of the filter, )(tu  is the step function, and )( cfb  is the bandwidth 

related to cf :  

 )*00437.01log(*4.21*019.1)(*019.1)( ccc ffERBfb +==    (8) 

)( cfb increases as cf  increases, which means that the frequency resolution decreases as the 

frequency increases. The signal is then divided into frames. A cochleagram is the power of each 
time frame and in each gammatone bank channel. 

The MRCG feature can then be described as below: 

1) Given an input, compute a 64-channel cochleagram (CG1) using 20 ms frames with 10 ms 
frame shifts, and apply a log operation on the output in each time-frequency (T-F) unit; 

2) CG2 is similar as CG1, but with 200 ms frames and 10 ms frame shifts; 

3) CG3 is derived by averaging CG1 across a square window of 11 frequency channels and 11 
time frames centered at a given T-F unit (zero padding is applied at the edges of CG1 when units 
outside CG1 are needed in the averaging process);  

4) CG4 is similar as CG3, but with a 23*23 square window; 

5) Concatenate CG1-CG4 to obtain the MRCG feature.  
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Delta and double-delta features (i.e., computing the differences of feature values at consecutive 
times, and computing the differences of those differences) are widely used in speech processing to 
capture temporal dynamics. Delta and double-delta features were thus also used on the MRCG 
features generated above. Then the final MRCG feature set is obtained. Each time frame becomes 
an MRCG feature set of dimension 64 by 12. 

 

4. MRCG-DNN ALGORITHM 

The MRCG-DNN algorithm is a kind of channel-selection algorithm. A channel-selection based 
algorithm will retain the T-F bins where speech is dominant, and discard the T-F bins where noise 
is dominant. The algorithm makes the retain/discard decision based on the SNR of each T-F bin, 
compared to a threshold called the local SNR criterion (LC). In an ideal case, where separate 
access to clean speech and noise-only signals is possible and the exact SNR can be computed, 
using a channel-selection algorithm we can get the ideal binary mask (IDBM):  
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where ( , )B k t  is the IDBM mask at channel (frequency) k  and time t .  

The IDBM has been shown to improve speech intelligibility at any input SNR level [1] (even as 

low as -40 dB) . The IDBM is an unrealistic condition that can never occur in real life, but for 

several reasons this result is important. In particular, the outcome of the IDBM can provide an 

upper bound, so that the IDBM can be a criterion to estimate the performance of a practical 

algorithm. 

 

The MRCG-DNN algorithm uses a relatively large corpus of speech and noise sources, together 

with the calculated IDBM as the input of a system to be trained. An overview of MRCG-DNN 

algorithm is shown in Figure 2. 

 
Figure 2. Overview of the MRCG-DNN algorithm 
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5. RESULTS 

 
To test how the MRCG-DNN algorithm performs in different situations, we did some tests using 

the HINT speech database [13], the TIMIT speech database (LDC93S1) [14], and noise from the 

Aurora 2 database [15]. The HINT speech files have a 2 to 3 seconds length for each file, all from 

the same male speaker. The TIMIT is a corpus of phonemically and lexically transcribed speech 

of American English speakers of different genders and dialects. Each sentence is about 3 to 5 

seconds long. The Aurora noise files contain different situations of noise, including babble, 

airport, restaurant, and street. In the tests we have used these four kinds of noise. 

 

In this paper, the Matlab™ code is based on two Deep Learning toolboxes: DeepLearnToolBox 

[16] and DeepNeuralNetwork [17]. The bone structure of the first toolbox, a few active functions 

of the second toolbox, and some improvements were combined together to perform the 

simulations of this work. 

 

In the following tests, 200 clean speech files are used for training (approx. 5-6 minutes of 

recordings), and 70 clean speech files are used for testing (approx. 2-3 minutes of recordings). If 

the training data is too short (i.e., less than 1 min) the result was found to be poor. If the training 

data is too long, it can either cause the computer to run out of memory or to take too much 

processing time. Using 5-6 minutes of recordings for training was found to produce a good result 

with a relatively fast processing speed. As a comparison, in [18] 390 sentences were used for 

training and in [3] 100 sentences were used. The sampling rate was set to 16000 Hz. The noisy 

files were produced by randomly selecting a noise segment that has the same length as the clean 

speech files and adding them together with the desired SNR. The tests were operated using 

Matlab™ on a Windows 7™ (64-bit) system, with an Intel Core™ i5-4310M CPU, and 8 GB 

memory. 

