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ABSTRACT 

 

Network Intrusion Detection and Prevention Systems (NIDPSs) are used to detect, prevent and 

report evidence of attacks and malicious traffic. Our paper presents a study where we used open 

source NIDPS software. We show that NIDPS detection performance can be weak in the face of 

high-speed and high-load traffic in terms of missed alerts and missed logs.  To counteract this 

problem, we have proposed and evaluated a solution that utilizes QoS, queues and parallel 

technologies in a multi-layer Cisco Catalyst Switch to increase NIDPSs detection performance. 

Our approach designs a novel QoS architecture to organise and improve throughput-forward-

plan traffic in a layer 3 switch in order to improve NIDPS performance. 
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1. INTRODUCTION 

 
Despite the existence of a variety of security protection measures, attackers often attempt to render 

services unavailable to the intended, legitimate users [1, 2, 3, 4]. In general, there are three types of 

network security techniques: prevention, detection and correction techniques. The prevention 

technique actively works to block intrusions, but it can also be used to battle a successful intrusion. A 

number of successful attacks can be controlled using the prevention technique if an attack is detected 

at the interim stage of prevention systems. Unfortunately, some successful attacks can get through the 

prevention system [2, 5]. In this instance, depending on preventive techniques is unlikely to resolve 

the issue, especially when an attacker has successfully obtained vulnerable information from the 

network; however, prevention can successfully and effectively maintain a network before an attack is 

launched. The correction technique is adopted to protect computer systems. It is used when the 

prevention technique has failed. In these cases, the system is attacked and compromised; 

consequently, it malfunctions. The correction technique restores the system to a stable state when an 

attack has been detected. Clearly, both prevention and correction require a detection phase, which 

should be constantly active to combat intrusions.  
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Network intrusion detection and prevention systems (NIDPS) are commonly used to detect and 

prevent attacks. A popular system is the open-source Snort NIDPS. Our previous studies [4, 5] have 

been carried out on the use of a Snort NIDPS in high speed networks. We found that in high speed and 

high volume environments, the Snort NIDPS drops packets.  Our studies focused on improving the 

performance of the NIDPS in analysis mode. Improving the analysis phase for any security production 

is important, because it is difficult to detect or prevent threats or malicious traffic without analysing 

the traffic. This paper however focuses on NIDPS detection rather than analysis. Thus we have now 

considered rule-based actions as well as the passive analysis of the packets received. Our paper uses 

Snort NIDPS. We conducted experiments to test Snort’s detection-mode performance reaction to 

ICMP, UDP and TCP headers and malicious packets under high-load and high-speed traffic. We 

further demonstrate that Snort’s performance can be improved by using additional technologies such 

as a Quality of Service (QoS) configuration and parallel technologies. 

 

The remainder of this paper is organised as follows. Section 2 gives an overview of previous related 

work. Section 3 provides a background on: intrusion detection and prevention systems (IDPSs); 

network intrusion detection and prevention systems (NIDPSs); and information about Snort NIDPS. 

Section 4 explains our experimental design. Section 5 presents a first set of experiments which 

demonstrated some NIDPS weaknesses. Section 6 presents our solution for combatting such 

weaknesses and also provides an experimental evaluation of our solution. This is followed by section 

7 which provides more information about the technical aspects of the approach. Finally Section 8 

concludes the paper and suggests further work.  

 

2. RELATED WORK 

 
Chen, et al. [17] proposed an application-specific integrated circuit (ASIC) design with parallel exact 

matching (PEM) architecture to accelerate throughput. The ASIC hardware has been designed to 

operate at 435MHz to perform up to 13.9 Gbps throughput. The aim is to manage the requirements of 

high speed and high accuracy for Snort IDS (Intrusion Detection System) and overcome the 

complexity of managing data received from the 10Gbps core network. They proposed the SRA (Snort 

Rule Accelerator) which processes rules in parallel to increase the performance of the Snort IDS. The 

SRA has a stateless parallel-matching scheme to perform high throughput packet filtering as an 

accelerator of the Snort detection engine. The ASIC is combined of five major modules, including the 

inspector, counter, parallel matching, conformity and compare modules. The functionality of the 

parallel matching scheme is to compare payloads of packets with the stored rules. When an entry 

packet is matched with Snort rules, the ASIC is in an idle state and sends a compare and signal to the 

conformity module, which integrates all signals and determines whether an abnormal payload is 

presented. Here the authors designed half mesh architecture in the parallel matching rules module, 

which allows the traffic to be compared with several rules at the same time. Our work addresses 

performance in a different way. Instead of processing rules in parallel, it processes traffic in parallel. It 

explores the use of hardware Layer-3 network switches and Cisco configuration with parallel queue 

technologies to improve QoS and, hence, NIDPS performance.  

 

Jiang et al. [18] proposed a new NIDS architecture based on multi-parallel core processors. They 

exploited many-core computational power by adopting a hybrid parallel architecture combining data 

and pipeline parallelism. They designed a system for parallel network traffic processing by 

implementing an NIDS on the TILERAGX36 (a 36 core processor) [19]. The system was designed 

according to two strategies: first a hybrid parallel architecture was used, combining data and pipeline 

parallelism; and secondly a hybrid load-balancing scheme was used. They took advantage of the 

parallelism offered by combining data, pipeline parallelism and multiple cores, using both rule-set and 

flow space partitioning.  They showed that processing speeds can handle and reach up to 7.2Gbit/S 
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with 100-byte packets. Our approach differs from theirs in that we have shown how can exploit QoS 

and queues technologies in a multi-layer switch to improve packets processing throughput. Further 

enhancements can occur if we combine queuing together with parallel technologies. Our approach 

requires less specialised equipment. 

