

David C. Wyld et al. (Eds) : CCSEA, CLOUD, DKMP, SEA, SIPRO - 2016

pp. 45–52, 2016. © CS & IT-CSCP 2016 DOI : 10.5121/csit.2016.60205

FEATURE-MODEL-BASED COMMONALITY

AND VARIABILITY ANALYSIS FOR

VIRTUAL CLUSTER DISK PROVISIONING

Nayun Cho, Mino Ku, Rui Xuhua, and Dugki Min*

Department of Computer, Information & Communications Engineering,

Konkuk University, Seoul, Korea
{nycho,happykus,abealasd,dkmin}@konkuk.ac.kr

ABSTRACT

The rapid growth of networking and storage capacity allows collecting and analyzing massive

amount of data by relying increasingly on scalable, flexible, and on-demand provisioned large-

scale computing resources. Virtualization is one of the feasible solution to provide large

amounts of computational power with dynamic provisioning of underlying computing resources.

Typically, distributed scientific applications for analyzing data run on cluster nodes to perform

the same task in parallel. However, on-demand virtual disk provisioning for a set of virtual

machines, called virtual cluster, is not a trivial task. This paper presents a feature model-based

commonality and variability analysis system for virtual cluster disk provisioning to categorize

types of virtual disks that should be provisioned. Also, we present an applicable case study to

analyze common and variant software features between two different subgroups of the big data

processing virtual cluster. Consequently, by using the analysis system, it is possible to provide

an ability to accelerate the virtual disk creation process by reducing duplicate software

installation activities on a set of virtual disks that need to be provisioned in the same virtual

cluster.

KEYWORDS

Virtual Cluster Disk Provisioning, Feature Model-based Virtual Cluster Commonality and

Variability Analysis

1. INTRODUCTION

Virtualization is one of the promising solutions to overcome the limitation of computing power

using a flexible resource scaling mechanism [1]. There are various researches in this direction to

analyze big data with large-scale computational clusters using the virtualization technique [2,3].

Unlike physical clusters, a virtual cluster (VC) has a set of several virtual machines that needs to

be provisioned before running on virtualized physical hosts. There are two steps of VC

provisioning: VC placement and VC disk provisioning. The VC placement is a key factor to

optimize the utilization of virtualized physical hosts using effective scheduling algorithms of

underlying computing resources, such as VCPU, memory, network bandwidth, and so on [4,5].

On the other hand, the VC disk provisioning creates a set of virtual disks depending on the

demand of the requested virtual cluster. Creating a set of virtual disks is time consuming tasks.

46 Computer Science & Information Technology (CS & IT)

Therefore, the way of VC disk provisioning directly affects the quality of service of cloud

provider [6].

The provisioning process starts with the installing system or application software, such as

operating systems or middleware, on an empty disk image. Among these software, some of

system or application software, are repeatedly requested by users to install the software on virtual

disk images. If there are pre-installed virtual disk images in shared storage (e.g., distributed file

system), then the virtual disk image can be reused with a cloning mechanism. The cloning

method for the virtual disk provisioning significantly reduces time to create a set of virtual disks

of a virtual cluster. However, finding cloneable virtual disks that fully meet the demands of

software on a virtual cluster is not a trivial task.

In order to find such reusable virtual disks for the virtual cluster disk provisioning, we apply

Software product line (SPL) [7] methodology. SPL is a solution to create a collection of similar

virtual disk images from existing shared assets (e.g., virtual disk images) by commonality and

variability analysis of the product. To describe commonality and variability, this paper employ

Feature model (FM) [8] as a metadata of a virtual disk image. FM is a hierarchical representation

model that organizes commonality and variability of all the products of the SPL using features

and their relationships. Applying FM to a virtual disk image enables disk provisioning system to

determine which software features are commonly used in a virtual cluster. However, generating

all the FMs related to a virtual cluster in a manual way is a tedious and error-prone effort.

Consequently, a commonality-and-variability analyzer is necessary to generate the related FMs of

the virtual cluster automatically.