 

To evaluate the estimated mask compared to the IDBM, a method called the HIT - FA (HIT minus 

FA) metric is used, which has been shown to correlate well with human intelligibility [1]. The HIT 

is the probability of correct detection (the percentage of target-dominant T-F units correctly 

classified), while the FA is the probability of false alarm (the percentage of noise-dominant units 

incorrectly classified). Both the HIT and FA need to be taken into account when evaluating the 

performance of the binary mask estimate, and the HIT-FA is therefore a simple difference metric 

that can be used to quantify the performance of the estimate. 

 

5.1 Tests for simple noises 
 

These first tests used the HINT database, which is a single speaker database. White, purple and 

pink noises were used. The model was trained with -5dB, 0 dB and 5dB input SNR, and tests were 

performed with -5dB SNR. For each noise that was tested, the DNN model was trained with 

speech from the training set and additive noise consisting of only one noise type. The testing phase 

was performed with speech from the test set and again additive noise consisting of only the same 

noise type. Table 1 shows the HIT-FA results as well as URL links to the clean test male speech 

sound file, the noisy sound files and the processed sound files. 
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Table 1. Results for simple noises 

 

Clean test speech 

Noise type HIT FA HIT-FA noisy processed 

white 84.2% 2.6% 81.6% link link 

purple 92.3% 3.1% 89.2% link link 

pink 78.5% 20.2% 58.3% link link 

 

From Table 1 we can see that the DNN model performs very well for white noise, and even better 
for purple noise. The HIT rate is very high, while the FA rate is very low. The processed sound 
files are also quite clear. On the other hand, the DNN model produces a much higher FA for pink 
noise, and the processed file is highly distorted. The reason for this is that purple noise energy is 
mainly in high frequency bands, while pink noise is mainly in low frequency bands, and human 
voice is also mostly distributed in low frequencies. In the purple noise case, the DNN model can 
easily separate them, it behaves as a kind of high-end low pass filter. In the pink noise condition, 
the separation is more difficult for the DNN because of the increased frequency overlap between 
speech and noise.  

5.2 Same speaker for training and testing, same noise type for training and testing 

In this test we used the HINT database which has a single speaker, with different sentences for 
training and testing. We used four kinds of realistic noise: airport, babble, restaurant, and street. 
We trained the DNN model with -5dB, 0 dB and 5dB input SNR, and then performed the testing 
with -5dB SNR. For each type of noise we trained the model and then used the model to test 
different sentences corrupted by the same kind of noise as the one used for training (but of course 
using different noise segments). Table 2 shows the HIT-FA results and URL links to the clean test 
male speech sound file, the noisy sound files and the processed sound files. 

Table 2. Results with same speaker for training and testing, same noise type for training and testing. 

 

Clean test speech 

Noise type HIT FA HIT-FA noisy processed 

babble 76.2% 7.3% 68.9% link link 

airport 80.3% 11.0% 69.3% link link 

restaurant 77.5% 9.9% 67.6% link link 

street 78.2% 7.5% 70.7% link link 

 

From Table 2 we can see that the HIT rate of the estimated mask is relatively high and the FA rate 

is low, regardless of the noise type. The resulting HIT-FA rate are fairly good and are comparable 

with previous results from the literature [18]. When listening to the processed output files, it is 

debatable if the intelligibility is really improved or not compared to the original noisy files, i.e., 

subjective listening tests would be required to fully determine this. In some cases (e.g. babble 

noise) the intelligibility of the processed files appears to be better than for other cases (e.g. street 

noise), so this indicates that the performance can be noise dependent. It should be noted that the 

noises used for testing were challenging noises, but they are more likely to correspond to real 

noise conditions in practice. 

 

5.3 Different speakers for training and testing, same noise type for training and 

testing   

 

In this section, we used the TIMIT dataset with several different speakers for training and another 

speaker was used for testing (but for the same female gender as the ones used in training). Four 
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kinds of noise were used: airport, babble, restaurant, and street. We trained the DNN model with  -

5dB, 0 dB and 5dB SNR, and did testing at -5dB SNR. For each type of noise we trained the 

model and performed the testing using the same type of noise (but different noise segments). Table 

3 shows the HIT-FA results and URL links to the clean test female speech sound file, the noisy 

sound files and the processed sound files.  

 
Table 3. Results for different speakers for training and testing,  same noise type for training and testing. 

 

Clean test speech 

Noise type HIT FA HIT-FA noisy processed 

airport 83.8% 8.2% 75.6% link link 

babble 80.6% 6.9% 73.7% link link 

restaurant 82.2% 13.2% 69.0% link link 

street 84.4% 6.0% 78.4% link link 

 

FromTable 3 we can see that the HIT rate of the estimated mask is relatively high and the FA rate 

is low, regardless of the noise type. This indicates that in terms of HIT-FA rate the performance of 

the MRCG-DNN method can be robust to different speakers, i.e., when the speakers used for 

training differ from the speakers used in testing. Although it is possible to train simultaneously for 

both male and female speech, our experience has been that better results are obtained when the 

same gender is used for training and testing. In terms of intelligibility, as in the results of Table 2, 

it is debatable if the intelligibility is improved in the processed sound files of Table 3, and the 

performance seems to be better for some noise types (e.g. airport and street).  