 

In previous work [4], we presented experiments that demonstrated that Snort dropped packets when it 

was deployed in high speed traffic in analysis mode. Packets were dropped or left outstanding when 

the in-coming speed of traffic is higher than NIDPS processing speed limit. We used QoS technology 

in a Cisco Catalyst switch to improve NIDPS performance and proposed a solution which reduces the 

packet arrival speed to the NIDPS node processor limit. This approach reduces dropped packets or the 

number of packets left outstanding by using queues to reduce the arrival rate to a speed that can be 

processed successfully. We then used parallel technology to increase the throughput rate.  

 

This paper presents similar technology to that applied in our previous work [4] but this time it is 

applied to Snort in detection mode.  The QoS configuration in layer 3 Cisco switches provides the 

capability to differentiate among different classes of traffic and to prioritize the traffic in times of 

network congestion, according to relative importance.  The research described in this paper uses QoS 

queue technology to increase monitoring speed rather than reducing or slowing down traffic speed [4]. 

We used parallel technology to speed up the throughput of NIDPS packets processing to the level of 

the arrival traffic speeds. Our novel architecture addresses the weakness of NIDPS performance 

detection caused by increasing network traffic speed. The strength of this work over previous work is 

that in previous work [4, 5], it was shown that analysis can fail in high speed and high volume traffic 

in terms of the fact that many packets are dropped or left outstanding and not analysed.  But in 

analysis mode, dropped packets refer to packets that eventually do not get through to the destination 

and outstanding packets are those left unprocessed in the system. In this paper we show that detection 

can also fail. This is more significant because failing to detect, i.e. failing to recognize malicious 

packets, means that attacks can penetrate the system. The contribution of this work is to offer a 

solution to the problem of detection in high speed traffic based on network switch, QoS and parallel 

technologies. In the next section the background to our research is provided. 

 

3. BACKGROUND 
 
Security products, such as firewalls and antivirus programs, are less efficient than intrusion detection 

and prevention systems (IDPSs) and have different functionalities. IDPSs analyse collected 

information and infer more useful results than other security products [4, 5]. However, some 

researchers have indicated that whilst IDPSs have significantly improved with the passage of time, 

they still often produce an unacceptable quantity of false positives and false negatives [4, 10, 11, 12]. 

In addition, it is difficult to detect suspicious activities in the midst of high traffic and other such 

adverse circumstances in the network, consequently resulting in an inaccurate detection mechanism. 

 

IDPSs consist of either software applications or hardware that listen to and detect malicious activities 

at the gateway (incoming and outgoing) of individual or network systems. IDPSs are capable of 

monitoring, identifying and reporting evidence of malicious activities and attacks, such as flood 

attacks, unauthorised log-ins, privilege escalation, illegitimate access, modification of data and data-

driven attacks, [4, 5]. Therefore, an IDPS sniffing mechanism is effectively applied at the network 

gateway, which provides useful information about packets and traffic to security professionals [4].  

 

The specialised IDPS mechanism is based on how, where and what it detects/prevents, along with 

mandatory requirements. In particular, IDPSs should be based on flexible and scalable network 

components to accommodate the drastic increase in today’s network environments. They should also 
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provide straightforward management and operational procedures and steps, instead of procedures that 

complicate the underlying tasks. Lastly, they should provide user-friendly IDP mechanisms [4, 5]. 

 

3.1 Network Intrusion Detection and Prevention System (NIDPS) 
 
NIDPSs are used to analyse the traffic in all Open Systems Interconnection (OSI) layers, to enable 

differentiation of normal traffic as opposed to suspicious activities. They are also used to detect and 

react to the unauthorised access to network systems, [4, 12]. There are three modes of NIDPS: 

analysis mode (sniffer mode); detection mode (passive mode); and prevention mode (inline mode). 

 

Analysis mode is used to recognise and display the type of packets coming into the network.  Various 

levels of detail can be displayed on the console, for instance application data which is attached to the 

packet additionally to TCP, UDP and ICMP header information [4, 7]. The detection system is 

capable of detecting suspicious activity and generating alerts based on recognised signatures and rules 

[4, 7]. Signature analysis is generally based on patterns inside the data packet. This technique aims to 

detect multiple kinds of attacks such as the presence of scripts in packets destined for web services [4, 

7]. Alternatively, anomaly-based NIDPSs notice packet anomalies available in the header parts of the 

protocol [7].  Logging and alerts depend on the nature of what is detected inside the packets. If any 

suspicious activity is found inside a packet, the packet usually logs the malicious activity and/or 

generates an alert. Logs are usually stored in simple text-based files [4, 7, 8].  Output modules (plug-

ins) are capable of performing multiple operations depending on the results generated by the logging 

and alerting system. In general, output modules control the form of outcome produced by the logging 

and alerting system [7, 8].Network intrusion prevention systems (NIDPSs) are active, inline devices in 

a network that can drop, block or reject packets and or stop malicious connections before these reach 

the targeted system [4, 12]. NIDPSs are further classified into software and hardware based. Hardware 

based NIDPSs are effective and can overcome some performance issues of software-based NIDPS but 

high cost is an issue. One of the most popular software-based NIDPSs is Snort [4]. 