This paper presents a methodology to provisioning a group of virtual disks for a virtual cluster in

terms of software product line engineering. The virtual cluster disk provisioning process based on

SPL, which includes (1) analyzing common and variant software features of a VC, (2) retrieving

reusable virtual disk images, (3) generating virtual disk provisioning plan, and (4) creating virtual

disk images. However, among these provisioning phases, this paper focus on the VC

commonality and variability analysis with a case study. In order to analyze common and variant

software features of a virtual cluster, several functions are needed. Firstly, the basic structure of

feature model for a virtual disk image should be defined. Secondly, feature models of virtual

disks for a VC should be generated according to the user’s requirements. Thirdly, categorizing

the type of virtual disk images should be performed automatically for correctness.

Figure 1. The Disk Provisioning Step of a Virtual Cluster

Computer Science & Information Technology (CS & IT) 47

In this paper, we present the analysis system, named VC C&V analyzer, which archives the

aforementioned functional requirements by a feature model reasoning mechanism. At first, VC

C&V analyzer generates feature models a VC subgroup by using the VC provisioning

specification extended from Open Virtualization Format (OVF). After that, VC C&V analyzer

merges the generated feature models to extract the common and variant software features of a

given virtual cluster. By using the common and variant software features, VC C&V analyzer

generates the final VC commonality and variability feature models of a virtual cluster to classify

the types of the disk images that need to be provisioned. Finally, the automated support of the VC

C&V analyzer allows to reduce the effort needed to create a set of similar virtual disk images and

their similarity investigation.

The remainder of this paper is organized as follows: Section 2 describes the architecture and

processing flow of feature model-based VC commonality and variability analyzer with a feasible

case study in Section 3. Section 4 discusses related researches and finally, Section 5 presents

concluding remarks.

2. VC COMMONALITY AND VARIABILITY ANALYSIS METHOD BASED

ON FEATURE MODEL

This section presents a commonality and variability analysis method based on the feature model

for virtual cluster disk provisioning. Figure 2 shows a virtual cluster for our case study.

Normally, a virtual cluster consists of a set of VC subgroups, such as Hadoop VC subgroup and

HBase VC subgroup. Also, each VC subgroup is composed of virtual machines with the same

system or application software. In this example, six virtual disk images should be provisioned for

a big data processing VC.

Figure 2. The Big Data Processing Virtual Cluster

In some cases, a set of VC subgroups of a virtual cluster may use similar software platform, such

as operating system. For example, Hadoop VC subgroup and HBase VC subgroup may require

same system software, named Debian Linux. Thus, commonality and variability analysis among

the subgroups of a VC should be done to avoid duplicated installation tasks for the same software

platform on a virtual disk. In order to analyze commonality and variability between VC

subgroups, the basic structure of feature model for a virtual disk image is needed. Feature model

allows the virtual disk provisioning system to categorize types of virtual disks which should be

provisioned.

For provisioning the big data processing VC, the virtual disk provisioning system should classify

types of virtual disks of Hadoop VC subgroup and HBaseVC subgroup that contain the same

48 Computer Science & Information Technology (CS & IT)

software, such as Debian Linux, or different software, such as hadoop or hbase. Also, the

dependencies between software and system architecture, such as AMD64 or i386, should be

considered. To support these requirements, we define the basic structure of the feature model that

includes architecture, system software, and application software. System software consists of

various distributions and each distribution contains its own version. For example, there are

several distributions of Linux operating system with version, such as Debian 8.0, Ubuntu 14.04,

and CentOS 5.0. According to these types of the distribution, there is a set of variations that

determines which packages to be installed in the system distribution, such as minbase, base,

buildd, and so on. Similarly, application software consists of name, version, and variants

Since feature model presents commonality and variability of relevant products itself, the VC

C&V analyzer generates feature models of VC subgroups using OVF-based virtual cluster

specification which defined by the user. The VC C&V analyzer uses the specification as a

requirement to meet the needs of a particular purpose of the virtual cluster. This specification

involves a virtual hardware specification, such as the number of VCPUs, the size of memory and

disks, the virtual network bandwidth required for each virtual machine, and name and version of

software of each virtual cluster named VirtualSystemCollection. The VC C&V analyzer travels

the VirtualSystemCollections to extract system and software information from

OperatingSystemSection and ProductSection of VC subgroups. OperatingSystemSection involves

architecture, distribution, variant, and version of the system software with attributes named id and

version. ProductSection presents the name and version of application software which the

provisioning engine needs to install in a set of virtual disks. Moreover, the end user can describe

the relevant software configuration in this section, such as IP address, configurations regarding

with a particular application software, and so on.