 

5.4 Training with 3 types of noise and testing with a fourth type of noise 
 

For this test, we have used either the HINT dataset (single speaker) or the TIMIT dataset (different 

speakers), as well as airport, babble, restaurant, and street noise. We trained the DNN model with 

airport, babble and restaurant noise, then we tested the model with street noise. For the HINT 

database the training and testing sentences were different but from the same speaker. For the 

TIMIT database, training and testing were made with different speakers (of the same gender) and 

different sentences. Table 4 shows the HIT-FA results and URL links to the clean test speech 

sound file, the noisy sound files and the processed sound files.  

 
Table 4. Results for training with 3 types of noise and testing with a fourth type of noise. 

 

Clean test speech 

Database HIT FA HIT-FA noisy processed 

HINT database 76.2% 11.4% 64.8% link link 

Clean test speech 

Database HIT FA HIT-FA noisy processed 

TIMIT database 84.6% 18.9% 65.7% link link 

 

From Table 4, we can see that the HIT rate of the estimated mask is relatively high and the FA rate 

is low. This indicates that in terms of HIT-FA rate the performance of the MRCG-DNN method 

can in principle be robust to conditions where we have both different speakers and different noise 

types between training and testing, as long as training is done with appropriate data (i.e., the 

training speech should have some similarity with the test speech, the training noise should have 
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some similarity with the test noise). But as observed in the previous results of Table 2 and Table 3, 

for the results of Table 4 it is highly debatable if the intelligibility is improved. 

 

5.5 Training with different levels of noise, testing with the same noise type at a 

specific level 
 

Here we used the HINT dataset (same speaker for training and testing, but different sentences), 

and babble noise for training and testing. We trained the DNN model with -5dB, 0 dB and 5dB 

SNR, then tested with -5dB SNR. We trained the DNN model with -7dB, -5 dB and 0dB SNR, 

then tested with -5dB SNR. Finally, we trained the DNN model with -10dB, -7 dB and -5dB SNR, 

and tested with -5dB SNR. Error! Reference source not found. shows the HIT-FA results and URL 

links to the clean test speech sound file, the noisy sound files and the processed sound files.  

 
Table 5. Results for training with different levels of noise, testing with the same noise type at a specific 

level. 

 

Clean test speech 

SNR HIT FA HIT-FA noisy processed 

-5dB, 0dB, 5dB 76.2% 7.3% 68.9% link link 

-7dB,-5dB, 0dB 74.8% 6.6% 68.1% link link 

-10dB,-7dB,-5dB 70.3% 5.3% 64.9% link link 

 

From Table 5 we can see that the HIT rate as well as the FA and HIT-FA rates of the estimated 
mask all slightly drop from the top row to the bottom row. This indicates that training with data 
having the same and higher SNR than the testing data may lead to a slightly higher HIT-FA rate. 
Informally, the intelligibility in the sound files also seems to follow that trend. 

5.6 Training with different local SNR criterion (i.e., thresholds used for binary 

mask decision)  

For this test, we used the HINT dataset (same speaker for training and testing, but different 
sentences), and babble noise for training and testing. We trained the DNN model with -5dB, 0 dB 
and 5dB SNR, and tested with -5dB SNR. We did this procedure 3 times, and the difference 
between the 3 cases is that different local SNR criterion values were used (thresholds used for the 
binary mask decision): 0dB, -5dB, and -10dB. Table 6 shows the HIT-FA results and URL links to 
the clean test speech sound file, the noisy sound files and the processed sound files.  

Table 6 Results of training with different local SNR criterion (thresholds) 

Clean test speech 

local SNR 

criterion 
HIT FA HIT-FA noisy processed 

0dB 74.3% 8.8% 65.5% link link 

-5dB 76.2% 7.3% 68.9% link link 

-10dB 79.9% 11.7% 68.3% link link 

 

From Table 6 we can see that the HIT rate of the estimated mask increases as the local SNR 

criterion (threshold) decreases, but the HIT-FA rate doesn’t change too much. Listening to the 

resulting processed files, we note (informally) that the intelligibility improves from the top row to 

the bottom row. A higher HIT rate means that a higher percentage of target-dominant T-F bins are 

kept, so based on these results we adopted a dynamic adjustment method during training in the 

software program, to make sure that the HIT rate is at least 75%. If the condition is not fulfilled 
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then we dynamically lower the local SNR criterion used for training. But overall, as in previous 

tables, it is debatable if the processed files provide some intelligibility improvement over the 

original noisy files.  