 

3.2 Snort Network Intrusion Detection and Prevention System (Snort-NIDPS) 

 
Snort is released as an open-source, rule-centred NIDPS, which stores information in text files that 

can be modified by a text editor [4, 8]. Snort rules activate on the network IP layer and TCP/UDP 

layer protocols. Rules are grouped into categories, and the rules belonging to each category are stored 

as information in separate files; these files are then integrated into the main configuration file, named 

“snort.conf”. The data is captured in terms based on described rules, which are read at the 

initialisation of Snort and are used to construct the internal data structure [4, 7, 8]. Furthermore, Snort 

is a combination of both basic signature code analysis and content-driven rules [7, 8]. Snort can 

execute a protocol analysis and a search and match of the content. It can be utilised for the detection 

of various attacks and probes, such as those regarding stealth port scans, buffer overflow, SMB 

probes, CGI attacks, fingerprinting attempts of OS and many more [4, 5]. Snort uses the rules, which 

have been written by using a flexible language that can be managed by developers and the executer. 

These rules identify the traffic types that can be passed or collected, and they can function as a 

detection engine, as well [4, 5, 7].  

 

There are several features available for Snort; the most common feature is its real-time alerting 

mechanism. Alerts can also be collected by using a mechanism for syslog, which allows the reporting 

of suspicious activities in logs for additional investigation, a UNIX socket, a specified file of user, or a 

WinPopup message to the window client [7, 8]. Hence, Snort is different from other packet sniffers, 

due to the tcpdump sniffer, which has the capability to be run by different operating systems, and the 

use of the hexdump payload dump that tcpdump has employed during recent years. Snort also has the 
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capability to display packets via different networks through the same method. Snort is a multi-mode 

IDPS and NIDPS providing analysis, detection and prevention [4, 7, 8].  It is capable of reading 

chains (internal data structures), which have to be matched against all packets. If a packet does not 

match any rule, it will be passed; otherwise appropriate action is taken. The default detection method 

of Snort NIDPS is the signature-based detection system, which can utilise rules to search or match any 

errant packets on the controlled network. In turn, the alerts are activated and sent to a receiver such as 

system log, database, management team or even a trap. Many studies have used Snort NIDPS to detect 

attacks such as DoS and DDoS by developing and designing new rules [13, 14, 15, 16]. 

 

4. EXPERIMENT DESIGN 

 
This research carried out two sets of experiments.  The first set was carried out to show the weakness 

of Snort NIDPS in detection mode in high speed and high volume traffic (results are given in section 

5).  The second set was carried out to show the effectiveness of our novel architecture (results given in 

section 6.2). A set of facilities was needed in order to demonstrate Snort NIDPS weakness and later 

show how such weakness can be overcome through the use of our novel architecture.  

 

The experimental set up supports acquisition, analysis of the data, and detection of various types of 

traffic. Tools included: the Snort 2.9.7.2, which was issued in October 2014; the WinPcap tool, to 

capture packets on Windows and Linux OSs; the NetScanPro tool, to manage traffic in different time 

scales; the Packets Generator tool, to generate (ICMP, UDP and TCP) traffic at different speeds and 

values; and the Flooder Packets tool to generate flood traffic and malicious UDP packets (threads) in 

high-load traffic and high speed.  

 

 Figure 1 shows our experimental set up. Snort NIDPS was implemented in parallel on four work 

stations while a fifth workstation was used to generate traffic.  All workstations were connected 

through a CISCO SW 3560 switch. Performance metrics were evaluated in the experiments to 

measure the ability of Snort NIDPS detection mode. The Snort breakdown analysis includes the 

following metrics: the number of packets analysed of the total packets received; the number of Eth 

(Ethernet) packets received of the total packets analysed; the number of IP packets received of the 

total Eth packets received; and the number of TCP, UDP and ICMP packets analysed. The Snort 

action statistics provides: the number of packet alerts of the total TCP/IP packets analysed; and the 

total packets logged of the total TCP/IP packets analysed. These parameters indicate NIDPS 

performance. 

 
Figure 1. Simple network design 

 



142 Computer Science & Information Technology (CS & IT) 

 

5. EXPERIMENTS, IMPLEMENTATION AND RESULTS 
 
We ran (4) experiments to test Snort NIDPS reactions to (1) detect ICMP header under different speed 

traffic; (2) detect UDP header under different speed traffic; (3) detect TCP header under different 

speed traffic; and (4) detect malicious packets under different speed traffic. For each experiment, we 

ran three (3) consecutive tests; for each test the speed at which the packets were sent was increased 

each time. The packets were sent at interval times of various millisecond (ms). Each packet 

carries1KByte. Snort was run in detection mode. We created some rules to alert and log unwanted 

traffic. We also used the Packet Generator, WinPcap and Flooder packets tools to generate packets 

and threads (malicious UDP packets) through the network and hosts at different speeds. 

 

5.1 Experiment 1: Detecting (alert and log) ICMP Header 

In this experiment, more than 1 million IP/ICMP packets have been sent at different speeds (10ms, 

5ms and 1ms intervals). In fact, this first common rule does a good job of testing if Snort is working 

well and if it is able to generate all alert actions: 

Alert icmp any any ->any any (msg: ”Detect ICMP Packets”; sid:100001;). 