Using this information of VC subgroups, the VC Subgroup FM Generator (VC Subgroup

FMGen) of the VC C&V analyzer maps an architecture variable into the Architecture feature, and

name, variant, and version variables into the Distribution and Variant features respectively.

Similarly, the VC Subgroup FMGen maps variables of the name, version, and variant of

application software to Application feature.

After generating feature models of each VC subgroup, the VC Commonality and

Variability(C&V) Feature Model Generator (VC C&V FMGen) merges the generated feature

models to analyze the commonality and variability between VC subgroups. If there is only one

VC subgroup in the provisioning specification, the VC C&V analyzer skips this step. In our

research, FAMILIAR [9] is used for this merging step. In other words, the core features of the

merged feature model can be interpreted as common features between VC subgroups, whereas

different features can be defined as the various features of the VC subgroups. Using “merge”

function of the FAMILIAR, VC C&V FMGen recursively combines the feature models of VC

subgroups and generates a VC C&V feature model of the whole VC.

The generator performs “cores” and “mergeDiff” functions to divide the merged feature model

into the VC commonality feature model and the VC variability feature model. Some of these

feature models contain more than one product (e.g., virtual disks) and some of them involve an

individual product of a virtual disk. Since we employ a feature model to describe the metadata of

each virtual disk, the generator splits the model to produce a specific type of virtual disk in a case

of the feature models that include more than one product. Consequently, VC C&V analyzer

Computer Science & Information Technology (CS & IT) 49

generates final results including a list of locations of the generated feature models and the number

of related VC subgroups of each feature model.

3. CASE STUDY

This section presents a case study of applying the proposed VC C&V analysis method to a big

data processing VC. Basically, Hadoop and HBase requires master and slave nodes to handle big

data in a distributed way. To avoid the performance degradation under hot spotted case [10], we

separately design VC subgroups along with the big data processing middleware (e.g., Hadoop

and HBase). Figure 3 shows the detailed description of a virtual cluster including Hadoop and

HBase subgroups.From now, this section describes four processing steps to analyze commonality

and variability of a big data processing VC by using the VC C&V analyzer.

Figure 3. A Case Study of the Big Data Processing Virtual Cluster

Step 1 – Extracting architecture, name, variant and version of the system and application
software: Firstly, the VC C&V Analyzer extracts the architecture, name, version, and variant of

system and application software of the big data processing virtual cluster as shown in Table 1.

The result can be categorized by the name of each VC subgroup. Consequently, the extracted

information of system and application software is imported into the VC subgroup Feature Model

Generator (VC Subgroup FMGen).

Table 1. The extracted information of system and application software of each VC subgroup.

VC Subgroup

Name
Software Type

Software

Name

Software

Version

Software

Variant
Architecture

Hadoop VC

System Software Debian 8.0 base amd64

Application Software Openjdk 7.0 - amd64

Application Software Hadoop 2.6.0 - amd64

HBase VC

System Software Debian 8.0 base amd64

Application Software Openjdk 7.0 - amd64

Application Software HBase 1.1.1 - amd64

Step 2 – Generating VC subgroup feature models: The VC subgroup Feature Model Generator

in the VC C&V analyzer maps the resulting information of system and application software to the

basic structure of feature model. Figure 4 shows a snippet of the generated Hadoop and HBase

VC subgroup feature models. By using these feature models, VC C&V Analyzer performs the

50 Computer Science & Information Technology (CS & IT)

feature model comparison to determine which software features are commonly used among the

VC subgroups.

Figure 4. The generated feature models of Hadoop

Step 3 – Comparing feature models of each VC Subgroup

commonality and variability of the resulting feature models in manual. However, to automate

such analysis activities, we employ a method of featur

framework. Figure 5 shows the consequent results of step 3.

Figure 5. The comparison results between Hadoop and HBase VC subgroups.

5(a) and 5(b) presents common software features, and 5(c) and 5(d) indicates different s

As shown in Figure 5, VC C&V Analyzer generates feature models of commonality and

variability based on Hadoop and Hbase VC subgroups. Also, each feature model indicates an

individual type of virtual disk, such as a

hadoop-2.6.0, and hbase-1.1.1. These results will be used on the next virtual disk provisioning

step to investigate a reusable virtual disk from the reusable asset repository.