 

5.7 MRCG-DNN compared with other approaches  

  
In this section we use two other types of speech intelligibility enhancement approaches and 

compare them with the MRCG-DNN approach:  an DNN using 85 input features proposed in [11] 

and an Amplitude Modulation Spectrogram (AMS)-GMM proposed in [18]. We used our own 

implementation of the 85 input features DNN and the original code from [18] for the AMS-GMM. 

The database and noise conditions were the same as the ones originally used in the 85 input 

features DNN and the AMS-GMM. The IEEE speech database is also used as clean speech data in 

this section [19]. 

 

For the DNN with 85 input features, the input data is passed through a 64 band gammatone filter. 

Each subband is divided to 20 ms frames with 10 ms overlap. Each T-F unit extracts 85 features: 

15 AMS features, 13 Relative Spectral Transform - Perceptual Linear Prediction (RASTA-PLP) 

features, 31 Mel-Frequency Cepstral Coefficients (MFCC) features, and 13 delta features for the 

RASTA-PLP features. This method uses a DNN model for each subband, for a total of 64 DNN 

models.  The MRCG-DNN on the other hand only uses one DNN model for all subbands, so the 

MRCG-DNN training takes much less time than the 85 input features DNN. 

 

The results for the 85 input features DNN and the MRCG-DNN are compared in Table 7. They 

both use the same DNN structure, and were trained for 100 iterations. “n6 noise” is a babble noise 

produced by adding several TIMIT sentences together.  We can see from Table 7 that the HIT-FA 

for the MRCG-DNN is always significantly higher than for the 85 input features DNN, indicating 

a better performance in terms of HIT-FA rate. 

 

Table 7. Results for 85 input features DNN and MRCG-DNN. 

 

 
 85 input features DNN MRCG-DNN 

database noise HIT FA HIT-FA HIT FA HIT-FA 

HINT n6 (babble) 62.9% 7.4% 55.5% 72.3% 6.4% 65.9% 

IEEE factory 46.2% 3.4% 42.8% 66.5% 3.8% 62.7% 

 
The other method used for comparison is the AMS-GMM [18]. More specifically, in this approach 
4 sub-GMMs are used in order to make the decision to set the TF binary mask to 1 or 0. The 
results for the AMS-GMM and the MRCG-DNN are compared in Table 8. The HIT-FA of the 
MRCG-DNN is slightly less (worse) than for the AMS-GMM method, but with a much lower FA 
(better). Overall it can be said that the results of these two methods are fairly comparable for the 
considered setup, in terms of HIT-FA rate. However, we also found that the AMS-GMM method 
fails to find a clustering solution in some conditions (e.g., IEEE database speech with factory 
noise), while the MRCG-DNN method always converges to a solution, so it was found to be much 
more robust. 
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Table 8. Results for AMS-GMM and MRCG-DNN. 

 
 AMS-GMM MRCG-DNN 

database noise HIT FA HIT-FA HIT FA HIT-FA 

IEEE 

speech 

shaped- 

noise 

93.4% 12.3% 81.12% 80.5% 3% 77.4% 

 

In conclusion, the MRCG-DNN has a better HIT-FA than the DNN with other features (85 input 

features DNN), and it is more robust than the AMS-GMM method, with a similar performance. In 

addtion, the MRCG-DNN method is faster for training than the 85 input features DNN and the 

AMS-GMM methods: the MRCG-DNN takes about half an hour of training time, while the 85 

input features DNN and AMS-GMM both need more than three hours of training time. Therefore, 

compared to other available methods, the MRCG-DNN was confirmed as a good choice for 

attempting to improve speech intelligibility through maximizing the HIT-FA rate. 

 

6. CONCLUSIONS 

 
The MRCG-DNN approach was found to outperform other approaches that have appeared in the 

literature for single-channel speech intelligibility enhancement processing, either in terms of 

objective measures (HIT-FA rate) or in terms of robustness to converge to a solution. Using the 

DNN method with “easier” noises (white noise, purple noise) lead to a better HIT-FA rate 

performance because of the stationarity of the noise and the reduced overlap with the speech 

content. For cases with more challenging noise conditions, the HIT-FA rate performance of the 

different approaches was not as good and the true intelligibility improvement was more debatable. 

Training with more data (clean speech data, noise data, or both) could be an option to attempt to 

improve the performance, although that option may not always be feasible in real-life scenarios. 
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