Snort will alert and detect any ICMP packets from any sources to any destinations address from and to 

any ports. 
Table 1. Snort reaction to ICMP header 

 

 
Figure 2. ICMP packets detection. 

 

As the results show in Figure 2, Snort analysed every packet that reached the wire. When ICMP traffic 

was sent at 10ms, Snort alerted and logged nearly 100% of the total ICMP packets analysed (see 

Table 1). As the speed increased from 10ms to 1ms, Snort started missing alerts and logged packets. 

Also, Figure 2 shows that the number of missed alerts increased when the speed increased. The 

experiment shows that Snort detected 55.47 % of the total ICMP packets that it analysed (see Table 

1). 
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5.2 Experiment 2: Detecting (alert and log) UDP Header 

In this experiment, more than 1 million IP/UDP packets were sent at different speeds (10ms, 5ms, 3ms 

and 1ms), and the following rule was written to allow Snort to detect any UDP packets from any 

sources to any destination address and to any source and destination ports: 

Alert udp any any ->any any (msg: ”Detect UDP Packets”; sid:100002;). 

Table 2. Snort reaction to UDP header. 

 

 
Figure 3. UDP packets detection. 

 

As shown in Figure 3, when UDP traffic was sent at a speed of 10ms, Snort alerted and logged nearly 

100% of the total UDP packets that it analysed (see Table 2). When the traffic’s speed increased to 

5ms, Snort detected 97.90% of the total UDP packets analysed (see Table 2). Figure 3 shows that, as 

the speed increased, missed alerts and logs also increased. This experiment shows that Snort detected 

46.14% of the total UDP packets that it analysed (see Table 2). 
 

5.3 Experiment 3: Detecting (alert and log) UDP Header 

 
Here, more than 1 million IP/TCP packets were sent at different speeds (10ms, 5ms and 1ms). The 

following rule was made to allow Snort to detect any TCP packets from any sources to any 

destinations, from and to any ports: 

 

Alert tcp any any ->any any (msg: ”Detect tcp Packets”; sid:100003;). 

 

As shown in Figure 4 Snort analysed every packet that reached the wire. The experiment shows that 

Snort detected all TCP packets that it analysed, even if the speed increased (see Table 3). This 

effectiveness occurred because TCP does not send the next packet until it receives an 

acknowledgement that the previous package has been received. These acknowledgements make the 

TCP packet slower than the UDP and ICMP packets. 
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Table 3. Snort reaction to TCP header 

 
 

 
Figure 4. TCP packets detection. 

5.4 Experiment 4: Detecting Malicious Packet (UDP Threads) 

 
In this experiment, WinPcap and Flooder packet tools were used to send flood traffic with malicious 

UDP packets (threads) to specific hosts or networks at different speeds. The UDP malicious packets 

contain variables and time to live 128.  The following rule is written to permit Snort to alert and log 

any UDP threads or malicious packets that contain the variables ‘abcdef’ and time to live (TTL) 128 

that comes from any source and port address and goes to any destination address and ports:  

 

Alert udp any any ->any any (msg: “Detect Malicious UDP Packets”; ttl: 128; content:|’ 61 62 63 64 

65 66 ’|; Sid: 100004 ;) 

 

This experiment is different from the previous ones. The previous experiments tried to detect headers, 

such as TCP, UDP and ICMP. The system received the TCP, UDP and ICMP packets at different 

speeds, but in this experiment, we sent flood traffic in different bandwidths (speeds) with malicious 

UDP packets (threads) in interval packets with a delay of 1 microsecond (1 mSec), and then we tried 

to detect only the UDP threads by using two conditions of additional rules (TTL and content). These 

two key rules will detect any UDP malicious packet that is matched in order to determine that the TTL 

value is equal to 128 and to determine if a data pattern inside the malicious packet has variables 

(‘abcdef’). However, the hexadecimal number (‘61 62 63 64 65 66’), which the rule contained, is 

equal to the ASCII characters (‘a b c d e f’). 

 
Table 4. Snort reaction to udp malicious packets. 
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As shown in Figure 5, Snort analysed every packet that reached the wire. When malicious UDP 

packets were sent at a speed of 1 mSec and flood traffic at 16 bytes per second (Bps), Snort alerted 

and logged more than 99% of the total UDP packets that it analysed. As the flood traffic (speed) was 

increased to 200, 1200, 4800 and 60000 bytes per second (Bps), Snort alerted and logged packets to a 

decreasing degree, respectively, at 98.84, 97.17, 49.40 and 35.75% of the total malicious packets 

analysed (see Table 4). Figure 5 shows that the number of missed malicious packet alerts increased 

when the speed increased. The experiment shows that, when the speed was 60000 Bps, Snort only 

detected nearly 35 of 100% of the malicious packets analysed (see Table 4). 

 
Figure 5. Malicious packets detection. 

6. PROPOSED SOLUTION AND EVALUATION 

 
This section proposes a novel configuration as a solution to the problem of NIDPS dropped packets 

illustrated in section 5. It also presents an evaluation of the solution. 