Step 4 – Generating final results of the VC C&V Analysis

analyzer, we employ a JSON-based result model. The final result is generated by two steps.

Firstly, it categorizes a set of groups which use shared virtual disks among the virtual machines.

In this case study, we design none of VC subgroups share virtual dis

machines. Secondly, it describes required quantity and location of the commonality and

variability feature models. From the final result, it is easy to determine which

disk meets the analyzed types of virtual disks or not.

Computer Science & Information Technology (CS & IT)

feature model comparison to determine which software features are commonly used among the

Figure 4. The generated feature models of Hadoop (a) and HBase(b) VC subgroups

Comparing feature models of each VC Subgroup: It is easy to categorize

commonality and variability of the resulting feature models in manual. However, to automate

such analysis activities, we employ a method of feature model reasoning using FAMILIAR

framework. Figure 5 shows the consequent results of step 3.

Figure 5. The comparison results between Hadoop and HBase VC subgroups.

5(a) and 5(b) presents common software features, and 5(c) and 5(d) indicates different software features

among the VC subgroups.

As shown in Figure 5, VC C&V Analyzer generates feature models of commonality and

variability based on Hadoop and Hbase VC subgroups. Also, each feature model indicates an

individual type of virtual disk, such as amd64 architecture based debian-8.0, openjdk

1.1.1. These results will be used on the next virtual disk provisioning

step to investigate a reusable virtual disk from the reusable asset repository.

results of the VC C&V Analysis: As a final result of the VC C&V

based result model. The final result is generated by two steps.

Firstly, it categorizes a set of groups which use shared virtual disks among the virtual machines.

this case study, we design none of VC subgroups share virtual disks with other virtual

Secondly, it describes required quantity and location of the commonality and

variability feature models. From the final result, it is easy to determine which reusable virtual

disk meets the analyzed types of virtual disks or not.

feature model comparison to determine which software features are commonly used among the

(a) and HBase(b) VC subgroups

: It is easy to categorize

commonality and variability of the resulting feature models in manual. However, to automate

e model reasoning using FAMILIAR

Figure 5. The comparison results between Hadoop and HBase VC subgroups.

oftware features

As shown in Figure 5, VC C&V Analyzer generates feature models of commonality and

variability based on Hadoop and Hbase VC subgroups. Also, each feature model indicates an

8.0, openjdk-7-jdk,

1.1.1. These results will be used on the next virtual disk provisioning

: As a final result of the VC C&V

based result model. The final result is generated by two steps.

Firstly, it categorizes a set of groups which use shared virtual disks among the virtual machines.

ks with other virtual

Secondly, it describes required quantity and location of the commonality and

reusable virtual

Computer Science & Information Technology (CS & IT) 51

4. RELATED WORK

This section presents some efforts in the area of virtual disk image provisioning in context of SPL

[7, 11, 12, 13]. Among these researches, Wittern, Erik, et al. [11] present an Infrastructure-as-a-

Service (IaaS) deploy model to describe IaaS consumer requirements, including VMs, virtual

disk images, and software installed on the images using feature model. Once IaaS consumer

selects the cloud provider, VM type, and virtual disk image for the VM, deployment engine

invokes a web service call to instantiate VM described in the selected IaaS deploy model. After

instantiate VM, the software installation tasks are executed via SSH using a configuration

management tool, such as Chef. Also, Dougherty, et al. [12] shows an approach to optimizing

configuration and cost of auto-scaling cloud infrastructure. They provide a feature model of

virtual machine configuration that captures software platform, including operating system and

applications.

Similar to the aforementioned research, the configuration of cloud infrastructure is generated by a

selection of features from the feature model in a manual way. Using the configuration, they aim

to find a matching virtual machine that already pre-booted in the auto-scaling queue. Krsul, Ivan,

et al. [13] provides a direct acyclic graph-based model for configuration activities of a VM. If

there a partial graph matching with a set of graphs stored in the repository, named VM shop, the

system configures the partial matches of cache VM images as follow as the production line which

controls procedures for cloning and configuring a VM. There are several works to employ SPL to

create images for a virtual machine, however, none of the works has been addressed how

effectively SPL can be used for provisioning virtual disk images of a virtual cluster.