 

6.1 Proposed Solution 

 
A critical analysis was conducted for experiments 1, 2 and 4 (see Figures 2, 3 and 5, respectively). It 

was found that Snort’s performance detection throughout was affected by high-speed traffic, and there 

were more missed alerts and logs for packets as the speed of traffic increased. Also, when the 

malicious traffic was sent at high speed, it was found that Snort increased its missed malicious packet 

alerts and logs (see Figure 5), because Snort is capable of performing as a real-time traffic processor 

on the network. It is a multimode packet tool that can perform network traffic analysis, detection and 

content searching/matching in both real-time and for forensic post-processing [4, 5]. Although Snort 

has a limited time frame for processing packets and then alerting and logging any packets and 

malicious traffic successfully, because of the limitation of buffer size and processor speed (section 7 

explains this more). If a network’s traffic speed is higher than Snort’s limit, Snort will miss alerts and 

logs. 

 

To address this problem, A QoS configuration has been suggested in Layer-3 Cisco switches with 

parallel NIDPS nodes to increase packets throughput processing speed, even if traffic arrives at a high 

speed. Some mechanisms that QoS offers are queue, classification, policing and marking 

technologies, which can give a switch a new logical throughput-traffic-forwarding plan. A 

configuration of QoS offers two (2) input queues (ingress queues) and four (4) output queues (egress 

queues) at the physical switch interfaces (SVI or ports).As shown in Figure 6, the switch has been 

configured to two ingress queues and four egress queues to load a set of bytes (packets) into a number 

of processor input queues equally and to divide traffic (as a number of bytes) into parallel streams in 

order to speed up packets processing. It then uses parallel NIDPS to analyse each portion of traffic 

individually to determine whether it is free of malicious codes. A novel class map (marking) and a 

policy (policy map) were made for each input queue. The class map recognises and classifies a certain 
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type of traffic for each input queue, and the policy map controls and recognises the speed limit for 

each input queue and applies it to interfaces [4]. The bandwidth, threshold, buffer, memory allocated 

and priority were configured for each ingress queue and each egress queue to treat and control traffic 

in order to help prevent congestion or disabled traffic in the input queues, even if traffic comes in at 

high load and speed.  

 

 
Figure 6. Parallel NIDPS node with QoS architecture. 

 

 
Figure 7: novel egress Queue buffer space reservation 

 

QoS Shaped/Share Round Robin (SRR) technology was used to guarantee the bandwidth for an 

interface, and also for each ingress queue and egress queue. A network device must be able to identify 

packets in all the IP traffic flowing through it. The Shaped task only exists on output queues, and a 

queue books a percentage of a total port’s bandwidth.  One queue may be set as priority and queue do 

not share bandwidth. The Share function (SRR) is offered on both input and output queues. It provides 

a queue a portion of a total port’s bandwidth, but unused bandwidth can be used by any queue. In our 

novel architecture (see Figure 6), the Share queue is used in input queues to help prevent congestion, 

and each output queue has an individual processing by using the Shaped queue to control speed traffic 
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(bandwidth)  A single NIDPS node is implemented for each output queue. One of the queues can be 

the expedited queue, which is serviced until empty before the other queues are serviced. 

  

Also a memory buffer queue reservation was configured for each queue which provides more buffer 

space over its limit (over 100% of buffer space) when needed by reserving more space from available 

queue buffer, ports or SVI memory buffer or switch common memory pool buffer (see Figure 7 ). 

However, headers, such as ICMP, TCP and UDP, and even hackers have different characteristics, 

features and techniques. Using SRR, Threshold and Priority methods for each output queue can offer a 

wider range to deal with the behaviour of different IP headers and hackers. 

 

The main aim of our novel architecture design is to manage and allocate a traffic load (number of 

bytes) into each input queue and process each output queue individually in order to permit a limited 

group of bytes that are divided into output queues to be processed at same time, thereby increasing 

NIDPS throughput processing time and reducing traffic congestion, even if the traffic is high load and 

speed. 

 

6.2 Evaluation of Solution 
 
We ran (4) experiments to test performance of our novel NIDPS architecture design to detect: (1) 

ICMP header; (2) UDP header; (3) TCP header; and (4) Malicious packets. Each experiment tests 

Snort’s detection rate without and with QoS and parallel technologies under high-speed traffic. 

 

6.2.1 Experiment 5: Parallel Snort with QoS Reaction to Detect ICMP Header  

 
In this experiment, more than 38,000 ICMP/IP packets were sent in high-speed traffic (1ms). Each 

packet carried 1KByte.  

 
Table 5: Snort with QoS reaction to ICMP header in high speed traffic 

 

 
Figure 8: Snort with QoS reaction to detect ICMP packets in 1ms. 
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As the results show in Figure 8 and Table 5, when more than 38,000 ICMP/IP packets were sent in an 

interval time of 1ms, packet processing speed was 94 packets per second (94 Pkts/sec) and number of  

alerts and logs was 7220 of the 14,438 ICMP packets that were analysed (see Table 5). When the 

same number of packets was sent at the same speed, using QoS and parallel technologies, packet 

processing speed was increased from 94 to 131 Pkts/sec and Snort detected all of the ICMP packets 

that it analysed (see Figure8). This experiment shows that when Snort NIDPS was used without QoS, 

it only detected 50% of the total packets analysed, but when Snort was used with QoS, Snort detected 

100% of the total packets that it analysed (see Figure 8 and Table 5).  

 

6.2.2 Experiment 6: Parallel Snort with QoS Reaction to Detect UDP Header  

 
In this experiment, more than 38,000 UDP/IP packets were sent in high-speed traffic (0.5ms). Each 

packet carried 1KByte.  

 
Table 6: Snort with QoS reaction to UDP header in high speed traffic. 

 

 
Figure 9: Snort with QoS reaction to detect UDP packets in 0.5ms 

As the results show in Figure 6 and Table 6, when the traffic (packets) was sent at an interval time of 

0.5ms, the number of packet alerts and logs was nearly 4 of the 59 UDP packets that were analysed 

with packet processing speed  of 76 Pkts/sec (see Table 6). It detected fewer than 7% of all UDP 

packets that it analysed (see Figure 9). When QoS architecture was implemented and packets were 

sent again in the same traffic and interval speed of 1ms, the packet possessing speed was increased to 

129 Pkts/sec and Snort detected more than 99% of the total UDP packets analysed (see Figure 9). This 

experiment shows that the Snort NIDPS performance detection improved from 7 to 99% when the 

novel QoS configuration was used. 

 

6.2.3 Experiment 7: Parallel Snort with QoS Reaction to Detect TCP Header  

 
In this experiment, more than 38,000 IP/TCP packets were sent in high-speed traffic (0.5ms); each 

packet carried 1KByte. 

 



Computer Science & Information Technology (CS & IT)                                149 

 

Table 7: Snort with QoS reaction to TCP Header in high speed traffic 

 
 

 
Figure 10: Snort with QoS reaction to detect TCP packets in 0.5ms. 

Figures 10 and Table 7 show that Snort detected 100% of the total TCP packets analysed, even 

without QoS. The packet processing speed is improved from 17 to 96 Pkts/sec with QoS. 

 

6.2.4 Experiment 8: Parallel Snort with QoS Reaction to Detect Malicious Packets  

 
In these experiments, a flood traffic was generated with UDP malicious packets (threads) in high-

speed traffic (60000Bps, flooded traffic with 225 threads, sent at an interval time of 1mSec) by using 

NetScanPro, WinPcap and Flooder packets tools. Two tests were conducted: one test of Snort without 

QoS and one of Snort with QoS. 

 
Table 8: Snort with QoS reaction to malicious packets in high speed traffic. 
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Figure 11: Snort with QoS reaction to detect malicious packets in high speed traffic. 

 

As the results show in Figures 11 and Table 8, when malicious traffic was sent at high speed and 

volume,  the number of malicious packets detected was 270 of the 793 malicious packets analysed and 

the packet processing speed was 82 Pkts/sec (see Table 8). Snort detected fewer than 35% of the total 

malicious packets analysed (see Figure 11). When the same traffic was generated with the same speed 

and value, but Snort was supported by the novel QoS architecture, the packet processing speed wan 

improved from 82 to 857 Pkts/sec and Snort detected more than 99% of the total malicious packets 

that it analysed (see Table 8). This experiment showed that the Snort NIDPS performance detection 

improved while novel QoS was used. 

 

 
Figure 12: Improve NIDPS detection performance and packets processor through QoS and Parallel 

technologies. 

 

Figure 12 provides a synopsis of our results. The experiments show that packets processor speed and 

Snort NIDPS detection performance have been improved when we used QoS, queue and parallel 

NIDPS technologies (see Figure 12). 

 

7. TECHNICAL DISCUSSION 
 
The performance of an NIDPS could be described as ineffective if the NIDPS is unable to detect or 

stop unwanted packets that could reach the system. There are two main causes of ineffective NIDPS: 

buffer size and processing speed.  

 

When traffic moves through the network interface card (NIC) to the NIDPS node, the packets are 

stored on the buffer until the other relevant packets have completed transmission to processing nodes. 

In the event of high speed and heavy traffic in multiple directions, the buffer will fill up. Then packets 

may be dropped or left outstanding [20, 21, 22]. In this case, there is no security concern about the 

packets dropped; the packets are dropped outside the system. The outstanding packets that are waiting 

or have not been processed by the NIDPS node may affect the system. 
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However, packets can also be lost at the host. Most software tools use a computer program such as the 

kernel, which manages input/output (I/O) requests from software and decodes the requests into 

instructions to direct the CPU’s data processing. When traffic moves from the interface (NIC) through 

the kernel’s buffer to the processor space, where most of processing nodes are executed, the packets 

will be held in the kernel buffer before being processed by the CPU. When some nodes experience a 

high volume of data, the buffer will fill up and packets may be dropped.  Configuring the kernel 

parameter in the New Application Programming Interface (NAPI) can enhance kernel performance by 

increasing the level of optimization and selecting multivariate features such as kernel complex 

quantitative near-infrared (K-NIR), kernel support vector regression (k-SVR), or kernel partial least 

squares (K-PLS) to improve the accuracy of packet processing [23, 24, 25, 26 ]. In order to hold and 

process packets quickly, these kernel performance enhancements pull a high value of packets from 

interfaces and bind them with obtainable CPU cycles, which limit packet speed and time and have no 

buffer memory. Furthermore, it requires a great deal of CPU to process a vast amount of data buffered 

in the kernel; the CPU cycles may run out of time. In this case, the packets that were dropped in the 

kernel and NIC might drop very early in the CPU cycles, which cannot buffer packets [27, 28]. In 

these two cases of host and processor packets loss, the NIDPS node is affected because packets are 

dropped before it is analysed. In this work, we are not focused on the network-based packets drop 

(NIC interfaces) as much as focusing on the host and processor based packets loss, because in the 

network-based, the packets are dropped from NIC and do not hit the system, but in the host based, the 

packets go through the system and then are dropped, which affects NIDPS detection performance. Our 

solution uses multi-layer switch technology, which supports QoS. The parallel NIDPS nodes are 

associated with queues each with a specific buffer and bandwidth thus increasing the queue buffer size 

automatically over its limit when needed. The NIDPS is faced with high speed and volume traffic. 