5. CONCLUSION

This paper described a way to provisioning virtual disk images of a virtual cluster via feature

model-based VC description and their commonality analysis. We presented our methodology in

the context of a feature model-based commonality and variability analysis of a VC that provides

an ability to accelerate the provisioning process by reducing duplicate type of virtual disks in the

same virtual cluster.

We presented detailed processing flow of the VC C&V Analyzer to determine which types of

virtual disks should be provisioned together in a given virtual cluster. We have applied VC C&V

Analyzer to investigate common and variant types of virtual disk images among VC subgroups of

big data processing. Moreover, our experience in using the VC C&V Analyzer to generate a

feature model of each VC subgroup and compare these resulting feature models to determine

software which need to be provisioned commonly in this case study. There are still remaining

important issues concerning VC disk creation by using the result of VC C&V analysis. We are

addressing these remaining challenges as part of our future work.

ACKNOWLEDGEMENTS

This research was supported by the MSIP (Ministry of Science, ICT and Future Planning), Korea,

under the ITRC (Information Technology Research Center) support program (IITP-2015-H8501-

15-1011) supervised by the IITP(Institute for Information & communications Technology

Promotion).

52 Computer Science & Information Technology (CS & IT)

REFERENCES

[1] Foster, I., Zhao, Y., Raicu, I., & Lu, S., (2008) “Cloud computing and grid computing 360-degree

compared. In Grid Computing Environments”, Workshop, GCE'08, pp. 1-10. IEEE.

[2] Foster, I., Freeman, T., Keahy, K., Scheftner, D., Sotomayer, B., & Zhang, X., (2006) “Virtual

clusters for grid communities. In Cluster Computing and the Grid”, CCGRID 06. Sixth IEEE

International Symposium on Vol. 1, pp. 513-520. IEEE.

[3] Hoffa, C., Mehta, G., Freeman, T., Deelman, E., Keahey, K., Berriman, B., & Good, J., . (2008) “On

the use of cloud computing for scientific workflows” In: eScience, eScience'08. IEEE Fourth

International Conference on, pp. 640-645. IEEE.

[4] Sotomayor, B., Montero, R. S., Llorente, I. M., & Foster, I, (2009) “Virtual infrastructure

management in private and hybrid clouds. Internet computing”, Vol. 13, No. 5, pp. 14-22. IEEE.

[5] Mino Ku, (2015) “Flexible and Extensible Framework for Virtual Cluster Scheduling”, Ph.D. Thesis,

Konkuk University.

[6] Juve, G., & Deelman, E.: Wrangler, (2011) “Virtual cluster provisioning for the cloud”, In

Proceedings of the 20th international symposium on High performance distributed computing, pp.

277-278. ACM.

[7] Pohl, K., Böckle, G., & van der Linden, F. J, (2005) “Software product line engineering: foundations,

principles and techniques”, Springer Science & Business Media.

[8] Kang, K. C., Lee, J., & Donohoe, P, (2002) “Feature-oriented product line engineering”, IEEE

software, Vol. 4, pp. 58-65, IEEE.

[9] Acher, M., Collet, P., Lahire, P., & France, R. B, (2013) “Familiar: A domain-specific language for

large scale management of feature models”, Science of Computer Programming, Vol. 78, No. 6, pp.

657-681.

[10] Wu, Y., & Gong, G, (20 A Fully Distributed Collection Technology for Mass Simulation Data. In

Computational and Information Sciences (ICCIS), 2013 Fifth International Conference on, pp. 1679-

1683. IEEE. (2013)

[11] Wittern, E., Lenk, A., Bartenbach, S., & Braeuer, T, (2014) “Feature-based Configuration of Vendor-

independent Deployments on IaaS”, In Enterprise Distributed Object Computing Conference

(EDOC), IEEE 18th International, pp. 128-135. IEEE.

[12] Dougherty, B., White, J., & Schmidt, D. C, (2012) “Model-driven auto-scaling of green cloud

computing infrastructure”, Future Generation Computer Systems, Vol. 28, No. 2, pp. 371-378.

[13] Krsul, I., Ganguly, A., Zhang, J., Fortes, J. A., & Figueiredo, R. J, (2004) “Vmplants: Providing and

managing virtual machine execution environments for grid computing”, In Supercomputing, 2004.

Proceedings of the ACM/IEEE SC2004 Conference, pp. 7-7. IEEE.