The appropriate number of NIDPS nodes is dependent in network speed limit. We therefore needed to 

operate with the class and quality of service technologies within the network switch. 

 

By default, most of the Cisco switches work in Layer 2, the Data Link layer, and use the Class of 

Services (CoS) value [4, 29, 30] (see Figure 23). In this layer there is insufficient commands to 

support switch features such as QoS features, dynamic access control lists (ACLs), VLAN features, 

static IP routing, Routing Information Protocol (RIP), Policy-based routing (PBR) Cisco-default 

Smartports, etc. Other mechanisms operate at Layer 3 (see Figure 13). However, in the network 

switch operation, all the traffic should has equal priority and an equal chance of being delivered in a 

manner that is timely for the network. Some packets have an equal chance of being dropped when 

congestion network traffic occurs.  DiffServ (Differentiated Service) allows different types of service 

to be offered depending on a code. For instance there can be a policy to give a certain type of package 

priority. QoS implementation is based on DiffServ architecture, which specifies that each packet be 

classified upon entry and has an equal priority and an equal chance of being delivered into network 

which is adjusted for different traffic speed in a good and timely manner. Furthermore, QoS makes 

network performance more predictable and bandwidth utilisation more effective [29, 30, 31, 32]. 

 

 
Figure 13. Place for CoS and DSCP values [4]. 
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In our novel QoS architecture, the CoS values in Layer 2 were mapped to DSCP value (Differentiated 

Services Code Point) in Layer 3 so that appropriate categories could be matched at the network level. 

The static or dynamic classification methods involved Layer 3 header information matching, and a 

mechanism such as IP precedence or DSCP values was used to carry the IP packet header. For 

example, a dynamic classification access list can be used to identify IP traffic and place the traffic into 

a reserved queue [30, 31, 32]. Classification can also take place in the Layer 2 frame. Packet 

classification can be processor-intensive, so it should occur as far out toward the edge of the network 

as possible because every hop needs to make a determination on the treatment a packet should receive. 

A simpler classification is achieved through marking or setting the type of service (ToS) field in the IP 

header [29, 30, 31, 32]. In Layer 2, 802.1Q and 802.1p frames used 3 bits for IP type of service  (ToS) 

field, and Layer 3 IPV4 packets used 6 bits for DSCP in (ToS) field to carry the classification (class) 

information (see Figure 14). The DSCP values allow for a higher degree of differentiation. CoS values 

range from 0 to 7 (8 values) and DSCP values range from 0 to 63 (64 values). 

 

Regardless of the method by which the network is able to classify and identify IP traffic (either 

through port address information or through the ToS filed), those hops can then provide each IP 

packet with the required QoS. At that point, special techniques can be configured to provide priority 

queueing in order to ensure that large data packets do not interfere with packet data transmission. “If a 

node can set the IP Precedence or DSCP bits in the ToS field of the IP header as soon as it identifies 

traffic as being IP traffic, then all of the other nodes in the network can be classified based on these 

bits. However, in most IP networks, marking IP Precedence or DSCP should be sufficient to identify 

traffic as IP traffic” [4, 30, 31, 32].Differentiated services technology can be used such that each 

packet can be classified upon entry into the network and adjustments can be made for different traffic 

speeds and loads. In this work, the switch frame has been changed from Layer 2 to Layer 3. [4, 30, 31, 

32].  

 
Figure 14. QoS classification Bits in Frames and Packets [30]. 

 

 
Figure 15: Snort NIDPS Parallel node. 
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Features of QoS, such as a policy map and class map, can be used to classify the traffic inside the 

switch with the same policy and class plan; different management can be given to packets with a 

different class and policy plan. Classification is process of identifying the data packets to a class or 

group in order to manage the packet appropriately [4, 30, 31, 32]. Network devices use several match 

criteria to place traffic into a certain number of classes. This can be processor-intensive if nodes must 

repeat classifications based on access list (ACL) matches. Therefore, nodes should mark packets as 

soon as they have identified and classified the IP traffic. Policing involves creating a policy that 

specifies the bandwidth limits for the traffic and applies it to the interface. Policing can be applied to a 

packet per direction and can occur on the ingress and egress interfaces [30]. Different types of traffic 

can be recognised in terms of, for instance, type and ports, and differentiated policies can be set.  

 

In our work, Snort NIDPS is configured from single NIDPS detection node to multi NIDPS node (see 

Figure 15) and also configured CISCO QoS switch technology. Network QoS technology enables a 

new logical and throughput-traffic-forwarding plan to be implemented in the switch. A physical 

interface (port) was configured to two input queues (ingress queues) and four output queues (egress 

queues). A buffer was set for each queue in order to organise and hold more traffic by using a 

dynamic memory technology (buffer memory located). The buffer’s memory space was divided 

between the switch common memory pool, the SVI, and the queue reserved pool (see Figure 7). We 

implemented a buffer allocation scheme to reserve a minimum amount for each egress buffer. Thus, 

all buffers cannot be consumed by one egress queue, and the system can control whether to grant 

buffer space to a requesting queue. Furthermore, a specific buffer memory space was defined for each 

queue, including ingress and egress thresholds. Packets were divided between two ingress and four 

egress queues via configured queue-sets. The remaining free common pool interfaces were set to 

reserve up to 50% of the available switch memory pool.  

 

After all traffic has been placed into input queues and classes and policy based on their QoS 

requirements has been defined, appropriate services can be provided, for instance bandwidth 

guarantees, thresholds, memory buffering and priority servicing through an intelligent  output 

queueing mechanism. The output queues were processed separately by implemented parallel NIDPS 

nodes in order to increase packet possessing speed. Other mechanisms that QoS offers is Shaped or 

Share Round Robin (SRR) technologies which can vary the bandwidth provided for the queues in the 

interface [17, 18, 19]. Shaped function (SRR) can guaranty each queue a bandwidth limit but queues 

cannot share bandwidth if queues reach their bandwidth limit. Share function (SRR) can guaranty a 

bandwidth limit for each queue and the other queues can share with each other if one of queues 

reached bandwidth limit. We utilized Share in the ingress queues but Shaped in the egress queues to 

ensure appropriate bandwidth for each egress queue. 

 

Queue technology is placed at specific points in Cisco switches to help prevent congestion. The total 

inbound bandwidth of all interfaces may exceed a ring space of internal bandwidth [29, 30, 31]. After 

packets are processed through classification, policing, and marking, and before packets pass into the 

switch fabric, the system allocates them to input queues. Because multiple input queue interfaces can 

simultaneously send packets to output queue interfaces, outbound queues are allocated after the 

internal ring in order to avoid congestion. The SRR ingress queue sends packets to the internal ring, 

while the SRR egress queue sends the packets to the output queue. The novel configurable research 

architecture has a large limit of buffer space and a generous bandwidth allocation for each queue. 

Queue 1 was set as a priority queue for each ingress and egress queue, which allowed the system to 

prioritise packets with particular DSCP values and thereby allocate a large buffer. It also allows buffer 

space to be used more frequently, and then adjusts the thresholds for each queue and packets so that 

packets with lower priorities are dropped when queues are full. This allows the system to ensure that 

high priority traffic is not dropped.  
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Parallel NIDPS is a form of computation in which many NIDPS nodes work simultaneously, 

operating on the principle that the large incoming data can be divided into smaller sets, which are 

processed at the same time [4, 5]. Parallelism of NIDPS can occur at three general levels: the high-

level processing node (entire system), the component level (part of the system with specific task), and 

the sub-component level parallelism (function within a specific task). In our novel QoS architecture, 

the entire Snort NIDPS was replicated on a number of machines, each of which processed a specific 

portion of the incoming traffic. Parallel queues (2 input queues and 4 output queues) were designed 

through QoS configuration on a switch virtual interface (SVI) where component level parallelism of 

NIDPS nodes were implemented with the aim of improving NIDPS throughput performance and 

reducing NIDPS processor time (see Figure 16). 

 

The NIDPS node was configured from a single node NIDPS to a multi-node NIDPS. One group of 

rules were implemented for all nodes to perform a quick check for each packet with one group of rules 

to determine if the node contains the rule group associated with the given packet.  Each node was 

configured to do a different type of task and therefore can be considered to be component level 

parallelism. Component level parallelism is defined as function parallelism of the NIDPS processing 

node. In component parallelism, individual components of NIDPS were isolated, and each output 

queue is given its own processing element. Furthermore, the component parallelism level could be 

created as a thread of a lightweight processing node and existing threads to schedule threads of 

NIDPS processing nodes. 

 

 
Figure 16: High level parallel processing. 

8. CONCLUSIONS, RECOMMENDATIONS AND FURTHER WORK 
 

8.1 Conclusion 

 
NIDPS have become important components in securing today's computer networks. To be highly 

effective, an NIDPS must perform packet examination of incoming traffic at or near network speed. 

Failing to do so will permit malicious packets to infiltrate through the network undetected, and thus 

threaten network security. Our paper proposes and evaluates a new design of NIDPS architecture 

which uses a novel and unique infrastructure of QoS configuration and parallel technology in Layer 3 

Cisco Catalyst switches to improve the NIDPS performance. The novel architecture reduces 

difficulties in maintaining security due to multiple characteristics of advanced computer networks, 

such as processing in real time, high speeds and high loads, which increase difficulties for defenders 

and reduce difficulties for attackers. Our experimental results show vast improvement in packet 

detection in such environments and therefore give better protection against attacks. 
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8.2 Recommendations and Further Work  

 
Intruders usually use signatures that behave similarly to viruses used in computers. They also analyses 

data packets related to IP, which contains known anomalies, as either a single signature or a set of 

signatures. The detection system is capable of detecting suspicious activity in logs and generating 

alerts, based on these signatures and rules. NIDPSs are used to capture data and detect malicious 

packets that travel on the network media (cables, wireless) and match them to a database of 

signatures. Signature-based NIDPS are able to detect known attacks, but the major problem of the 

signature-based approach is that every signature should have an entry in a database in order to 

compare with the incoming packets.  New signatures arise constantly and an issue is how to keep 

track up with new signatures.  Another problem is processing time required to check all signatures. 

Knowledge sharing may provide a solution. Cloud computing which provides for massive processing 

distribution and sharing is a possible future direction [34, 35] but this also raises issues of trust. Our 

future work will investigate the use of specialized and trustworthy security clouds. 
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